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1  |  INTRODUC TION

Wild populations respond to changing environments by means of 
phenotypic plasticity and microevolution, and especially climate 
change responses have been extensively studied. The aim is then 

to disentangle phenotypic changes owing to genetically based mi-
croevolution caused by natural selection, and changes due to indi-
vidual phenotypic plasticity. Relying on 11 review articles, including 
reviews of altogether 66 field studies, Merilä and Hendry (2014) 
arrived at the conclusion that evidence for genetic adaptation to 

Received: 9 February 2022  | Revised: 1 March 2022  | Accepted: 4 March 2022
DOI: 10.1002/ece3.8836  

R E S E A R C H  A R T I C L E

The important choice of reference environment in 
microevolutionary climate response predictions

Rolf Ergon

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, 
provided the original work is properly cited.
© 2022 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd.

University of South-Eastern Norway, 
Porsgrunn, Norway

Correspondence
Rolf Ergon, University of South-Eastern 
Norway, Campus Porsgrunn, Kjølnes ring 
56, NO-3918 Porsgrunn, Norway.
Email: rolf.ergon@usn.no

Funding information
Universitetet i Sørøst-Norge, Grant/Award 
Number: N008

Abstract
It is well documented that individuals of wild populations can adjust to climate change 
by means of phenotypic plasticity, but few reports on adaptation by means of ge-
netically based microevolution caused by selection. Disentanglement of these sepa-
rate effects requires that the reference environment (the environmental zero point) 
is defined, and this should not be done arbitrarily. The problem is that an error in the 
reference environment may lead to large errors in predicted microevolution. Together 
with parameter values and initial mean trait values, the reference environment can 
be estimated from environmental, phenotypic and fitness data. A prediction error 
method for this purpose is described, with the feasibility shown by simulations. As 
shown in a toy example, an estimated reference environment may have large errors, 
especially for small populations. This may still be a better choice than use of an initial 
environmental value in a recorded time series, or the mean value, which is often used. 
Another alternative may be to use the mean value of a past and stationary stochastic 
environment, which the population is judged to have been fully adapted to, in the 
sense that the expected geometric mean fitness was at a global maximum. Exceptions 
are cases with constant phenotypic plasticity, where the microevolutionary changes 
per generation follow directly from phenotypic and environmental data, independent 
of the chosen reference environment.
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climate change has been found in some systems, but that such ev-
idence is relatively scarce. They also concluded that more studies 
were needed, and that these must employ better inferential meth-
ods. The aim of the present article is to give a contribution in that 
last respect.

It is obvious that for all evolutionary systems with interval-scaled 
environmental variables ut, as, for example, temperature in °C, a suit-
able zero point (reference environment) uref must be chosen, and as 
argued in Section 2, this should not be done arbitrarily. A zero point is 
in general defined as “the point on a scale that denotes zero and from 
which positive and negative readings can be made” (Collins English 
Dictionary). The problem is that an error in the reference environment 
may lead to large errors in predicted microevolution. In most cases 
where the environmental variable is, for example, a temperature, the 
reference environment should not, for example, be set to 0°C (or 0°F). 
Neither should it, without further consideration, be set to the initial or 
mean environmental value of a specific time series. It appears that the 
need for a proper reference environment definition, and thus also an 
environmental cue definition, has been largely ignored in the reviewed 
studies referred to in Merilä and Hendry (2014).

The present article is an attempt to clarify some important 
questions relating to reference environments, and for that pur-
pose a method for model-based predictions of microevolution-
ary changes is also proposed. This method is based on parameter 
estimation by means of prediction error minimization, including 
estimation of reference environment and initial mean values of 
quantitative traits.

For a discussion on the general microevolution versus plas-
ticity disentanglement problem, we may for simplicity assume the 
intercept-slope individual reaction norm model:

where ut − uref and yi,t are the environmental cue and the individual 
phenotypic value, respectively, as functions of time t measured in gen-
erations. Here, ai,t and bi,t are the additive genetic components of the 
intercept and plasticity slope, respectively, while vi,t and �i,t are indepen-
dent iid zero mean normal non-additive effects. As done in Lande (2009) 
and Ergon and Ergon (2017), we may consider the individual reaction 
norm intercept ai,t + vi,t, and the individual plasticity slope bi,t + �i,t, as 
two quantitative traits in their own right. Microevolution thus involves 
changes in the mean trait values at and bt from generation to generation. 
The generations are here assumed to be non-overlapping.

