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Abstract: The β3-adrenergic receptor (β3-AR) is found in
several tissues such as adipose tissue and urinary bladder. It
is a therapeutic target because it plays a role in thermo-
genesis, lipolysis, and bladder relaxation. Two β3-AR
agonists are used clinically: mirabegron 1 and vibegron 2,
which are indicated for overactive bladder syndrome.
However, these drugs show adverse effects, including
increased blood pressure in mirabegron patients. Hence,
new β3-AR agonists are needed as starting points for drug
development. Previous pharmacophore modeling studies of
the β3-AR did not involve experimental in vitro validation.
Therefore, this study aimed to conduct prospective virtual
screening and confirm the biological activity of virtual hits.

Ligand-based pharmacophore modeling was performed
since no 3D structure of human β3-AR is yet available. A
dataset consisting of β3-AR agonists was prepared to build
and validate the pharmacophore models. The best model
was employed for prospective virtual screening, followed
by physicochemical property filtering and a docking
evaluation. To confirm the activity of the virtual hits, an
in vitro assay was conducted, measuring cAMP levels at the
cloned β3-AR. Out of 35 tested compounds, 4 compounds
were active in CHO� K1 cells expressing the human β3-AR,
and 8 compounds were active in CHO� K1 cells expressing
the mouse β3-AR.
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1 Introduction

The β-adrenergic receptors (β-ARs) belong to the family of
G protein-coupled receptors (GPCRs).[1] Agonists and antag-
onists at the β1-adrenergic receptor (β1-AR) and β2-
adrenergic receptor (β2-AR) subtypes (such as salbutamol,
formoterol, and propranolol) have been clinically used for
decades, primarily for the treatment of asthma and
cardiovascular disease.[2] In 1989, β3-AR was successfully
cloned and confirmed as a third subtype.[3] Agonists at the
β3-AR exhibited anti-obesity effects at rodent adipose tissue
since it has important roles in mediating metabolic
functions such as lipolysis and thermogenesis.[4] However,
β3-ARs were identified later in multiple tissues including
urinary bladder and heart,[5,6] where they modulate some
physiological functions such as bladder relaxation, lowering
or increasing cardiac contractility, and relaxation of the
myometrium.[5]

Since its discovery in the late 1980s, research has
focused on identifying β3-AR agonists since they showed
anti-obesity and anti-diabetic effects in mouse and rat
models of obesity.[7] Early β3-AR agonists including
BRL37344 3 and CL316243 4 were potently increasing
adipose tissue lipolysis, fat oxidation, insulin secretion, and
insulin-mediated glucose uptake in rodents.[7] The trans-
lation of these agonists into humans was ineffective.[6,8] In
the early 1990s, rafabegron (TAK-677) 5 was developed by
Dainippon as an anti-obesity and anti-diabetic agent.
However, its clinical trial failed as no significant clinical
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outcome was achieved in obese patients.[1,9] This compound
was unable to stimulate energy expenditure or fat oxidation
in humans.[10] Another compound reported by Lilly,
LY377604 6, exerted anti-obesity effects in humans,[1,11]

however, no further studies have been published. For
compound 6 as well as for several other pharmaceutical
companies’ compounds, poor oral bioavailability was
reported as a particular problem.[8] Compound 6 exhibited
around 10–20% oral bioavailability.[1] Most of the first series
of β3-AR agonists contained a carboxylic acid moiety, which
can undergo rapid glucuronidation during first-pass
metabolism.[1] Due to these drawbacks, the interest in the
development of β3-AR ligands declined by 2006.[7] Even
though efforts on improving physicochemical properties to
increase oral bioavailability either via a prodrug approach
(e.g. esters) or via the use of acid bioisosters had been
made, clinical trials still yielded disappointing data.[1] The
main cause for this poor outcome was the compound’s low
efficacy at the human receptor.[8] The rodent data could not
be translated into humans because of the different
expression patterns of β3-ARs between species, particularly
in adipose tissue.[6] In humans, β3-AR mRNA expression is
lower than in rodent adipose tissue.[6,8] In rodents, both
white and brown adipose tissues express β3-ARs which have
roles in lipolysis and thermogenesis.[12] However, adult
humans have a predominance of white adipose tissue,
which has little β3-AR expression. Studies showed little or
no lipolysis or thermogenesis following β3-AR activation,
which led to the lack of clinical effects of β3-AR agonists for
the treatment of obesity and diabetes, respectively.[12,13]

Therefore, several studies were conducted to explore
other potential uses of β3-AR agonists.[1] Sanofi repurposed
amibegron 7 from treating metabolic disorders to treating
depression as β3-ARs are also expressed in the brain
showing antidepressant and anxiolytic activities.[1,14] How-
ever, this drug never entered the market as the clinical trials
for treatment of depression (NCT00855530) and anxiety
disorder (NCT00332891) were terminated in phase III due to
a lack of efficacy.[5] Another repurposing study was con-
ducted by GSK who had developed solabegron 8.[1,5] It was
initially planned to be used as an antidiabetic drug but was
then shifted to be used in overactive urinary bladder (OAB)
syndrome.[1] Solabegron entered phase II studies and
showed promising clinical results.[15] In contrast, the devel-
opment of ritobegron 9, another β3-ARs agonist for OAB
treatment developed by Kissei Pharmaceuticals, was termi-
nated in phase III (NCT01003405) because the efficacy
endpoints were not met.[1,16] Finally in 2012, the FDA
approved mirabegron 1 developed by Astellas Pharma.[1,17]

