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Genetic Predisposition to Ischemic Stroke
A Polygenic Risk Score
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Background and Purpose—The prediction of genetic predispositions to ischemic stroke (IS) may allow the identification 
of individuals at elevated risk and thereby prevent IS in clinical practice. Previously developed weighted multilocus 
genetic risk scores showed limited predictive ability for IS. Here, we investigated the predictive ability of a newer method, 
polygenic risk score (polyGRS), based on the idea that a few strong signals, as well as several weaker signals, can be 
collectively informative to determine IS risk.

Methods—We genotyped 13 214 Japanese individuals with IS and 26 470 controls (derivation samples) and generated both 
multilocus genetic risk scores and polyGRS, using the same derivation data set. The predictive abilities of each scoring 
system were then assessed using 2 independent sets of Japanese samples (KyushuU and JPJM data sets).

Results—In both validation data sets, polyGRS was shown to be significantly associated with IS, but weighted multilocus 
genetic risk scores was not. Comparing the highest with the lowest polyGRS quintile, the odds ratios for IS were 1.75 
(95% confidence interval, 1.33–2.31) and 1.99 (95% confidence interval, 1.19–3.33) in the KyushuU and JPJM samples, 
respectively. Using the KyushuU samples, the addition of polyGRS to a nongenetic risk model resulted in a significant 
improvement of the predictive ability (net reclassification improvement=0.151; P<0.001).

Conclusions—The polyGRS was shown to be superior to weighted multilocus genetic risk scores as an IS prediction model. 
Thus, together with the nongenetic risk factors, polyGRS will provide valuable information for individual risk assessment 
and management of modifiable risk factors.   (Stroke. 2017;48:253-258. DOI: 10.1161/STROKEAHA.116.014506.)
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Ischemic stroke (IS) is a leading cause of death and long-term 
disability in the world.1 Although a large proportion of IS 

events could be prevented by appropriate management of modi-
fiable risk factors, such as high blood pressure and tobacco use,2 
the burden attributable to these modifiable risk factors remains 
problematic.3 To lower this burden, it is important to apply both 
population and high-risk approaches.4 Genetic information can 
be a useful tool for the identification of high-risk individuals.

The effects of individual genetic markers are relatively small 
for common polygenic disorders, and therefore, a well-studied 
approach, weighted multilocus genetic risk score (wGRS), typ-
ically integrates tens of weak genetic markers into a single risk 
score, based on summary statistics from genome-wide associa-
tion (GWA) studies.5 For hypertension and coronary artery dis-
ease, wGRSs have been derived from GWA data of the target 
traits.5 However, previous IS GWA studies have identified only 
a few replicable susceptibility loci,6–9 possibly because of the 
etiologic heterogeneity of IS. Therefore, wGRSs for IS in pre-
vious studies have been derived from GWA data on hyperten-
sion,10 atrial fibrillation,11 and coronary artery disease,12–14 and 
their predictive abilities have been limited.10–14

We hypothesized that the lower predictive abilities of 
wGRSs are related to the polygenic nature of IS. A previous 
analysis on international IS GWA data inferred that genetic 
predispositions to IS are shared among the different sub-
types,15 which may be related to susceptibilities to arterioscle-
rosis, hypertension, hyperlipidemia, and their combinations. 
Thus, we sought to develop a statistical model to predict the 
genetic predispositions shared among IS subtypes, rather than 
identify genetic markers specific to IS subtypes. To accom-
plish this, we created a polygenic risk score (polyGRS) based 
on the assumption that, in addition to a few genome-wide sig-
nals obtained from IS GWA data, numerous weaker signals 
can be collectively informative for predicting IS incidence. 
In previous studies, polyGRSs showed remarkable predictive 
abilities for schizophrenia, bipolar disorder, hypertension, and 
coronary artery disease.16,17 However, the predictive ability of 
polyGRS for IS remains to be determined. The complexity 
of IS subtypes requires the validation of the genetic model; 
therefore, we derived both a wGRS and polyGRS from the 
same large-scale derivation samples and compared their pre-
dictive abilities in 2 sets of independent samples.

