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Abstract1

Explaining macroevolutionary divergence in light of population genetics requires understanding the ex-2

tent to which the patterns of mutational input contribute to long-term trends. In the context of quanti-3

tative traits, mutational input is typically described by the mutational variance-covariance matrix, or the4

M-matrix, which summarizes phenotypic variances and covariances introduced by new mutations per5

generation. However, as a summary statistic, the M-matrix does not fully capture all the relevant infor-6

mation from the underlying mutational architecture, and there exist infinitely many possible underlying7

mutational architectures that give rise to the same M-matrix. Using individual-based simulations, we8

demonstrate mutational architectures that produce the same M-matrix can lead to different levels of con-9

straint on evolution and result in difference in within-population genetic variance, between-population10

divergence, and rate of adaptation. In particular, the rate of adaptation and that of neutral evolution are11

both reduced when a greater proportion of loci are pleiotropic. Our results reveal that aspects of mu-12

tational input not reflected by the M-matrix can have a profound impact on long-term evolution, and13

suggest it is important to take them into account in order to connect patterns of long-term phenotypic14

evolution to underlying microevolutionary mechanisms.15
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Introduction17

How structure of mutational input is constraining availability of standing genetic variation and ultimately18

shaping the course of long-term phenotypic evolution has been a question of great interest [Gould, 1980,19

Nei, 2013, Stoltzfus, 2021], and addressing this problem requires understanding the degree and pattern of20

mutational input. In studies of quantitative traits, abundance of mutational input is usually quantified using21

the mutational variance, defined as phenotypic variance introduced by new mutations per unit time, usually22

presented on a per-generation basis. For multi-dimensional traits, the mutational variance-covariance matrix23

(the M-matrix, hereafter M) is used to summarize the amount and correlational structure of mutational input24

simultaneously. Each diagonal element of M represents a trait’s mutational variance, and each off-diagonal25

element represents the mutational covariance (i.e., phenotypic covariance introduced by new mutations per26

generation) between two traits. To estimate M, one can use mutagenesis or mutation accumulation (MA)27

experiments to generate a large number of mutant genotypes and compute phenotypic (co)variances among28

them (e.g., [Camara and Pigliucci, 1999] and [Houle and Fierst, 2013]).29

Often underappreciated is that M is only an insufficient summary statistic for the mutational architec-30

ture (i.e., the number of genomic loci affecting each trait, the mutation rate and spectrum at each locus, and31

the phenotypic effects of mutations). By definition, the mutational variance is a product of the mutation rate32

and variance of mutations’ effect on the trait; similarly, the mutational covariance of a given pair of traits is a33

product of the rate of pleiotropic mutations affecting both traits and the covariance of the mutations’ effects34

on two traits [Hansen, 2006, Lynch and Hill, 1986]. With each (co)variance being a product of different35

parameters, the same M can potentially result from different combination of parameters. Also underappre-36

ciated is how these different combinations could affect the evolutionary dynamics differently, which is also37

poorly understood.38

As an illustration of the one-to-many mapping between M and the underlying mutational architec-39

tures, consider two quantitative traits, trait 1 (z1 hereafter) and trait 2 (z2 hereafter), and derive the mu-40

tational (co)variances from population genetic first principles. Genomic loci affecting these traits fall into41

three groups: there are L1 loci that exclusively affect z1, L2 loci that exclusively affect z2, and LP loci that42

pleiotropically affect z1 and z2 simultaneously (L1, L2, and LP are all non-negative integers). Let us assume43

each loci has two possible alleles, and all loci’s phenotypic effects are additive. Mutational variance resulting44

from loci that exclusively affect z1 is then given by [Lynch and Hill, 1986]45

V1 =
L1∑
i=1

µia
2
i ,

where µi is mutation rate of the i-th locus and ai is the phenotypic effect of a mutation at the i-th locus.46