It became the first clinical drug that acts via the β3-AR for
OAB syndrome treatment under the brand name
Myrbetriq.[18] This was followed by vibegron 2, developed
by Urovant Sciences, which has been used clinically in
Japan since 2018[5,19] and was approved by the FDA in 2020
under the market name Gemtesa.[20] Mirabegron 1 shows
some adverse effects in the cardiovascular system, such as

increased blood pressure, because β3-ARs are also present
in the myocardium and blood vessels.[21,22] Also vibegron 2
causes adverse events such as headache, nausea, or
diarrhea. Therefore, new β3-AR agonists are still needed as
starting points for drug development.

Pharmacophore modeling is an established method in
early drug discovery and development since it helps to
reduce the number of compounds to be tested experimen-
tally. The approach deploys a pharmacophore model to
virtually screen compounds that fit into the model, thus
predicting active compounds.[23] Many pharmacophore
modeling studies successfully yielded several promising
ligands.[24–26] Pharmacophore modeling studies using the β3-
AR as a target were conducted previously. However, none
of those studies involved experimental in vitro validation of
predicted hits.[27–31] Therefore, this study aimed to perform
pharmacophore-based virtual screening and also confirm
the biological activity of selected hit compounds.

2 Methods

2.1 Homology Modeling and Structure Assessment

Homology modeling was performed in SWISS-MODEL
(https://swissmodel.expasy.org/),[32] which relies on Pro-
Mod3 v1.1.0.[33] The human β3-AR (hβ3-AR) was constructed
using the user-template mode. The hβ3-AR sequence
consists of 408 amino acids and was downloaded from
UniProt (https://www.uniprot.org/)[34] with the primary ac-
cession number P13945. This sequence was submitted as
input in SWISS-MODEL. The crystal structure of the human
β2-AR (hβ2-AR) (PDB-ID: 3SN6, res: 3.20 Å)[35] was retrieved
from the Protein Data Bank (www.drugbank.ca)[36] and used
as the template. Previously, the 3D structure of hβ2-AR was
analysed in Maestro v11.8.012 (Schrödinger Release 2018-
4).[37] Completion of missing loops was done using Prime
(Schrödinger Release 2018-4).[38] The ligand BI167107 bound
in the crystal structure of the template was embedded into
the homology model of hβ3-AR. The homology model was
prepared and minimized using the Protein Preparation
Wizard (Schrödinger Release 2018-4)[39] including protona-
tion; creation of disulfide bonds; filling missing side chains;
generate HET states with EPIK;[40] and refinement. During
the refinement, the optimization of hydrogen bonds and
orientations of Asn, Gln, and His residues were assigned
using PROPKA.[41] In the end, a restrained minimization was
applied using OPLS3e.[42] Sequence alignment between hβ2-
AR and hβ3-AR was also carried out. The quality of the final
model was evaluated by the structure assessment tool in
SWISS-MODEL in which runs MolProbity v4.4.[43] In order to
allow a more reliable evaluation of the model, several
methods were applied:[44]

Physics-based method. MolProbity, which is imple-
mented in SWISS-MODEL, is used to detect backbone
outliers, side-chain outliers (rotamer deviations), and inap-
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propriate all-atom contacts (atomic clashes). To detect the
backbone outliers, Ramachandran outliers and Cβ deviation
outliers are the most important ones, since both can
contribute to huge errors.[44] A Ramachandran plot is a
simple bi-dimensional plot with the ϕ (phi) value on the
horizontal axis and the ψ (psi) value on the vertical axis,
which correspond to the protein secondary structure.[45]

This plot is divided into three regions: those where there
are no interatomic clashes, those where there are moderate
clashes, and those where clashes are extremely severe,
considered as fully allowed, partially allowed, and forbid-
den, respectively.[45] The amino acids in forbidden regions
are identified as Ramachandran outliers.[45] Cβ deviation
outliers indicated the distortion around Cα are detected in
case the deviation of the observed Cβ atom from ideal
position is >0.25 Å.[43,46] A model is considered to have
good quality when 98% of the amino acids in the
Ramachandran plot are fully allowed, a maximum of 0.2%
are Ramachandran outliers, and 0 for Cβ deviation
outliers.[43]

Knowledge-based method. In this method, Qualitative
Model Energy Analysis (QMEAN), which is implemented in
SWISS-MODEL, is used to calculate Cβ interaction energy,
all-atoms pairwise energy, torsion angle energy, and
solvation energy.[44] A model with a QMEAN Z-score around
0 indicates a good agreement between the model structure
and experimental structures. A QMEAN Z-score below � 4
would be considered low quality.[47]

Experiment-based method. The root-mean-square devi-
ation (RMSD) is the simplest method which measures the
distances between all the atoms in both 3D experimental
and model structures.[44] RMSD Cα is used to evaluate the
3D structure model. Depending on the degree of sequence
identity or similarity, and the quality of the alignment,
RMSD Cα can be up to ~1–2 A°,[58] which means good
accuracy.