Methods

Cohorts and Case Definition
In this study, we used 3 sets of Japanese samples. The first set (deriva-
tion data set) was used to derive a wGRS and polyGRS. The second 
set (KyushuU data set) was used to assess the predictive abilities of 
the 2 GRSs with detailed clinical information. The third set (JPJM 
data set) was used as an additional data set for the validation of the 
predictive abilities. All 3 sets of samples were independent from each 
other.

For the derivation data set, patients with IS were recruited by the 
BioBank Japan Project from 2003 to 2008.18 All participants provided 
written informed consent, as approved by the ethical committees of 
the BioBank Japan Project and the University of Tokyo. Clinical 
information on the subjects was collected from medical charts, neu-
roimaging results (including computed tomography and magnetic 
resonance imaging), and self-reported questionnaires. Controls in 
the derivation data set were enrolled from participants in Japanese 

prospective cohort studies, including the Tohoku Medical Megabank 
Project,19 the Japan Public Health Center–based prospective study,20 
and the Japan Multi-Institutional Collaborative Cohort Study.21 
Details of the study design and recruitment methods of the 3 cohort 
studies were described previously.19–21

For the KyushuU data set, details of the recruitment methods and 
diagnostic criteria were described previously.6,22 Briefly, affected 
individuals with IS were recruited from 7 hospitals affiliated with 
Kyushu University in 2004. For all cases, diagnoses of IS and its 
subtypes were made by stroke neurologists from the affiliated hos-
pitals by referencing clinical presentation and ancillary labora-
tory examinations—namely, cerebral angiography, brain imaging, 
echocardiography, and carotid duplex imaging. Participants in the 
Hisayama study were enrolled as control subjects. The Hisayama 
study is a population-based cohort study established in 1961.23,24 
Of 3328 Hisayama residents aged ≥40 years who consented to par-
ticipate in the Hisayama study between 2002 and 2003, we selected 
age-matched (within 5 years) and sex-matched control subjects by 
1:1 matching using random numbers, after excluding subjects with 
a history of stroke or coronary heart disease. For the subjects in the 
KyushuU data set, hypertension was defined as systolic blood pres-
sure ≥140 mm Hg and diastolic blood pressure ≥90 mm Hg on at least 
3 different occasions or as current treatment with antihypertensive 
drugs.25 Diabetes mellitus was determined by a 75-g oral glucose tol-
erance test, casual blood glucose levels (>11.1 mmol/L), or a medical 
history of diabetes mellitus. Hyperlipidemia was defined as a total 
cholesterol level ≥5.69 mmol/L or current treatment with a choles-
terol-lowering drug. Atrial fibrillation was diagnosed based on elec-
trocardiographic findings.

For the JPJM data set, nested case–control subjects were enrolled 
from the participants of the Japan Public Health Center and Japan 
Multi-Institutional Collaborative Cohort studies in the Saga and 
Takashima regions.20,21,26 IS cases were confirmed by imaging stud-
ies, and age- and sex-matched controls were extracted from a pool of 
individuals with no history of stroke.27

Genotyping
All subjects from the 3 data sets were genotyped using a 
HumanOmniExpressExome BeadChip array (Illumina, Inc, San 
Diego, CA).

Quality Control Filters for Derivation Samples
Samples with low call rate (<0.98), single-nucleotide polymorphisms 
(SNPs) with low call rate (<0.99), and close relationships character-
ized by the identity-by-state method were excluded, as well as sub-
jects whose estimated ancestries outside of the Hondo cluster of the 
Japanese population28 by PCA.29,30 Variants with a Hardy–Weinberg 
equilibrium exact test P value of <1×10−6 and a minor allele frequency 
<0.01 were also excluded. Ultimately, 39 684 individuals (Table 1) 
with 537 999 autosomal SNPs were included in our analyses.

Genetic Risk Score Derivation
Our statistical analysis workflow is shown in Figure 1. The wGRS 
included 5 SNPs selected at the end of the replication and exploratory 
analyses from the derivation samples.