From Equation (1) follows the mean trait reaction norm model, 
yt = at + bt

(
ut − uref

)
, and from this simple equation follows the basic 

questions discussed in this article. How can uref be estimated, and 
how can the evolution of at and bt be predicted, provided that ut and 
yi,t are known? And how will the predictions be affected by errors in 
the estimated or assumed value ûref? It turns out that in order to an-
swer these questions we also need information on individual fitness 
values Wi,t.

The reference environment uref is determined by the environ-
ment at which the phenotypic variance has its minimum, as defined 

in more detail in Section 2, and as discussed in Ergon and Ergon 
(2017) and Ergon (2018). In theoretical work, it is often assumed that 
the population has fully adapted to a stationary stochastic environ-
ment with a given mean value, such that the expected geometric 
mean fitness is at a global maximum, and the reference environment 
is then set to zero (Chevin & Lande, 2015; Lande, 2009). Although 
there is nothing wrong with this theoretical approach, it disguises 
the underlying problem discussed here, and uref is therefore included 
in Equation (1). This formulation also makes it possible to distinguish 
between the environment as such and the environmental cue. In 
some cases, it may be possible to determine the reference environ-
ment experimentally, see, for example, Fossen et al. (2018), but that 
may obviously be difficult for wild populations.

When the environmental cue ut − uref changes over time, the 
mean trait values at and bt as follow from Equation (1) may evolve 
due to selection, and as a result also the mean phenotypic value yt 
will evolve (Lande, 2009). Without changes due to selection, that is, 
if the mean trait values at and bt are constant, the value of yt may 
still change when ut − uref changes, as also follows from Equation (1).

Section 2 discusses several aspects of the general microevolu-
tion versus plasticity disentanglement problem. First, a definition 
of the reference environment is given. Second, it is shown how the 
mean trait values at and bt, and thus also yt, evolve as functions of 
the environmental cue ut − uref and the phenotypic selection gradi-
ent �y,t . Third, it is shown how uref and �y,t, as well as initial mean trait 
values and the parameter values in the G matrix, can be estimated 
by means of a prediction error minimization method (Ljung, 2002), 
using data from known time series of ut and yi,t, as well as of individ-
ual fitness values Wi,t. Fourth, it is discussed why it may be difficult 
to estimate uref, as revealed by simulations, and which consequences 
errors in estimated values of uref will have. Exceptions are cases 
with constant phenotypic plasticity, where the microevolutionary 
changes per generation follow directly from phenotypic and envi-
ronmental data, independent of the chosen reference environment.

It must be underlined that the theory in Section 2 assumes that 
the phenotypic trait yi,t in Equation (1) is not correlated with other 
phenotypic traits having causal effects on fitness, see Morrissey 
et al. (2010) for a discussion. Also note that the need for a proper 
reference environment is not specific for the simple case according 
to Equation (1).

Simulations in Section 3 make use of a toy example, utilizing the 
intercept-slope reaction norm model in Equation (1). The environ-
mental input ut is here a noisy positive trend in spring temperature, 
while the individual phenotypic values yi,t are the clutch initiation 
dates for a certain bird species. The toy example also assumes that 
the individual (mid-parent) fitness values Wi,t are the numbers of off-
spring. The essential questions are how microevolutionary changes 
in mean intercept and plasticity slope can be predicted, and how 
these predictions are affected by errors in the reference environ-
ment uref in Equation (1). The simulations show that errors in the esti-
mated or assumed value of uref may cause large mean trait prediction 
errors. They also show the feasibility of the proposed parameter 
estimation method.