2.2 Generation and Validation of the Pharmacophore
Model

2.2.1 Dataset Preparation and Conformation Generation

Various β3-AR agonists were collected from databases such
as ChEMBL,[59] PubChem,[60] BindingDB,[61] IUPHAR/BPS Guide
to PHARMACOLOGY,[2] and also from the
literature.[49–53,55,56,62] β3-AR agonists bear stereocenters or
chiral centers in their structure. However, the studies related
to stereochemistry of these ligands are limited. The potency
of compound 3 and its isomers were investigated by
Oriowo et al. and revealed that its RR isomer were the most
potent.[63] This finding was also supported by Harada
et al.[64] In addition, the RS and SR isomers exhibited similar
potency and the least active, SS isomer had very low
potency.[63,64] Thus, β3-AR ligands activity depends on the
stereochemical configuration since each isomer possesses

its own activity. However, both studies revealed that the
racemic structures were potent as well. Moreover, the
activity of most β3-AR agonists was determined based on
their racemic structures. Therefore, also in the modeling
part of this work, racemic structures were used. Only
compounds that increased cAMP levels in cells expressing
the hβ3-AR were selected and prepared as a dataset to build
and validate the pharmacophore model. Duplicates were
removed by comparing the compounds’ smiles codes in
DataWarrior v4.7.2.[65] The dataset contained 95 unique
compounds including 11 known selective β3-AR agonists for
which their agonist activity has been studied in preclinical
or clinical studies and 84 compounds, which were classified
on the basis of their activity. They were grouped according
to their EC50 as highly active (�15 nM), moderately active
(15 nM–100 nM), weakly active (100 nM–100 μM), and in-
active (EC50>100 μM or not determined). This dataset was
split into two subsets. The training set listed in Table 1
consisted of the 11 β3-AR agonists investigated in (pre-
)clinical studies and eight additional highly active, structur-
ally diverse compounds. Seventy-six compounds formed
the test set containing 72 active and four inactive
compounds (Supporting Information Table S1). The 3D
conformations of the training set compounds were gener-
ated using Omega v2.3.3[66] with BEST settings (500
conformations/molecule) in LigandScout v3.12 (Inte:Ligand
GmbH, Vienna).[67] Because of limited inactive experimental
compounds, decoys were included in the virtual screening.
The SMILES codes of all the 91 active compounds from the
whole dataset were used as input to generate decoys using
DUD-E[68] with standard settings (http://dude.docking.org/).

2.2.2 Pharmacophore Model Generation and Quality
Assessment of the Pharmacophore Models

The pharmacophore models were built based on the
training set. The pharmacophore features were extracted
through ligand-based pharmacophore model calculations.
Pharmacophore models were generated using the espresso
algorithm[23] implemented in LigandScout. In the model
generation, pharmacophore fit, atom overlap and merged
feature pharmacophore were selected as the scoring
function and pharmacophore type, respectively. Exclusion
volumes were created to represent potential steric restric-
tions of the binding site. In LigandScout, exclusion volume
spheres are generally positioned based on an iterative
placement algorithm: On a grid with 1.5 Å resolution, all
points within three Å of any training set atom center with a
distance of less than three Å to a hydrogen bond or a
hydrophobic contact feature are considered as potential
coordinates for an exclusion volume sphere. All such
spheres that would clash with the van der Waals radius of
any aligned training set atom are subsequently removed
resulting in an exclusion volume sphere ‘coat’ that sterically
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represents the negative shape of the aligned training set
molecules.

Before using the models for virtual screening, they were
validated theoretically to evaluate their performance.
Seventy- two active compounds, four inactive compounds,

Table 1. Training set for the β3-AR pharmacophore model.

Compound structure EC50 (nM)[a] Compound structure EC50 (nM)[a]

22.4[7,17] 1.6[48]

Mirabegron 1 L742791 11

1.1[19] 4[49]

Vibegron 2 CHEMBL32599 12

21[7] 6[50]

BRL37344 3 CHEMBL75604 13

18[7] 6.3[51]

CL316243 4 CHEMBL22318 14

0.062[9] 13[52]

Rafabegron 5 CHEMBL127656 15

2.4[11] 13[51]

LY377604 6 4.3[7] CHEMBL22375 16

3.16[7] 1.3[53]

Amibegron 7 CHEMBL12769 17

3.98[54] 4.3[55]

Solabegron 8 6.9[7] CHEMBL331744 18

73[16] 0.75[56]

1,7-cyclized indole derivative 19

0.079[57]

L755507 10 0.4[7]

[a] The activity based on increasing cAMP level in CHO-hβ3-AR cells.
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and 6229 decoys were transformed into a screening
validation database using the idbgen-tool with Omega-best
settings. The assessment of the pharmacophore model
quality was carried out by deploying the pharmacophore
model to screen against this database. In the virtual
screening process, pharmacophore fit, match all query
features, and best matching conformation were selected as
screening parameters for scoring function, screening mode,
and retrieval mode, respectively. The parameters used for
evaluating the pharmacophore model were the calculation
of receiver operating characteristic (ROC) curves and enrich-
ment factors (EFs). The ideal model depicts a steep slope
ROC-curve and has a high AUC and EF value:[69]

EF ¼
a
n

h i
=

A
N

� �

where a is the number of truly active compounds retrieved
by the model, n is the number of hits, A is the number of all
true active compounds and N is the total number of
compounds in the screening database.