Additional quality control filters were applied to the derivation data 
set to generate the polyGRS: (1) samples with a call rate of <0.99, 
(2) SNPs with a Hardy–Weinberg equilibrium exact test P value of 
<0.05, (3) SNPs with a P value in the test for nonignorable difference 
between cases and controls of <0.05 were excluded, according to a 
previous study.31 Ultimately, no individuals were excluded by these 
filters, and 357 367 autosomal SNPs were retained.

According to a previous study,31 polyGRS by genotyped data 
shows higher predictive ability than the model using all imputed data. 
Therefore, we also used the genotyped variants (357 367 variants) to 
generate the polyGRS. As such, we used a dual-formula technique to 
minimize overfitting to the derivation data set. The polyGRS was gen-
erated via 2 models: (1) restricted maximum likelihood and (2) best 
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linear unbiased prediction. A mixed linear model was assumed in both 
cases,31 which accounts for genotype data via the genetic relationship 
matrix, leaving only the variances of genetic and nongenetic effects as 
free parameters. More specifically, the restricted maximum likelihood 
model estimates the 2 free parameters based on derivation samples 
(N=39 684), whereas the best linear unbiased prediction model con-
verts the variance parameter estimates into the weight parameters for 
the 357 367 SNPs in conjunction with the genotype data of deriva-
tion samples. In total, only 2 parameters were estimated through the 
restricted maximum likelihood and best linear unbiased prediction 
steps. Further details are provided in the online-only Data Supplement.

Predictive Ability Assessment
Because previous studies on wGRS typically evaluated the odds ratio 
(OR) of the highest score quintile versus the lowest score quintile,11,12 
we estimated the OR for each score quintile using Fisher exact test. In 
addition, the OR per 1 SD, the corresponding 95% confidence interval 
(CI), and the overall P value were estimated by the conditional logistic 
regression analysis. To compare the predictive abilities of the 2 GRSs, 
a continuous version of net reclassification improvement (NRI), an 
integrated discrimination improvement, and the C-index were calcu-
lated. The NRI, integrated discrimination improvement, and C-index 
were also calculated to assess the improvements in predictive ability 
obtained by adding the 2 GRSs to a nongenetic risk model.

Results
Derivation of Genetic Risk Scores
Of the 6 well-studied variants, the associations with IS 
were nominally significant regarding 4 variants (rs6843082 

[PITX2]; rs2383207 [CDKN2B-CDKN2A]; rs2107595 
[HDAC9]; and rs879324 [ZFHX3]) in our derivation samples 
(Tables I and II in the online-only Data Supplement).

For exploratory identification of IS-susceptibility loci, 
based on our derivation samples, the associations between 
6 204 347 imputed genetic variants and IS were subjected to 
a genome-wide analysis (Figure I and Table III in the online-
only Data Supplement). The results showed genome-wide 
significance (P<5×10–8) for one variant, rs1275923, which is 
located in an intron of KCNK3 (Figure II in the online-only 
Data Supplement) and is reportedly associated with blood 
pressure.32

Based on these results, we chose 5 variants as model 
variables for our wGRS (Table IV in the online-only Data 
Supplement). Additionally, from the same derivation data set, 
we created a polyGRS, based on the assumption that, in addi-
tion to several genome-wide signals, numerous weaker signals 
can be collectively informative for the prediction of IS inci-
dence. All genotyped variants that passed our quality control 
filters (357 367 variants) were used to derive the polyGRS.

Predictive Ability of Genetic Risk Scores
The predictive abilities of the wGRS and polyGRS were 
assessed using the KyushuU and JPJM samples. The power 
to detect significance with an OR of 1.2 per 1 SD was 99% 
and 66% for the KyushuU and JPJM data sets, respectively 
(Table 2). This was comparable to the OR of 1.17 per SD at 
P

T
=1 by the score-profiling model (Table V in the online-only 

Data Supplement), indicating that all genotyped variants in 
the polyGRS contributed useful signal to the score.