(1)yi,t = ai,t + vi,t +
(
bi,t + �i,t

)(
ut − uref

)
,
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Finally, follows a discussion in Section 4. Derivations of predic-
tion equations, simulation results with modeling error and increased 
population size, and a short comparison with BLUP/REML parameter 
estimation are given in Appendices S1–S4.

2  |  THEORY AND METHODS

2.1  |  Example system

For a study of the general reference environment problem, and for a 
test of the proposed parameter estimation method, we may consider 
a true evolutionary system based on Equation (1),

with the additive genetic covariance matrix G =

⎡⎢⎢⎣
Gaa Gab

Gab Gbb

⎤⎥⎥⎦
 , and the 

phenotypic covariance matrix P =

⎡⎢⎢⎣
Gaa+�2

v
Gab

Gab Gbb+�2
�

⎤⎥⎥⎦
 . Here, 

Equation (2b) is the multivariate breeder's equation (Lande, 1979), 
where Wi,t is found from any given fitness function. It is assumed that 
the phenotypic trait yi,t in Equation (1) is not correlated with other phe-
notypic traits having causal effects on fitness, and that generations are 
non-overlapping.

2.2  |  Reference environment and environmental 
cue definitions

As discussed in the Introduction, there is a need for reference envi-
ronment and environmental cue definitions:

Definition 1 Assuming a single environmental variable ut, and given a 
reaction norm model, the reference environment is as follows:

where u0 is the environment at which the phenotypic variance 
is at a minimum, and where the covariance between the plas-
tic phenotypic value and reaction norm slope is equal to 0. Here, 
f(reaction norm parameter values) is a correction term that may be 0.
Definition 2 With uref according to Definition 1, the environmental 

cue is given by u − uref.

For the reaction norm model (1) we find, for example, (using 
u� = u − uref)

which by setting cov(y, b) = 0 and u� = u0 − uref gives the reference 
environment

For Gab = 0, the reference environment is thus the environment 
where the phenotypic variance is minimized (see Figure 1 for illustra-
tion). This is also the environment where the expected geometric mean 
fitness has a global maximum, and thus the environment the population 
is fully adapted to. In this environment the environmental cue will be 0.

2.3  |  Mean trait prediction equations

A fundamental equation for mean trait predictions follows from 
Equation (2a) as

where Δut = ut+1 − ut, Δat = at+1 − at, Δbt = bt+1 − bt , and 
Δyt = yt+1 − yt are changes per generation. From this follows that the 
value of uref has nothing to say in special cases with constant pheno-
typic plasticity slopes, that is, when Δbt = 0. In such cases, we simply 
have Δyt = Δat + bΔut, where b is constant, or only Δyt = bΔut , if at 
does not evolve.

(2a)yt = at + bt
(
ut − uref

)
,

(2b)
⎡
⎢⎢⎣

Δat

Δbt

⎤
⎥⎥⎦
=

1

Wt

GP
−1
⎡
⎢⎢⎣
cov

�
Wi,t , ai,t+vi,t

�

cov
�
Wi,t , bi,t+�i,t

�
⎤
⎥⎥⎦

(3)uref = u0 + f(reaction norm parameter values),

(4a)

cov(y, b) = E
[(
a − a + � +

(
b − b

)
u� + �u�

)(
b − b + �

)]
= Gab +

(
Gbb + �2

�

)
u�,

(4b)uref = u0 +
Gab

Gbb + �2
�

.

(5)Δyt = Δat + Δbt
(
ut+1 − uref

)
+ btΔut ,

F I G U R E  1 Reaction norms for 100 individuals in a population 
according to Equation (1), with Gaa + �2

v
= 0.05, Gbb + �2

�
= 0.02, 

and Gab = 0. The reference environment is uref = 10°C, which since 
Gab = 0 also is the temperature u0 to which the population is fully 
adapted. The mean trait values are at = 0 and bt = − 0.5 . Solid lines 
indicate the range of data used for parameter estimation and mean 
trait predictions in simulations. Note that uref = u0 = 10°C is not 
within that range
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As shown in Appendix S1, Equation (5) leads to equations for Δat 
and Δbt as functions of the phenotypic selection gradient �y,t,

and

where

In addition to time series of ut and yi,t, we thus need param-
eter values for uref, Gaa, Gab, Gbb, �2v, and �2

�
, and a time series of 

individual fitness values Wi,t. For mean trait predictions, we also 
need initial values. Note that these equations are valid only when 
the genetic relationship matrix is a unity matrix (Ch. 26, Lynch & 
Walsh, 1998).