2.3 Pharmacophore-based Virtual Screening

The selected pharmacophore model was used for virtual
screening against the SPECS[70] and Drugbank databases.[71]

These libraries containing 219.931 compounds in total were
generated in LigandScout using the same settings as for
the validation database. The virtual screening process
followed the procedure described in section 2.2.2. Only
those compounds that fitted into all features of the
pharmacophore model were predicted to be active and
were called hit compounds.[23]

2.4 Selection of Hits for Biological Activity Testing

The hit compounds which fitted the pharmacophore model
were considered for biological testing. However, their
number was huge and additional post-screening filters
were needed to select fewer hit compounds. There are two
types of filters involved in this process: physicochemical
properties filter and docking evaluation.

2.4.1 Physicochemical Properties Filter

The screening results were first filtered by the physicochem-
ical parameters. The filter contained several parameters
derived from β3-ARs agonists in the training set: molecular
weight (MW 240–640); partition coefficient (ClogP 0,10–6,7);
number of hydrogen acceptors (HAC�11) and hydrogen
donors (HDO�6); polar surface area (PSA 65–180); number
of rotatable bonds (RTB 3–16) and aromatic rings 2–5. These
parameters were calculated in DataWarrior v4.7.2.[65] Addi-

tionally, to ease the selection process, the screening results
were also analyzed for molecular similarity using the FragFp
descriptor calculated by Tanimoto metric and visualized
using 2D-Ruber Band Scaling approach[65] implemented in
DataWarrior. The result of the similarity analysis was
visualized as a similarity chart which displayed the chemical
space of all compounds, and similar compounds are
connected with a line. Based on this similarity chart, the
compounds were grouped by various scaffolds.

2.4.2 Molecular Docking

The hit compounds passing the physicochemical properties
filter were filtered again using a docking evaluation. The 3D
structures of the compounds were prepared with Omega
v2.3.3 in LigandScout. Docking was performed with GOLD
v5.7.0[72] using the docking wizard. Because no 3D structure
of the human β3-AR was available, the homology model of
hβ3-AR described in section 2.1 was employed. ChemPLP
was used as scoring function.[73] The binding site was
defined based on BI167107 as reference ligand. The cavity
was set within 6 Å of the bound molecule. To evaluate the
performance of the docking protocol, the validation was
performed by re-docking and RMSD value calculation
between the docked ligand and the reference ligand.[74] The
RMSD was 0.34 Å in this case. In general, protein-ligand
docking is a tool to predict binding poses and estimate
binding affinity.[74] Therefore, docking results of hit com-
pounds were evaluated visually to select the best interact-
ing pose based on interactions and steric fit rather than the
highest scoring pose. In summary, scaffold and/or structure
variation, pharmacophore score, and docking evaluation
were all considered in the selection of hit compounds for
biological testing. In advance of biological activity testing,
the selected compounds were examined using SciFinder
(https://scifinder.cas.org)[75] for known activity data includ-
ing current patents to avoid double testing.

2.5 In Vitro Testing

To confirm the activity of the hit compounds, cell-based
assays measuring cAMP levels were performed.

2.5.1 Materials and Assay System

The selected hit compounds were purchased from SPECS.
The compounds were tested in Chinese Hamster Ovary K1
cells expressing either the human β3-AR (CHO-hβ3-AR
cells)[76] or mouse β3-AR (CHO-mβ3-AR cells)[77] in order to
measure the intracellular cAMP using Lance cAMP assay Kit.
Clenbuterol (CLEN), BRL37344 (BRL), isoprenaline (ISO), and
forskolin (FSK) were used as control compounds.
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2.5.2 Measurement of cAMP Levels