Although the polyGRS significantly associated with IS in 
both validation data sets, this was not observed with wGRS 
(Table 2). Moreover, the OR for the highest polyGRS quintile 
compared with the lowest polyGRS quintile was 1.75 (95% 
CI, 1.33–2.31) and 1.99 (95% CI, 1.19–3.33) in the KyushuU 
and JPJM samples, respectively (Figure 2), with a significant 
improvement observed in the KyushuU samples (NRI=0.179; 
Figure 3; Table VI in the online-only Data Supplement).

Predictive Ability of Genetic Risk 
Scores for Each Etiologic Subtype
In the KyushuU samples, the predictive abilities of the 2 
GRSs were investigated for each etiologic subtype: large-
vessel disease, small-vessel disease, and cardioembolic stroke 
(Figure 3). The wGRS failed to associate with any subtype, 
whereas the polyGRS was significantly associated with all 
3. Furthermore, the predictive ability of the subtype-mixture 

Table 1. Age and Sex Distributions of the Derivation, KyushuU, and JPJM Samples

Study design

Derivation KyushuU JPJM

Cases Controls Cases Controls Cases Controls

Case–Population Case–Control Nested Case–Control

Subjects 13 214 26 470 1097 1097 336 336

Age, y*, mean±SD 69±10 56±10 70±10 70±10 59±7 59±7

Women, % 35.7 60.6 39.1 39.1 37.5 37.5

*Age at enrollment.

Figure 1. Statistical analysis flow diagram. GWA indicates 
genome-wide association; IS, ischemic stroke; and SNP, single-
nucleotide polymorphism.
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polyGRS was higher than that of the subtype-specific model 
(Table VII in the online-only Data Supplement).

Integration of Genetic Risk Scores 
Into a Nongenetic Risk Model
Based on the KyushuU samples, the wGRS or polyGRS was 
added to a nongenetic risk model that included hypertension, 
diabetes mellitus, hyperlipidemia, and atrial fibrillation as 
model variables. Notably, the polyGRS showed an improved 
predictive ability, whereas the wGRS did not (Figure 4; Table 
VIII in the online-only Data Supplement). For all IS cases, 
the polyGRS NRI was estimated to be 0.151 (95% CI, 0.068–
0.235), the integrated discrimination improvement was 0.004 
(95% CI, 0.001–0.006), and the ∆C-index was 0.700 (95% 
CI, 0.679–0.722). When stratified by subtype, the NRI was 
significant for large-vessel disease and small-vessel disease 
but not cardioembolic stroke.

Discussion
Based on large-scale genotyping of Japanese samples (N>40 000 
in total), we showed that the polyGRS has a superior ability to 
predict IS compared with the wGRS. Given that the estimates of 
ORs of the highest score quintile compared with the lowest score 
quintile were at most ≈1.3 in previous studies,8–12 the higher OR 
for polyGRS (>1.75) indicated that the polygenic approach was 
well suited to derive genetic risk scores for IS. The difference 
in incident risk between the highest and lowest score quintiles 
(>75% difference)—which was consistently estimated from 
both retrospective (case–control) and prospective (nested case–
control) designs—supports the utility of polyGRS methodology 
for healthcare and preventive purposes. Moreover, the polyGRS 

significantly associated with all etiologic subtypes, suggesting 
that it effectively predicts the genetic predispositions shared 
among IS subtypes. Furthermore, the significant NRI estimates 
for all IS cases indicated that the integration polyGRS into non-
genetic risk models would be valuable, whereas the nonsignifi-
cant NRI for cardioembolic stroke suggested that the adjustment 
by atrial fibrillation and other nongenetic factors attenuated the 
predictive ability of the polyGRS.

One aspect of the clinical utility of the polyGRS is the indi-
vidualization of clinical criteria. Japanese clinical guidelines 
for the management of hypertension published in 2014 recom-
mended the grouping of patients with hypertension into risk 
strata based on blood pressure levels and other cardiovascular 
risk factors, including age, smoking, dyslipidemia, obesity, dia-
betes mellitus, and family history of young-onset cardiovascular 
disease.33 For each risk stratum, a distinct therapeutic strategy 
was recommended. Here, we showed that polyGRS may be a 
valuable predictor of IS. Accordingly, hypertensive patients 
whose risks have been underestimated without the additional 
genetic information would be reclassified into higher risk strata 
after including polyGRS as a part of the clinical criteria.