2.4  |  Prediction error minimization method

From predicted mean intercept and plasticity slope values found by 
Equations (6a, 6b) follow predicted values of yt from Equation (2a). 
The prediction equations can thus be used for parameter estima-
tion in a prediction error minimization method (PEM), as shown in 
Figure 2. As follows from Equations (6a–6c), we can then set Gaa to 
any value, and estimate Gab, Gbb, �2v, and �2

�
 relative to that value.

2.5  |  Effects of errors in the reference environment

With a reference environment ûref instead of uref, predictions based 
on Equation (2a) can be written

where ̂at and ̂bt are found from Equations (6a, 6b) with use of estimated 
parameter values, assuming initial values known.

For small values of Gbb, that is, when Gbb → 0 and Gab → 0, it fol-
lows from Equations (6a–6c), that Δat is independent of uref, and that 
bt is constant. This results in Δât = Gaa∕

(
Gaa + �̂

2

v

)
, such that only �̂2

v
 

must be tuned in order to minimize ∑T

t=1

�
yt− ŷt

�2
. In this case, an 

error in ûref has very little effect on the change in ât per generation, 
as also follows from Equation (5).

For larger values of Gbb, the predicted change per generation Δât 
will be affected by an error in ûref, and with Gab = 0 good predictions 
ŷt ≈ yt for t = 1 to T can then only be obtained by parameter tun-
ing such that b̂t ≈ bt over all generations. That is possible because 
uref appears in both nominator and denominator of Equation (6b). 
According to Equation (7) we then find ât ≈ at + b̂t(ûref − uref), which 
as shown in Section 3 may result in large errors in predicted changes 
in at over time.

Equation (7) also shows why it may be difficult to estimate uref 
from data based on small populations. The reason is that minimiza-

tion of 
∑T

t=1

�
yt− ŷt

�2

 results in ât − b̂t(ûref − uref) ≈ at and b̂t ≈ bt 

over all generations, also if there is a large error in ûref.

2.6  |  Effects of modeling errors

Modeling errors will obviously affect predictions of the mean traits. 
As an example, simulations with the true individual model

are included in Appendix S2. Here, ci,t + � i,t is a perception trait, as dis-
cussed in Ergon and Ergon (2017).

3  |  SIMUL ATION RESULTS

3.1  |  Description of toy example

In the toy example, the environmental input (ut) is a noisy positive 
trend in spring temperature, resulting in a noisy negative trend 
in mean clutch initiation date (yt) for a certain bird species, ap-
proximately as in figure 2 in Bowers et al. (2016). The individual 
phenotypic values are discrete, with days as unit. The individual 
(mid-parent) fitness values (Wi,t) are integers from 0 to 10, with 

(6a)Δat =
(
Gaa + Gab

(
ut − uref

))
�y,t

(6b)Δbt =
(
Gab + Gbb

(
ut − uref

))
�y,t ,

(6c)�y,t =
1

Wt

(
Paa+2Gab

(
ut−uref

)
+Pbb

(
ut−uref

)2)−1

cov
(
Wi,t , yi,t

)
.

(7)ŷt = ât + b̂t
(
ut − ûref

)
= ât − b̂t(ûref − uref) + b̂t

(
ut − uref

)
,

(8)yi,t = ai,t + vi,t +
(
bi,t + �i,t

)(
ut − ci,t − � i,t

)
,

F I G U R E  2 Block diagram of microevolutionary PEM, with 
dynamical tuning model based on an intercept-slope reaction norm 
model with mean traits at and bt. Here, ut and yt are the known 
environmental input and the known mean phenotypic value at time 
t  , respectively. At is the additive genetic relationship matrix, which 
here is assumed to be At = I, while yt and wt are vectors of 
individual phenotypic and relative fitness values, respectively. The 
Ĝ and P̂ matrices include the system parameters, while âinit, b̂init, and 
ûref are the initial mean trait values and the reference environment, 
respectively. Assuming data over T generations, all these model 
parameters are tuned until ∑T