Similarly, mutational variance resulting from z2 is given by47

V2 =
L2∑
i=1

µib
2
i ,

where bi is the phenotypic effect of a mutation at the i-th locus.48

Let us denote the effect of a mutation at the i-th pleiotropic locus as a vector δz = (ai, bi). The total49

mutational (co)variance contributed by pleiotropic locus is then given by50

MP =
LP∑
i=1

(
µi

[
a2

i aibi

aibi b2
i

])
.
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The mutational covariance matrix, or M-matrix for z1 and z2 is a sum of contribution from three types51

of loci:52

M =
[∑L1

i=1 µia
2
i +

∑LP
i=1 µia

2
i

∑LP
i=1 µiaibi∑LP

i=1 µiaibi
∑L2

i=1 µib
2
i +

∑LP
i=1 µib

2
i

]
. (1)

If all loci have the same mutation rate µ, the above equation becomes53

M = µ

[∑L1
i=1 a2

i +
∑LP

i=1 a2
i

∑LP
i=1 aibi∑LP

i=1 aibi
∑L2

i=1 b2
i +

∑LP
i=1 b2

i

]
(2)

, and if we also assume that mutation’s effect on a trait is normally distributed across loci, there is54

M = µ

[
L1σ2

e.1 + LP σ2
p.1 LP σp.1σp.2ρ

LP σp.1σp.2ρ L2σ2
e.2 + LP σ2

p.2

]
. (3)

In the above equation, σe.1 and σe.2 are the standard deviations of phenotypic effects of mutations at loci55

that exclusively affect z1 and those at loci that exclusively affect z2, respectively. Standard deviations of56

pleiotropic mutations’ effects on z1 and z2 are σp.1 and σp.2, respectively. At last, ρ is the correlation co-57

efficient between pleiotropic mutations’ effects on two traits. It can be seen that every element of M is a58

product of multiple quantities, and it is plausible that different combinations of them give rise to the same59

M. Below we will demonstrate how M can remain unchanged with multiple parameters in Eqn. 3 are al-60

tered. We denote to a particular vector of values P, where P : {L1, σe.1, L2, σe.2, LP , ρ, σp.1, σp.2} hereafter61

for convenience.62

To see how we can manipulate the parameters while holding M constant, let LP , ρ, σp.1, and σp.263

each be multiplied by a rescaling coefficient, such that they become CP LP , Cρρ, Cp.1σp.1, and Cp.2σp.2,64

respectively, where CP CρCp.1Cp.2 = 1 and Cρ < 1/ |ρ|. Let us multiply L1σ2
e.1 and L2σ2

e.2 by rescaling65

coefficients C1 and C2, respectively, to keep the mutational variances unchanged:66 M[1, 1] = C1L1σ2
e.1 + CP C2

p.1LP σ2
p.1 = L1σ2

e.1 + LP σ2
p.1

M[2, 2] = C2L2σ2
e.1 + CP C2

p.2LP σ2
p.2 = L2σ2

e.2 + LP σ2
p.2

.

Solving the above equations gives67 
C1 =

L1σ2
e.1 + (1 − CP C2

p.1)LP σ2
p.1

L1σ2
e.1

C2 =
L2σ2

e.2 + (1 − CP C2
p.2)LP σ2

p.2
L2σ2

e.2

(4)

C1 and C2 must be non-negative as no mutation rate or standard deviation can be negative. Therefore, C168

and C2 can only be solved if69 L1σ2
e.1 + (1 − CP C2

p.1)LP σ2
p.1 > 0

L2σ2
e.2 + (1 − CP C2

p.2)LP σ2
p.2 > 0

.

Solving the above system of inequalities gives70 
CP C2

p.1 <
L1σ2

e.1
LP σ2

p.1
+ 1

CP Cp.2b2 <
L2σ2

e.2
LP σ2

p.2
+ 1

. (5)
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Hence, given M, certain combinations of CP , Cρ, Cp.1, and Cp.2 are guaranteed to alter the mutational vari-71

ances. Biologically, if the portion of mutational variance attributable to pleiotropic mutations gets too high,72

it would be impossible to keep the total mutational variance unchanged by reducing the portion contributed73

by non-pleiotropic mutations. Given that C1 can be solved, the change to L1σ2
e.1 can be done by altering L1,74