To advance further, prospective cohort studies on the pre-
dictive ability of the polyGRS would be essential. It would 
also be interesting to investigate whether the polyGRS derived 
from Japanese samples can predict IS in other East Asians and 
other ethnicities. Additionally, ethical, legal, social, and policy 
issues, including the responsibility for the management of the 
genetic information, should be discussed in future studies.

The difference between the predictive abilities of polyGRS 
and wGRS elucidates the polygenic nature of IS. An impor-
tant methodological difference between wGRS and polyGRS 

Table 2. Predictive Ability of the Multilocus and the Polygenic Risk Scores in the KyushuU and JPJM Samples

Validation 
Samples Model

Q1 OR  
(95% CI) Q2 OR (95% CI) Q3 OR (95% CI) Q4 OR (95% CI)

Q5 OR (95% 
CI)

OR per SD*  
(95% CI)

Overall* 
P Value

C-index  
(95% CI)

KyushuU
 (N=2194)

wGRS Reference 1.09 (0.83–1.43) 1.08 (0.82–1.42) 1.03 (0.78–1.35)
1.17  

(0.89–1.54)
1.04  

(0.96–1.14)
0.313

0.510  
(0.486–0.534)

polyGRS Reference 1.08 (0.82–1.42) 1.10 (0.84–1.45) 1.41 (1.08–1.86)†‡
1.75  

(1.33–2.31)†‡
1.20  

(1.10–1.31)†‡
<0.001‡

0.555  
(0.531–0.579)†‡

JPJM
(N=672)

wGRS Reference 1.37 (0.82–2.28) 2.02 (1.21–3.39)†‡ 1.39 (0.83–2.32)
1.45  

(0.87–2.42)
1.11  

(0.96–1.29)
0.172

0.530  
(0.487–0.574)

polyGRS Reference 1.96 (1.18–3.29)†‡ 1.69 (1.01–2.83)‡ 1.33 (0.80–2.23)
1.99  

(1.19–3.33)†‡
1.20  

(1.01–1.41)‡
0.033‡

0.536  
(0.492–0.580)

CI indicates confidence interval; OR, odds ratio; polyGRS, polygenic risk score; Q1–Q5, quantiles 1–5; and wGRS, weighted multilocus genetic risk score.
*Considering the genetic risk scores as continuous variables.
†Significant after multiple corrections.
‡Results are nominally significant (P<0.05).

Figure 2. Predictive ability of the 
weighted multilocus genetic risk scores 
(wGRS) and polygenic risk scores 
(polyGRS) in the (A) KyushuU and (B) 
JPJM samples. Odds ratio for each score 
quintile compared with the lowest score 
quintile. *Nominal significant odds ratios 
(P<0.05). **Significant odds ratios after 
multiple corrections.
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is that the wGRS only included 5 credible SNPs as model vari-
ables, whereas polyGRS used all genotyped SNPs. The supe-
rior predictive ability of polyGRS demonstrates the validity of 
our assumption that, in addition to a few genome-wide signals, 
numerous weaker signals are collectively informative for pre-
dicting IS. Furthermore, in the score-profiling model, the pre-
dictive ability improved as P

T
 threshold increased. This result 

implies that usage of more SNPs is essential for improvement 
of the predictive ability. Our results suggest that a large num-
ber of IS-susceptibility loci with small effect size have yet 
to be discovered and that larger derivation and replication of 
GWA data sets would be advantageous for discovering novel 
susceptibility loci in future studies. Furthermore, given that 
we are currently unable to identify all IS-susceptibility vari-
ants with small effect size, polyGRS approach may represent a 
fascinating method to use the valuable information contained 
in weak GWA signals to predict IS.

Conclusions
We demonstrated that the polyGRS approach is superior 
to that of wGRS as a method of choice for the assessment 

of IS genetic risks. This is clinically important because the 
polyGRS approach is promising for the individualization of 
clinical criteria in the era of precision medicine.
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