Biological testing of hit compounds was described by da
Silva Junior et. al.[78] CHO� K1 cells or CHO� K1, CHO-mβ3-AR
or CHO-hβ3-AR cells were maintained in Dulbecco’s Modi-
fied Eagle’s Media: Nutrient Mixture F12 (DMEM/F12; Gibco,
Cat# 10565018) containing 10% (v/v) fetal bovine serum
(FBS). Media was changed twice a week and cells were
incubated at 37 °C with 5% CO2. Prior to serum-starvation
(0% FBS) for 24 hours, CHO cells were plated at 1 x 104/well
of 96 well plates. Cells were stimulated in the final volume
of 100 μl stimulation buffer (0.1% BSA, 5 mM HEPES, HBSS,
500 μM IBMX, pH 7.4) for 30 min at 37 °C. The stimulation
was terminated by aspirating stimulation buffer and adding
50 μl ice-cold 100% ethanol. After ethanol was evaporated,
50 μl lysis buffer (0.1% BSA, 0.3% Tween 20, 5 mM HEPES,
pH 7.4) was added to each well. The cAMP levels were
quantified using 10 μl of cell lysate or cAMP standard. After
adding 5 μl cAMP antibodies labeled with Alexa Fluor 647
in each well, 10 μl of detection solution containing biotin-
cAMP and eu-W8044 labeled streptavidin were added at
room temperature in reduced light condition. Time-resolved
Förster resonance energy transfer (FRET) signals were
measured using a 2103 EnVision plate reader (PerkinElmer)
at 340 nm excitation and 615/665 nm emission wave-
lengths. Concentration-response curves were analyzed by
nonlinear regression between log agonist vs response three
parameters to calculate pEC50s.

Because β3-AR agonists and antagonists share similar
structural features,[8] assessment of ligands for antagonist
activity was performed. Cells were treated with hit com-
pounds (10 μM) for 30 min before addition of the non-
selective β-AR agonist isoprenaline (ISO) at a submaximal
concentration (300 nM). All results are expressed as a
percentage of the response to ISO. All data were calculated
and analyzed using GraphPad Prism v8.2.1 (GraphPad
Software, San Diego, California USA, www.graphpad.com).
Statistical significance was determined using unpaired t-test
with significant P<0.05.

2.6 Molecular Docking of the Active Compounds into
Human β3-AR and Mouse β3-AR Modelled from the Dog
β3-AR 3D Structure

The compounds found active in the in vitro testing were
docked into the hβ3-AR and mouse β3-AR (mβ3-AR) binding
sites to evaluate their interactions in those receptors,
respectively. The receptors used for docking were con-
structed based on the structure of the dog β3-AR (dβ3-AR)
(PDB ID: 7DH5, res: 3.16 Å)[79] in Maestro v11.8.012. In
addition, two hβ3-AR models constructed from hβ2-AR and
dβ3-AR were compared and analyzed in Maestro and SWISS-
MODEL using its structure comparison tool.[80] The parame-
ters for the evaluation were RMSD of the respective Cα
atoms and the lDDT score presented as consistency value.[80]

Molecular docking was performed as described in sec-
tion 2.4.2 employing the hβ3-AR and mβ3-AR models,
respectively. Sequence alignment among hβ3-AR, mβ3-AR,
and dβ3-AR was also analyzed.

3 Results and Discussion

3.1 Pharmacophore Modeling and Virtual Screening

To discover new β3-AR agonists, pharmacophore modeling
and virtual screening were performed. Ligand-based phar-
macophore modeling is suitable for this research question
as there is no available 3D crystal structure of hβ3-AR. The
pharmacophore model illustrated in Figure 1A was assessed

and the ROC/AUC and the EF100% revealed the values 0.90
and 10.2 respectively (Figure 1C), representing the best
result of the created models.

Ligand-based pharmacophore modeling for β3-AR li-
gands has previously been conducted in several studies
(Table 2). However, compared to our model, they had
different chemical features due to variations in the datasets
and the different software tools applied to construct the
models. Remarkably, some features were common in all
models, namely HBD, HBA, and PI located in the center.

Figure 1. A: The ligand-based pharmacophore model consisted of
six pharmacophore features: two hydrophobic interactions (H) –
yellow; two hydrogen bond donors (HBD) – green, one hydrogen
bond acceptor (HBA) – red, a positively ionizable area (PI) – blue,
and 18 exclusion volumes – grey. B: Alignment of mirabegron to
the pharmacophore model. C: ROC curve from the theoretical
validation of the pharmacophore model. In this screening, the 499
hits found by the model contained 58 true active compounds, 1
inactive compound, and 440 decoys.
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These features correspond to the ethanolamine moiety
(� OH� C2H5� NH� ), a typical scaffold of β-AR ligands.[81] Also,
most β3-AR agonists share similar structural features, with
their ethanolamine moiety playing a central role as the
minimum pharmacophore.[1] This moiety is derived from the
catecholamine structure of both the endogenous agonists
adrenaline (epinephrine) and noradrenaline
(norepinephrine).[81] The hydroxyl group (� OH) can serve in
hydrogen bonding as both HBD and HBA, whereas the
amine (� NH� ) is involved in ionic binding or as HBD.
Figure 1B illustrates exactly how these features map on
mirabegron. In addition, H features were found more than
once, indicating that non-polar properties of ligands may

contribute to ligand-receptor interaction as well. By
pharmacophore-based virtual screening (Scheme 1),
1601 compounds from two commercial screening libraries
were identified as potential hβ3-AR ligands. These com-
pounds were filtered by physicochemical properties and
similarity calculations, which yielded 117 compounds. Fi-
nally, 35 compounds were selected for biological testing.
They were examined in SciFinder for potentially known
agonist activities on the hβ3-AR prior to testing (the
summary of search results is provided in Supporting
Information Table S2).

Table 2. Comparison of pharmacophore models.