t=1
�2
t
=
∑T

t=1

�
yt− ŷt

�2 is minimized, 

with yt = ŷ1 = 0 and â1 = − b̂1
(
u1 − ûref

)
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number of fledglings as unit. Generations are assumed to be non-
overlapping, and the population size is assumed to be constant. 
Data for ut, yi,t , and Wi,t are generated over 60 generations, where 
the positive temperature trend begins at generation 10. The popula-
tion is assumed to be fully adapted to the mean spring temperature 
10°C before generation 10, which is thus the reference environ-
ment uref, but only data from generations 31 to 60 are used for pa-
rameter estimation and mean trait predictions. Note that 10°C may 
not be within the range of input data used for parameter estimation 
(depending on realization). The essential questions are how uref may 
be estimated, how well microevolutionary changes in mean inter-
cept and plasticity slope over generations 31 to 60 can be predicted 
by means of the PEM method in Figure 2, and how errors in the 
estimated or assumed value of uref will affect the predictions.

3.2  |  True model, fitness function, and 
environmental input signals

Assume that what we consider to be true mean responses, yt, at , and 
bt, are generated by the state-space model (2a, 2b). Here, Gab = 0 in 
the true system but left as a free parameter in the tuning model in 
Figure 2. The individual effects ai,t, bi,t, vi,t and �i,t are at each genera-
tion drawn from populations with normal distributions around at,bt ,
0 and 0, respectively.

The individual fitness function is assumed to be rounded values 
of

where �t is the phenotypic value that maximizes fitness, while �2 = 10. 
The discrete values of Wi,t (number of fledglings) are thus integers from 
0 to 10.

Also assume a stationary or slowly varying mean �U,t of a sto-
chastic environment, with added iid zero mean normal random vari-
ations un,t with variance �2

Un

, that is, ut = �U,t + un,t, and that the 

population is fully adapted to a stationary stochastic environment 
with �U,t = uref = u0 = 10◦C (as in Figure 1). In a corresponding way, 
assume that �t = �Θ,t + �n,t, where �n,t is iid zero mean normal with 
variance �2

Θn
, and where un,t and �n,t are correlated with covariance 

�ΘnUn
. Following Lande (2009), we may assume that juvenile birds of 

generation t are exposed to the environment ut−� during a critical 
period of development a fraction of a generation before the adult 
phenotype is expressed and subjected to natural selection. We will 
define �t = − 2

(
ut − 10

)
, which implies a linear relationship 

�Θ,t = − 2
(
�U,t − 10

)
, variances �2

Θn
= 4�2

Un

, and covariance 

�ΘnUn
= − 2���

2
Un

, where �� is the autocorrelation of background en-

vironmental fluctuations. We will assume �2
Un

= 0.5 and �� = 0.25. 

The optimal value of the mean plasticity slope in a stationary sto-
chastic environment is then bopt = �ΘnUn

∕�2
Un

= − 2�� = − 0.5 (as in 

Figure 1) (Ergon & Ergon, 2017).

Further assume that ut and �t are noisy ramp functions as shown 
in Figure 3, with the ramp in �U,t starting from 10°C at t = 10 gener-
ations. The choice of a negative trend in �t, and thus in yt, results in 
earlier clutch initiation dates as a result of the positive temperature 
trend.

Figure 4  shows typical individual phenotypic (clutch initiation 
date) and fitness (number of fledglings) values for the true model 
with population size N = 100 at generation 45 in Figure 3. The figure 
shows that the most negative (earliest) dates give the highest num-
ber of offspring, and the population is thus under directional selec-
tion toward earlier clutch initiation dates. The zero-point date is the 
mean clutch initiation date before the positive temperature trend 
sets in at generation 10 in Figure 3, when the population is assumed 
to be under stabilizing selection and fully adapted to the stationary 
stochastic temperature.