σe.1, or both. Thus, for any given combination of CP , Cρ, Cp.1, and Cp.2, there exists infinitely many ways to75

adjust L1σ2
e.1 to keep M unchanged. Similarly, there are also infinitely many ways to adjust L2σ2

e.2. Hence,76

there exists infinitely many unique P that give rise to the same M.77

In this study, we use population genetic simulations to explore dynamics of phenotypic evolution in78

the face of the same M but different underlying mutational architectures. Specifically, we examined series79

of scenarios where the fraction of loci that are pleiotropic varied, and show that both neutral evolution and80

adaptation are more constrained when the fraction is higher.81

Results and Discussion82

To demonstrate how mutational architectures that produce identical M-matrices can lead to different evolu-83

tionary dynamics, we performed evolutionary simulations in SLiM [Haller and Messer, 2023] and examined84

phenotypic variation within and between populations at the end of the simulations. We considered genotype-85

phenotype (G-P) maps where each trait is affected by 50 genomic loci with equal effect size. Some loci are86

non-pleiotropic, whereas others are pleiotropic loci that affect all the traits. Different G-P maps being com-87

pared have different numbers of pleiotropic and non-pleiotropic loci, but the number of loci affecting each88

trait is constant (see Fig. 1 for a schematic illustration). Pleiotropic mutation’s effects on different traits89

are uncorrelated. Together, all these G-P maps produce the same mutational variances and zero mutational90

covariance (the M-matrices are identical).91

We first examined scenarios where traits under concern are all under stabilizing selection. For each92

G-P map, we simulated 50 replicate populations, and examined within-population genetic variance (VG)93

and between-population variance (VR) at the end of simulation. While the different G-P maps showed little94

difference when only 2 traits were simulated, both VG and VR become lower when all loci are pleiotropic95

and each loci affects 5 or 10 traits (Fig. 2).96

We also examined the evolution of a neutral trait (i.e., z1) that does not affect fitness directly and asked97

how its evolution would be constrained by the indirect effect of other traits being under stabilizing selection.98

We predicted that, as the proportion of underlying loci of z1 increases, VG and VR of z1 will decrease. Indeed,99

when all loci are pleiotropic and each locus affects 10 traits, VG and VR of z1 both become magnitudes lower100

than those in other scenarios (Fig. 3). While VG did not show clear trends when the level of pleiotropy is101

intermediate (i.e., not all loci are pleiotropic, the number of traits affected by each loci is relatively small),102

VR decreased as the proportion of loci that are pleiotropic increased from 0 to 100% in scenarios of 5 and103

10 traits (Fig. 3B). Note that even in the absence of pleiotropy, VR of z1 is lower than the neutral expectation104

and lower when more traits are under stabilizing selection (Fig. 3B), indicating the rate of fixation of neutral105

mutations (i.e., non-pleiotropic mutations that affect z1 only) was reduced by unlinked background selection106

[Charlesworth, 2012, Matheson and Masel, 2024]. Together, our results show that prevalent pleiotropy can107

constrain the rate of neutral evolution as captured by phenotypic variance among lineages.108

And last, we asked how these different G-P maps could constrain adaptation when a specific trait (i.e.,109

z1) is under directional selection and other traits are under stabilizing selection. Under such regimes of110

selection, selection on different traits can interfere, and pleiotropy can have a profound impact on a trait’s111

response to directional selection [Hansen and Houle, 2008]. We simulated evolution in non-Wright-Fisher112
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(non-WF) populations whose size can change over time and examined their mean phenotypes and population113

sizes at the end of the simulations. Under our simulations’ conditions, an individual’s phenotype affects its114

viability while fecundity is invariable among individuals. As the population undergoes adaptive evolution,115

it will be able to reach and maintain a greater size as death rate is lower; when the population is well adapted116

(i.e., all individuals have the optimal phenotype), its size will stay close to the carrying capacity K, which is117

an upper limit to population imposed by the environmental condition. As pleiotropic loci are more likely to118

have detrimental effects on traits under stabilizing selection, the supply of adaptive mutations will be more119

limited when a greater fraction of loci are pleiotropic (Fig. S1), which could result in lower rate of adaptation120

and smaller population size. While it is not impossible for a population with very low rate of adaptation to121

reach the optimum in the end if it is given unlimited time [Sella, 2009], actual populations do not evolve122

in constant environments indefinitely, and it is often the dynamics of adaptation during a transient period123

rather than the long-term equilibrium in a static environment that is most relevant (e.g., in the context of124

evolutionary rescue [Anciaux et al., 2018, Orr and Unckless, 2014] or fluctuating selection [Holstad et al.,125