Pharmacophore models Size of dataset (training set, test set) Pharmacophore features[a] Software

Prathipati-Saxena model[27] 51 (34, 17) RA, PI, HBD, HBA, H Catalyst v4.6
Shakya model[28] 4 HBA, HBD, HBA, HpAr, HpAl, RA Catalyst v4.7
Telvekar model[29] 80 (56, 24) RA, HBA, PI, RA, RA, NI PHASE v3.0
[b]Jin model[30] 144 (35, 109) H, PI, RA, H, HBA Catalyst v4.10
[b]Saxena-Roy model[31] 175 (51, 124) HBD, PI, H, NI, H Discovery Studio v2.0
Ujiantari model 95 (19, 76) H, HBD, HBA, HBD, PI, H LigandScout v3.12
[a] HBD: hydrogen bond donor, HBA: hydrogen bond acceptor, PI: positive ionizable, NI: negative ionizable, H: hydrophobic interaction, RA:
ring aromatic, HpAI: hydrophobic aliphatic, HpAr: hydrophobic aromatic.
[b] The model was used in the virtual screening process, but without biological testing of hits.

Scheme 1.Workflow methodology of pharmacophore-based virtual screening for discovery new β3-AR agonists. The pharmacophore
modeling part is shown in the blue area, the virtual screening part in the green one, and the in vitro part in the yellow one.
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3.2 Homology Model of hβ3-AR

In addition to the pharmacophore-based virtual screening,
docking into a β3-AR homology model was conducted.
Based on sequence alignment analysis, the hβ3-AR shared
50%, 63%, and 68% by sequence identity, sequence
similarity, and homology, respectively with the hβ2-AR.

Previous homology modeling studies with the hβ3-AR
were based on the 3D structure of the hβ2-AR.

[82,83] These
models were based, however, on hβ2-AR bound to the
inverse agonist carazolol (PDB ID: 2RH1)[84] which is an
inactive conformation.[35] Hence, the structure was modeled
using the hβ2-AR coupled to G proteins (PDB ID: 3SN6, res:
3.20 Å).[35] This structure was chosen as a template because
this is the active conformation of the hβ2-AR bound to a β2-
AR agonist, BI167107[35] (Figure 2A). There are some signifi-

cant differences between inactive and active structures,
especially in the position of TM6. This helix differed by a
14 Å outward movement when measured at the Cα of
E2686.30.[35] Based on the evaluation model, results showed
that 97.09% of the amino acid residues lied in favourable
regions[43] represented in Ramachandran plots (Figure 2B).
RMSD Cα,[58] Cβ deviations,[43] and QMEAN Z-score[47] were
1.2658 Å, 0, and � 2.78, respectively, indicating a good
quality of the model. Hence, this model was used for
docking in the virtual screening process. Re-docking gave
an RMSD value of 0.34 Å indicating that the docking
protocol was reliable for pose prediction.

3.3 Biological Activities

In case of the β3-AR, binding assays are inappropriate to
screen for agonist activity at the β3-AR due to the low
affinity of the available radioligands such as [125I]-iodocya-
nopindolol and [3H]-CGP 12,177.[85] Performing functional
assays including agonist-mediated increases in cAMP accu-
mulation is a common method to test for β3-AR agonist
activity. Thirty five compounds were tested in two types of
cloned-CHO cells expressing either hβ3-AR or mβ3-AR. With
35 compounds tested, cAMP levels were increased by four
compounds (20–23) in CHO-hβ3-AR cells, and by 8 com-
pounds (20–27) in CHO-mβ3-AR cells (Figures 3–4). These
increases in cAMP levels were due to actions at the β3-AR
since none of the hit compounds or selective β-AR ligands
increased cAMP levels in CHO� K1 cells lacking functional
β3-ARs (Supporting Information Figure S1). Virtual screening
yielded true positive hit rates of 11.43% and 22.86% in
CHO-hβ3-AR and CHO-mβ3-AR cells, respectively. The ago-
nist potency activities of active hit compounds were lower
than known β3-AR agonists such as BRL37344 whose pEC50s

were 6.78�0.13 and 9.16�0.3 in CHO-hβ3-AR cells and
CHO-mβ3-AR cells, respectively. In screening paradigms, a
hit means a compound which has the desired activity and
whose activity is confirmed upon experimental testing,
typically with a potency of 100 nM–5 μM at the target.[86] To
become preclinical candidates, further work such as hit-to-
lead process and lead optimization need to be conducted.
These processes mainly focus on an thorough SAR inves-
tigation around a core compound to produce more potent
and selective compounds with adequate pharmacokinetic
properties.[86]

Active hit compounds contained the ethanolamine
moiety verifying that this structure is the main pharmaco-
phore to induce conformational change in the receptor
instigating the cAMP signaling pathway. Interestingly,
compounds 28, 29, 30, 31, and 32 (Figure 5) did not
increase cAMP levels in both cell types even though they
contain this moiety. These compounds lacked the phenyl
group on the hydroxy end, indicating that the ring system
must be present to result in agonist activity. β3-AR ligands
had been categorized into two main chemical classes:

Figure 2. A: 3D Structure alignment of hβ3-AR – green with hβ2-AR
– orange and the binding site surfaces illustrated where the ligand
is oriented nearly vertical inside the binding site located in the
upper part of the receptor, close to the extracellular loop 2 (EL2). In
the binding site, BI167107 interacted with N3127.38, D1133.32, S2035.42,
and S2075.46 of hβ2-AR through hydrogen binding. B: Ramachandran
plot showing that 97.09% of amino acid residues were situated in
favored regions and no Ramachandran outlier was detected.
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arylethanolamines and aryloxypropanolamines both of
which feature an aryl group on the hydroxy end.[7,8]

In prior studies, the development of β3-AR agonists
focused on modification of both the hydroxy and the amine
end of the ethanolamine.[1] β3-AR agonists were usually
modified at the amine end since it was proven to improve
the activity and influence receptor selectivity over the β1-
and β2-AR.

[1,7] As a consequence, pharmacophore modeling
studies employing ligand-based approaches extracted more
hydrophobic features on the amine end (Table 2). The larger
size and the presence of polar and/or ionizable function-
alities seem to be beneficial to improve the activity and
selectivity.[7]

Based on the cell-based assay results, compounds 20
and 21 were the two most active ones in both the CHO-
hβ3-AR and CHO-mβ3-AR cells. Even though compound 33
has a similar structure as compound 21, compound 33 only
increased cAMP levels in CHO-hβ3-AR and CHO-mβ3-AR cells
by 22.00�5.23% and 31.14�7.39% at 100 μM, respec-
tively. Due to the presence of the ethoxy group in the
phenyl ring at the amine end, compound 21’s activity was
better than compound 33’s. In addition, the presence of a
halogen substituent contributed to the higher pEC50 of
compound 20 in comparison to compound 22. These facts

support the idea that hydrophobic moieties on the amine
end would improve activity. Most β3-AR agonists possess an
aromatic ring that is 2–3 linker atoms away from the amine

Figure 3. Hit compounds were found to be active in both cells,
CHO-hβ3-AR and CHO-mβ3-AR cells.

Figure 4. Concentration-dependent cAMP accumulation in CHO-
hβ3-AR cells (A) and CHO-mβ3-AR cells (B). Eight compounds
increased the cAMP level in a concentration-dependent manner in
both cells whereas compound 20 exhibited maximal response in
only CHO-mβ3-AR cells at the highest concentration (B). 100 μM
forskolin and 1 μM of clenbuterol (CLEN), BRL37344 (BRL) and
Isoprenaline (ISO) were used as positive controls in the left of each
graph. Each point represents Mean �SEM of 3 independent
experiments performed in duplicate.

Figure 5. Hit compounds were found inactive and weakly active.
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end,[1,82] whereas our active compounds were separated by
a methylene bridge. On the other hand, the phenyl or
pyridyl groups are common ring systems found on the
hydroxy end.[1,7] However, compound 26 carried a smaller
ring, a tetrazole group, at this position, allowing further
modification on this side.

Since β-AR agonists and antagonists frequently share
similar molecular architecture,[8] 35 hit compounds were
tested for potential antagonistic activity (Supporting In-
formation Figure S2). Only compound 34 (Figure 6) at

10 μM significantly decreased the cAMP level by 31.75% in
CHO-mβ3-AR cells when stimulated by ISO.

Hence, the pharmacophore model also identified a weak
antagonist. Arch stated that the aryloxypropanolamine
structure is typical of β3-AR antagonists.[8] Compound 34
does not bear this structure, suggesting that the core
structure of compound 34 acts as a bioisostere of the
aryloxypropanolamine substructure. In the end, out of the
35 hit compounds, 26 compounds (compounds 28–33 in
Figure 5 and compounds 35–54, provided in Supporting
Information Figure S3), were found to be inactive.

The eight compounds found to be active as β3-AR
agonists in this study contained an ethanolamine moiety,
and one compound with a different central moiety
exhibited antagonist activity. In general, most β3-AR ago-
nists contain an ethanolamine moiety at the center of
structure[1,8] because the development of β3-AR agonist so
far rather focused on modification on the amine and
hydroxyl end.[1] This moiety was maintained or preserved
since it is the main or minimum pharmacophore as it
structurally represents the endogenous agonists epinephr-
ine and norepinephrine.[1] Our initial aim was to seek new
scaffolds to replace this moiety. Nevertheless, only com-
pounds which bear this moiety exhibited agonist activity on
the β3-AR. However, when analyzing the novelty of a
structure, the whole molecule is to be taken into account,
not only a central moiety. Therefore, the discovered
compounds were compared to the active compounds in
the dataset using a Tanimoto metric with different finger-
prints. These included hashed fingerprints and structural

keys fingerprints, which are available in Canvas[87] (Support-
ing Information Section S1). Most of the newly discovered
active hits had low score (<0.5), indicating that they were
structurally different from the known active compounds.