3.3  |  Parameter estimation and mean trait 
prediction results

Parameter estimation and mean trait prediction results were found 
by use of the MATLAB function fmincon in the PEM method in 
Figure 2. Results with use of input–output data from t = 31 to 60 
with population size N = 100 are given in Table 1. The relative errors 
in total change in predictions over 30 generations are included, com-

puted as Δerror
30

ât% = 100
(
Δ30ât − Δ30at

)
∕Δ30at etc., where 

Δ30ât = â60 − â31 and Δ30at = a60 − a31. The final values 
∑

�2
t,final

 of 
∑60

t=31

�
yt− ŷt

�2

 are also included, as they indicate the degree of op-

timization success. Results are presented as mean values and stand-
ard errors, Mean  ±  SE, based on 100 repeated simulations with 
different realizations of random inputs.

Given the model in Equations (2a, 2b) and (9), there are in all six 
parameter values to be estimated (while â31 follows from Equation 
(2a) with ŷ31 set to 0). In the optimizations, the initial values of Ĝbb , 
Ĝab, �̂

2

v
, �̂2

�
, and b̂31 were set to 0, while the initial value of ûref was 

set to 10 (when ûref was a free variable). The true value Ĝaa = 0.025 
was used, such that estimates of Gbb, Gab, �2v , and �2

�
 are found rel-

ative to Gaa = 0.025. Table 1 presents results for three cases, first 
for ûref = uref = 10 (Case 1), second for ûref as free variable (Case 
2), and third for ûref = 11 (Case 3), which is the expected initial 
value in the time series used. The estimates of �2

v
 and �2

�
 have in 

all cases rather large standard errors, and in some cases also large 
bias errors. What is more interesting is that the prediction errors 
Δerror
30

ât% and Δerror
30

b̂t% are small in Case 1 (with the correct value 
ûref = 10). In Case 2 (with ûref as a free variable), Δerror

30
ât% has a 

large standard error. With ûref = 11 (Case 3), Δerror
30

ât% has a large 
bias error. In this case also the estimates of Gbb, Gab, and �2

�
 are 

clearly biased. In Case 2 and Case 3, the Δerror
30

b̂t% results are close 
to the results with the correct value ûref = 10 (Case 1), as explained 
in Subsection 2.5.

(9)Wi,t = 10 ⋅ exp
(
−
(
yi,t−�t

)2
∕2�2

)
,
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Table 1 includes theoretical prediction error results based on 
Equation (7), ât,corr = ât − b̂t(ûref − uref). These are in all cases close to 
the results with ûref = uref = 10 (Case 1).

The results for Case 1 and Case 2 are very much improved with 
population size N = 10, 000, while the standard errors in Case 3 were 
only marginally improved by an increased population size (Appendix 
S3). The results for ûref in Case 2 were, for example, improved from 
9.92 ± 0.66 to 9.95 ± 0.19.

As shown in Table 1, a large error in the assumed reference 
environment ûref results in large errors in predicted changes in at 
over 30 generations (Case 3). Table 2 shows prediction results for 
more moderate errors in ûref, as well as for ûref = 11.75 (expected 
mean value in optimization data), and they are all in accordance 
with Equation (7).

Figure 5 shows predicted mean values ŷt, ât , and b̂t, as compared 
to true mean values yt, at , and bt, for Case 1 and Case 3 in Table 1. 

F I G U R E  3 Noisy ramp functions ut 
(panel a) and �t (panel b), with uref = 10, 
�Θ,t = − 2

(
�U,t − 10

)
, �2

Un

= 0.5, �2
Θn

= 2, 
and �Un ,Θn

= − 0.25. The solid parts of the 
curves indicate data used for parameter 
estimation and mean trait predictions 
(compare with Figure 1, where reaction 
norms for ut > 10.5 are indicated by solid 
lines)

F I G U R E  4 Individual clutch initiation 
dates yi,t, with a range from − 19 to 3 days 
(phenotypic values, Panel a), and number 
of fledglings Wi,t (fitness, Panel b), at a 
generation where the population is under 
directional selection toward earlier clutch 
initiation dates. As indicated by dots, the 
number of offspring are integers, while 
the phenotypic values are integers divided 
by 10 (i.e., days)
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Note that y31 = ŷ31 is set to 0, and the zero point is thus not the same 
as in Figure 4, Panel a.