2024]). Thus, we let the simulation run for a fixed amount of time, and examined the evolved populations’126

sizes and mean phenotypes at the end. As predicted, as the proportion of loci that are pleiotropic increased,127

population size at the end decreased (Fig. 4A) and the population mean of z1 (z̄1) became farther away128

from the optimum (Fig. 4B). When the number of pleiotropic loci is no more than 20 (i.e., 40% of loci129

underlying each trait), population size at the end was close to K, and z̄1 was close to the optimum, indicating130

successful adaptation. In contrast, when all loci are pleiotropic and the number of traits affected by each131

locus is large (i.e., 5 or 10 traits), many populations underwent no adaptive evolutionary change at all within132

time of simulation (Table S1).133

Together, our simulation results show mutational architectures that produce the same M-matrix but134

have distinct "hidden" properties can have drastically different effects on dynamics of neutral phenotypic135

evolution and adaptation. The effect of hidden aspects of the mutational architecture on phenotypic evo-136

lution has important implications for understanding mechanisms of phenotypic evolution in nature. That137

mutational input constrains availability of genetic variance and ultimately long-term phenotypic evolution138

is a long-standing and controversial hypothesis [Gould, 1980, Nei, 2013, Stoltzfus, 2021]; in principle, one139

can test it by comparing M to patterns of within-species additive genetic (co)variances (as encapsulated by140

the genetic variance-covariance matrix, G) and evolutionary (co)variance among species (as encapsulated141

by the evolutionary variance-covariance matrix, R) (e.g., [Houle et al., 2017]); strong similarity between142

M and the other two matrices would be consistent with the patterns of mutational input driving long-term143

evolution. However, this test faces conceptual difficulties and is not as straightforward as it appears to be: as144

the dispositional effect of mutational input on evolution cannot be learned from the M-matrix alone, a com-145

parison of matrices alone is also not sufficient to tell whether and how mutational constraints have shaped146

observed phenotypic divergence.147

The key difference between mutational architectures examined in this study is in their degree of148

pleiotropy, specifically the proportion of loci that are pleiotropic along underlying loci of each trait. We149

found that pleiotropic mutations are generally more deleterious, less likely to be adaptive, and less likely150

to fix, resulting in constraints on both neutral and adaptive evolution. Our findings regarding the effect of151

pleiotropy on evolution agree with those of earlier studies [Battlay et al., 2024, Chevin et al., 2010, Jiang and152

Zhang, 2020, Martin, 2014, McGuigan, 2006, Orr, 2000], but further show that this effect persists even given153

the same M. If the effect of details of pleiotropy is overlooked and assumed to make little difference to evo-154

lution, conclusions about phenotypic evolution that are contingent on strong assumptions about pleiotropy155

could be mis-interpreted as general. In particular, models for the evolution of multivariate traits often as-156

sume universal pleiotropy (i.e., every mutation affects every trait), which can have substantial impact on their157

conclusions and implications. For instance, Fisher’s Geometric Model (FGM) makes this assumption, which158

leads to the prediction that mutations with smaller effect sizes are more likely to be adaptive and that there159
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is a "cost of complexity" as adaptation is slower when there are a greater number of phenotypic dimensions160

[Fisher, 1930, Orr, 2000, Tenaillon, 2014, Welch and Waxman, 2003]. Similarly, in a series of modeling161

studies, Jones et al. [2007] and Jones et al. [2014] assumed universal pleiotropy when modeling the evolu-162

tion of the mutational architecture under second-order selection, making the effect size correlation being the163

only evolvable aspect of mutational architecture; it is unknown whether the mutational architecture would164

evolve differently if the assumption of universal pleiotropy is relaxed. The degree to which the assumption165

of universal pleiotropy is reasonable remains an open question [Boyle et al., 2017, Hill and Zhang, 2012a,b,166

Paaby and Rockman, 2013, Wagner and Zhang, 2011, Zhang, 2023]. Some studies have found that each gene167

or mutation typically affects only a small subset of traits and suggested that adaptation is not necessarily168

more constrained in complex organisms as FGM would indicate [Ho and Zhang, 2014, Wagner et al., 2008,169

Wang et al., 2010]. Others argue that pleiotropy is more pervasive and that many empirical studies underesti-170

mate the prevalence of pleiotropy due to technical issues [Hill and Zhang, 2012b]. Furthermore, the recently171

proposed "omnigenic" model [Boyle et al., 2017, Liu et al., 2019] argues that, because of properties of the172

regulatory network, each individual gene or mutation can affect a large number of traits while having major173

effects on a small number of traits. No matter how the debate would resolve, it is clear we cannot take the uni-174

versal pleiotropy assumption for granted, and it is essential for future studies to be cautious when modeling175

the evolution multivariate traits and interpreting observed phenotypic variations. It is also worth noting that176

pleiotropy makes a difference even when mutations’ effects on different traits are uncorrelated. Correlated177

pleiotropic effects, which manifest as mutational covariances, are known to shape the structure of genetic178

covariances and eventually patterns of correlated evolution [Lande, 1979, 1980, Wagner, 1989] whereas the179

effect of unstructured pleiotropy on evolution is less appreciated. Nevertheless, unstructured pleiotropy can180

alter the distribution of effects of new mutations, potentially constraining the course of evolution. Together,181

we suggest that, with only the M-matrix along with regime of selection, robust predictions about the course182

of evolution cannot be made without further information, and more detailed understanding of the mutational183

architecture would be essential for understanding mechanisms of phenotypic evolution.184

Conclusion185

In this study, we show that the M-matrix, a summary statistic commonly used to describe mutational input186

for quantitative traits, does not fully capture key features of the mutational architecture even when mutations’187

effects are all additive. Using simulations, we show difference in properties of these mutational architectures188

can result in different evolutionary dynamics. Specifically, when a greater fraction of loci affecting a given189

trait are pleiotropic, the trait under concern will have lower rates of neutral evolution and adaptation. We190

suggest that hidden aspects of mutational architectures that are not reflected by M-matrices poses signif-191

icant challenge to attempts to understand mechanisms of phenotypic evolution and requires more explicit192

consideration in future studies.193

Methods194

Genotype-phenotype maps195

We considered a set of quantitative traits, each affected by a set of underlying loci (i.e., genes or genomic196

regions). We considered an infinite sites model where mutations at any given locus are all distinct from197

each other and recurrent mutations never occur. Therefore, in our simulations, each mutation’s phenotypic198

effect is sampled independently from the locus-specific distribution. Effects of mutations on each trait were199
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additive. For simplicity, heritability was assumed to be 100% for all traits. Two types of loci were considered200

in our simulations: non-pleiotropic loci that each affects a single trait, and universally pleiotropic loci that201

affect all traits. When a mutation occurs at a non-pleiotropic locus, its effect on the trait to be affected was202

sampled from a normal distribution N (0, σ); in our simulations, we had σ = 1 for all non-pleiotropic loci. If203

a mutation occurs at a pleiotropic locus, its effect is sampled from a multivariate distribution characterized by204

an identity matrix. We assumed no bias in mutation’s phenotypic effect; that is, the mean effect of mutations205

at any given locus on any given trait was zero. We let every trait under consideration have 50 underlying loci,206

and compared G-P maps where 0, 10, 20, 30, 40, and 50 of these loci are pleiotropic. We considered scenarios207

where 2, 5, and 10 traits are affected by each pleiotropic locus. Note that in the case of no pleiotropy, we also208

performed simulations with 2, 5, and 10 traits.209

Selection on phenotypic traits210

We considered a multivariate Gaussian fitness function, which is described by a covariance matrix S. Each211

diagonal element of S is the width of an individual trait’s fitness function (i.e., variance of a normal distri-212

bution), and off-diagonal elements represent correlational selection for relationships between traits [Arnold213

et al., 2008, 2001].214

To calculate fitness given the n-dimensional phenotype z⃗, we first calculate its distance to the optimal215

phenotype o⃗:216

d⃗ = z⃗ − o⃗.