4  |  DISCUSSION

It is well documented that populations adjust to climate change by 
means of individual plasticity, but few reports on adaptation by 
means of genetically based microevolution caused by phenotypic 
selection (Merilä & Hendry, 2014). The main point in this article is 
that disentanglement of these separate effects requires that the ref-
erence environment uref is defined, and that this should not be done 
arbitrarily. Instead, it should be based on the environment u0 where 
the phenotypic variance is at a minimum (Definition 1 and Figure 1). 
This definition can be extended to multivariate cases.

As shown in a toy example, large errors in the estimated or as-
sumed value ûref may lead to large errors in predicted microevolu-
tionary changes over time (Table 1 and Figure 5). Such large errors 
in ûref may occur when the range of environmental data used for 
predictions is far from the mean value of the stochastic environment 
the population is adapted to.

In the toy example, the mean plasticity slope bt is predicted quite 
well also when there is a large error in ûref, and one reason for this is 
that an error in Ĝab to some extent compensates for the error in ûref 
(Table 1, Case 3). This does not, however, prevent a large error in the 
predicted mean intercept ât (Equation (7)).

Although the plastic response to climate change is a result of 
individual plasticity, it should be noted that individual traits do not 
determine the environmental value u0 in Definition 1, but instead 
the phenotypic variance (Figure 1). Similarly, individual traits do not 
enter into the prediction Equations (6a, 6b), but instead the individ-
ual phenotypic and fitness values (Figure 4).

In theoretical studies, it is often assumed that the environmen-
tal variable is scaled such that uref = u0 = 0 (Chevin & Lande, 2015; 
Lande, 2009). This can be done also in databased applications, pro-
vided that u0 is known, and that the correction term in Definition 1 
is 0.

The toy example used in the simulations is a simplification of 
reality because changing spring temperatures affect fitness in a 
complex way (Bowers et al., 2016). It still suffices to show that the 
reference environment together with initial mean trait and param-
eter values can be estimated from environmental, phenotypic, and 
fitness data, by use of the prediction error minimization method in 
Figure 2. The simulations make use of an environmental trend, as 
in noisy temperature trends caused by climate change (Figure 3), 
and a correct reference environment then results in quite good 
predictions of changes in mean traits over time (Table 1, Case 1). 
Although these predictions are based on parameter estimation, all 
the separate parameter estimates as such are not especially good, 
although they were considerably improved when the population 
size was increased from 100 to 10, 000 (Appendix S3). The refer-
ence environment can also be estimated, but with large standard 
errors, especially for small population sizes, and this results in a 
correspondingly large standard error in predicted change in mean 
intercept at over time (Table 1, Case 2). An estimated reference 

Parameter etc.
True 
value

Results
Case 1

Results
Case 2

Results
Case 3

Ĝbb
0.01 0.0103 ± 0.0023 0.0099 ± 0.0054 0.0065 ± 0.0023

Ĝab
0 0.0033 ± 0.0141 0.0028 ± 0.0152 0.0067 ± 0.0022

�̂
2

v
0.025 0.0341 ± 0.0141 0.0301 ± 0.0348 0.0264 ± 0.0040

�̂
2

�
0.01 0.0118 ± 0.0091 0.0123 ± 0.0115 0.0157 ± 0.0037

b̂31
– −0.4965 ± 0.0086 −0.4969 ± 0.0083 −0.4985 ± 0.0080

ûref 10 10 9.9210 ± 0.6553 11
∑

�2
t,final

– 10−5 (23 ± 10) 10−5 (23 ± 10) 10−5 (29 ± 11)

Δerror
30

ât %
– 1 ± 4 −5 ± 42 68 ± 8

Δerror
30

b̂t %
– −1 ± 3 0 ± 3 −4 ± 4

Δerror
30,corr

ât %
– 1 ± 4 0 ± 5 −4 ± 5

Note: Case 1: ûref = 10 (the true value). Case 2: ûref as a free variable. Case 3: ûref = 11 (expected 
initial value in optimization data). Here, 9% of the simulations were discarded because ∑

𝜀2
t,final

> 0.001.