We then calculate the projection of d⃗ on eigenvectors of S:217

b⃗ = d⃗K,

where K is the eigenvector matrix of S. Fitness is then calculated as218

ω = exp

−

√√√√ n∑
i=1

b2
i

2Ei

 , (1)

where bi is the i-th element of b⃗ and Ei is the n-th eigenvalue of S. If an eigenvalue of S (e.g., Ei) is zero,219

the corresponding term in Eqn. (1) ( bi
2

2Ei
) would be dropped. The biological interpretation of such a situation220

is the lack of selection on a specific phenotypic dimension, in which case the phenotypic dimension with no221

selection should not be considered when calculating fitness.222

In our simulations, we only considered scenarios without correlational selection, so S-matrices being223

considered were all diagonal. Eqn. (1) thus becomes224

ω = exp

−

√√√√ n∑
i=1

d2
i

2Si

 , (2)

where di is the i-th element of d⃗ and Si is the i-th diagonal element of S, characterizing strength of selection225

on the i-th trait.226

We had all traits start from a value of 0 in our simulations. All traits’ optimal values are equal to 0,227

unless noted otherwise. Diagonal elements of S are all equal to 1, unless noted otherwise. In simulations228

where one trait (i.e., z1) is neutral, the corresponding diagonal element of S, S1,1 is equal to 0 and the trait is229

not counted when calculating fitness. In simulations where one trait (i.e., z1) is under directional selection,230
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we set trait’s optimal value to be 20 and S1,1 = 100. Under such a setting, it requires multiple substitutions231

for the phenotype to be optimized and the initial fitness is not too low to cause quick extinction such that it232

is easy to quantify and visualize rate of adaptation using the population mean phenotype at the end.233

SLiM simulations234

We simulated the evolution of orthogonal traits with zero mutational covariance in diploid, hermaphrodite,235

and free-mating populations in SLiM [Haller and Messer, 2023]. Each locus that affect trait(s) was repre-236

sented as a single genetic element object in SLiM. Each locus’s mutation rate was set to be 10−6 per gener-237

ation. We also assumed free recombination between loci and no recombination within loci (i.e., causal loci238

sparsely distributed along the chromosome). Fitness with respect to traits under consideration is calculated239

following Eqn. (2).240

We simulated evolution of both Wright-Fisher (WF) and non-WF diploid populations. All WF popu-241

lations had population size N = 1000, and simulation for each population lasted for 10N = 104 ticks (i.e.,242

generations). In the WF simulation, each individual’s fitness value is equal to fitness with respect to traits243

of concern. Simulation for each non-WF population started with N = K = 1000, where K is the carrying244

capacity, and ran for 10K = 10000 ticks. Reproduction takes place at the beginning of each tick, and the245

expected number of offspring produced by each individual each time was set to be 1, which was set to be246

the same for all individuals. Variation in fitness between individuals is mediated by death probability. The247

fitness value of a given individual (i.e., the i-th individual) at a given time t is calculated as ωi,t = ωiK
Nt

,248

where ωi is its fitness with respect to the traits under concern and Nt is the population size at the moment.249

If, after reproduction, an individual’s fitness is equal to or greater than 1, it will survive at the end of the tick;250

if all individuals’ fitness values are equal to or greater than 1, the population will grow.251

For each evolutionary scenario, we simulated 50 replicate populations, which correspond to 50 subpop-252

ulation objects with zero gene flow in SLiM. Genetic variance (VG) of each trait was computed as phenotypic253

variance among individuals in a population at the end of the simulation. For each trait, genetic variances from254

the 50 replicate populations were averaged to represent the expected genetic variance. For scenarios where255

traits were either under stabilizing selection or no selection, we quantified the degree of evolutionary diver-256

gence among population using variance of mean phenotypes among replicate populations (VR). Because257

all traits under consideration had the same mutational variance, we averaged different traits’ VG and VR for258

simulation setting to represent the overall degree of constraint in the corresponding scenario. When a trait259

is under directional selection, we examined its mean across populations at the end; for non-WF simulations,260

population that had zero population sizes in the end where excluded calculating this mean phenotype.261

Code and data availability262

Code and data files are available at https://github.com/phylo-lab-usc/m-matrix/tree/main.263
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Tables343

Table 1: Definition of simulation parameters.