TA B L E  1 Estimation and prediction 
results with true system responses 
generated by means of Equations (2a, 
2b) and (9). Results are for cases with 
population size N = 100 and perfect 
observations of yi,t and Wi,t, and they are 
based on 100 simulations with different 
realizations of all random input variables

TA B L E  2 Errors in predicted total relative change in at and bt 
over 30 generations, as functions of the reference environment ûref 
used in the optimization procedure

ûref 𝚫
error

30
ât% 𝚫

error

30

̂
bt%

9.75 −16 ± 4 0 ± 3

10 1 ± 4 −1 ± 3

10.25 17 ± 4 0 ± 3

10.5 34 ± 6 −2 ± 3

11 68 ± 8 −4 ± 4

11.75 115 ± 14 −8 ± 6
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environment may still be a better choice than use of an initial envi-
ronmental value in a recorded time series, or the mean value, which 
may give large errors in predicted changes in mean traits (Table 1, 
Case 3). Another alternative may be to use the mean value of a past 
stationary stochastic environment, which the population is judged 
to have been fully adapted to.

It is here assumed that the genetic relationship matrix is an 
identity matrix, and the simulation results are obtained by use of 
a very simple system and a prediction error minimization method. 
However, the fact that errors in the reference environment may 
cause large errors in predictions of microevolution, as discussed 
in Subsection 2.5, is a generic problem. Independent of prediction 
method and the complexity of the model, an error in the reference 
environment implies that an erroneous model is fitted to the input–
output data, and that must inevitably result in prediction errors. An 
alternative view, when ̂uref ≠ uref is constant (Case 3), is that the tun-
ing model in Figure 2 still uses the correct value of uref, but then with 
an error term uref − ûref added to the environmental input. In order 
to minimize 

∑T

t=1

�
yt− ŷt

�2

, this input error must as good as possible 
be compensated by errors in estimated parameter values, resulting 
in prediction errors. Note that this argument is independent of the 
specific parametrizations used in the microevolutionary system and 
tuning model in Figure 2. It is in any case no reason to believe that 
prediction errors caused by ûref ≠ uref will disappear in cases where 
the genetic relationship matrix is not a unity matrix, and when 
other parameter estimation and mean trait prediction methods are 
used. A more specific argument regarding BLUP/REML parameter 
estimation is given in Appendix S4. It must thus be expected that 
predictions of microevolutionary changes over time depend on the 
chosen reference environment, and such predictions cannot there-
fore be trusted unless the chosen reference environment can be 

trusted. Exceptions are here cases with a constant mean plasticity 
slope, where the change in mean reaction norm intercept per gen-
eration according to Equation (5) is independent of the reference 
environment. This implies that a nearly constant mean plasticity 
slope must be expected to result in small errors in the predicted 
changes in the mean intercept, also if there is an error in the refer-
ence environment.
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F I G U R E  5 Typical responses for 
Case 1 and Case 3 in Table 1. True yt 
values are shown by solid blue lines. 
All parameter values except ûref and 
Ĝaa = 0.025 were initially set to 0, which 
gave predictions ŷt,start = cov

(
Wi,t , yi,t

)
∕Wt 

as shown by dashed blue lines. Final 
predictions ŷt are shown by blue dots. 
True at and bt responses are shown 
by green lines, while predictions ât 
and b̂t are shown by magenta circles. 
Panels a and b show results for Case 
1 with ûref = 10 (true value), while 
panels c and d show results for Case 
3 with ûref = 11. Here, the theoretical 
predictions ât,corr = ât − b̂t(ûref − uref) 
are included as black dashed line. 
Note that y31 = ŷ31 is set to 0, such 
that a31 = − b31

(
u31 − 10

)
 and 

â31 = − b̂31
(
u31 − ûref

)
, where u31 is 

not quite the same from realization to 
realization
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