Parameter Definition

z1, z2 Phenotypic trait 1 and trait 2.
M Mutational variance-covariance matrix, M-matrix.
V1, V2 Mutational variances of z1 and z2, respectively.
L1 The number of loci that exclusively affect z1.
L2 The number of loci that exclusively affect z2.
LP The number of pleiotropic loci that affect both z1 and z2.
µ Per-locus mutation rate; µi denotes mutation rate of the i-th locus.
ai, bi Effects of a mutation at the i-th locus on z1 and z2, respectively.
σe.1 Standard deviations of phenotypic effect of mutations that exclusively affect z1.
σe.2 Standard deviations of phenotypic effect of mutations that exclusively affect z2.
σp.1, σp.2 Standard deviations of pleiotropic mutations’ effect on z1 and z2, respectively.
ρ Correlation between pleiotropic mutations’ effect on z1 and z2.
ω Fitness of an individual with respect to traits under concern.
S Matrix characterizing multivariate selection.
N Size of a population; Nt denotes population size at time t.
K Carrying capacity; equilibrium population size when the phenotype is optimized.
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Figures344

Trait 1 Trait 2

Non-pleiotropic loci Non-pleiotropic loci

Trait 1 Trait 2

Non-pleiotropic loci Non-pleiotropic lociPleiotropic loci

Trait 1 Trait 2

Pleiotropic loci

A

B

C

Figure 1: Schematic illustration of alternative genotype-phenotype maps that produce the same M-matrix.
A locus’s effect on a trait is indicated by a line connecting the trait and the locus. In all three scenarios, each
trait is affected by 5 loci, the distribution of mutations’ per-trait effect is the same for all loci, and pleiotropic
mutation’s effect on two traits are uncorrelated. Thus, the two traits have the same mutational variance and
zero genetic covariance in all scenarios. (A) Each trait affected by 5 non-pleiotropic loci. (B) Each trait is
affected by 3 non-pleiotropic loci and 2 pleiotropic loci. (C) Both traits are affected by the same 5 loci.
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Figure 2: Phenotypic variance within and between populations when all traits are under stabilizing selection.
Colors correspond to the number of traits being simulated. (A) Within-population genetic variance (VG),
which is averaged across populations for each trait and then averaged across traits. Error bars reflect standard
error, which is first calculated for each trait and then averaged across traits. (B) Between-population variance
(VR), which is first calculated for each trait and then averaged across traits. Error bars reflect sampling
standard deviation of sample variance at sample size of 50. Y-axes are in log10 scale.
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Figure 3: Variance of a neutral trait (z1) within and between populations when all other traits are under
stabilizing selection. Colors correspond to the number of traits being simulated. (A) Within-population
genetic variance (VG) of z1, which is averaged across populations. Error bars reflect standard error, which
is first calculated for each trait and then averaged across traits. (B) Between-population variance (VR) of z1.
Error bars reflect sampling standard deviation of sample variance at sample size of 50. Y-axes are in log10
scale.
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Figure 4: Adaptive evolution in non-Wright-Fisher populations. Colors correspond to the number of traits
being simulated. (A) Mean population size at the end of simulation. Red dashed line represents the carrying
capacity (K). (B) Mean value of trait under directional selection (z̄1) at the end of simulation. Red dashed
line represents its optimum. Error bars in both panels reflect standard error.
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Figure S1: Frequency and rate of beneficial mutations when one trait is under directional selection and all
other traits are under stabilizing selection. (A) Fraction of mutations that are beneficial estimated from 106

random mutants. Error bars represent standard deviation of sample proportion at sample size of 106. Fitness
effect of each mutation is evaluated on the ancestral background at the beginning of the simulations. (B) Rate
of beneficial mutations per genome per generation. Size of each error bar is equal to size of the corresponding
error bar in (A) multiplied by the total mutation rate per genome per generation.
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Table S1: Fraction of replicate populations that underwent no adaptive evolutionary change (i.e., z̄1 at the
end of simulation is identical to that at the beginning).

Number of pleiotropic loci Fraction of populations with no adaptive change

2 traits 5 traits 10 traits

0 0 0 0
10 0 0 0
20 0 0 0
30 0 0 0
40 0 0.02 0.06
50 0.02 0.84 1
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