Across species, the β3-AR shares 80–90% homology
between human, mouse, and dog.[1,7] Recently, the 3D
structure of dog β3-AR (dβ3-AR) bound to mirabegron with
a resolution value of 3.16 Å (PDB ID: 7DH5) was successfully
determined by Cryo-EM technique.[79] Based on the se-
quence alignment results, the binding sites of the human
and mouse β3-AR differ only in three and four amino acid
residues compared to the dog. Here, we assumed that there
was no significant difference in the overall 3D conformation
as well as the binding site and thus hβ3-AR and mβ3-AR
were modeled based on the structure of the dβ3-AR.
Furthermore, the two hβ3-AR models constructed from hβ2-
AR and dβ3-AR were also compared to each other to ensure
their similarity. The RMSD Cα was calculated to be 1.9 Å
and most of the consistency values derived from the lDDT
score of each residue fell into the range of 0.5–1, which
means that both models were considered identical. The
detailed results and explanations are provided in Support-
ing Information Figures S4 and S5. The most active
compounds were docked into hβ3-AR and mβ3-AR models
to evaluate the interactions. The visualization of docking
results exhibited that compound 20 and 21 aligned in a
similar orientation with mirabegron interacting with the
amino acid residues in the binding site of the receptor
(Figure 7).

Roy and Saxena concluded based on their docking
studies that the amino acid residues involved in the binding
with the β3-AR agonists are localized in the transmembrane
(TM) helices (TM3, TM5, TM6, and TM7) and extracellular
loop 2 (EL2).[82] In concordance to prior studies,[79,82,83] the
two amino acid residues D1173.32 and N3327.39 were
predicted to be directly involved in binding the active
compounds. At the hβ3-AR, the hydroxyl and amine groups
of the ethanolamine moiety interacted with the carboxylic
acid group of D1173.32 and the amide group of N3327.39

through HBA and HBD. Besides hydrogen binding, ionic
interactions were observed also between the amine group
of the ethanolamine and the carboxylate ion of D1173.32. A
site-directed mutagenesis study conducted by Gros et al.
proved that mutation of D1173.32 with leucine in hβ3-AR led
to the suppression of ligand binding and signal
transduction.[88] In addition, mutation of N3327.39 with
alanine in dβ3-AR reduced the potency of mirabegron 80-
fold.[79] Therefore, both residues were found to be important
for ligand binding at the β3-AR. In addition, the phenyl ring
on the hydroxy end in both compounds 20 and 21
contributed to a hydrophobic interaction with F3096.52.
These similar interactions were present in the docking
solutions in the mouse receptor as well. Sahi et al. found
that S2085.42 and Ser2125.46 form hydrogen bonds with the
hydroxyl group of catechol of the endogenous agonists.[83]

However, most β3-AR agonists lack a catechol group,

Figure 6. Hit compound was found active as a weak antagonist.
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therefore this hydrogen bonds were mostly absent.[82] Nagiri
et al. proved that they are not essential for mirabegron
potency by mutating these serine residues with alanine
residues.[79]

Previous studies discovered that the binding affinity and
efficacy of noradrenaline and isoprenaline were higher at
the human receptors than the murine receptors.[89–91]

Conversely, other β3-AR agonists such as adrenaline,
BRL37344, and CL316243 exhibited lower affinity and
efficacy at the human receptors than the rodent
receptors.[90–92] Previous studies showed that many β3-AR
agonists were found to have low efficacy at the human
receptors.[93] Our finding also revealed more active com-
pounds for mouse receptors compared to human receptors.
This is thought to be due to subtle differences in the
binding site of the rodent receptors versus human
receptors.[21] As previously stated by Roy and Saxena, A197
in the EL2 domain of the hβ3-AR that corresponds to the
aspartic acid residue at both hβ1-AR and hβ2-AR, must be
involved in the selectivity within hβ-ARs.[82] In line with this,
the hydroxyl group of S194 (EL2) of mβ3-ARs interacted
with compound 21 (Figure 7) and mirabegron through
hydrogen binding. This suggests that this interaction may
improve activity at the mouse but not the human receptors
explaining why our active compounds appear to have
higher activity at the mouse. However, Nagiri et al. tried to
prove the involvement of EL2 in selectivity. Three residues
in EL2 between dβ3-AR and hβ2-AR were swapped, namely
A197, A199, and S200 of dβ3-AR replaced by D192, F194,
T195 of hβ2-AR, and vice versa.[79] The results showed that

these residues did not fully explain mirabegron
selectivity.[79] Based on the 3D structures of dβ3-AR, hβ2-AR,
and hβ1-AR, the upper part of the binding site in dβ3-AR is
narrower, thus it shapes a perpendicular cavity which may
affect mirabegron selectivity.[79] This finding may apply
between human and dog β3-ARs since both share more
similarity than mouse β3-AR. Therefore, the mutagenesis
study in mouse may need to be carried out to understand
the selectivity within species.

4 Conclusions

A ligand-based pharmacophore model for β3-AR agonists
was developed and experimentally validated. Our approach
yielded eight novel β3-AR agonists that can be further
characterized in vitro and may serve as starting points for
the further development of β3-AR agonists. The active
compounds were more efficient at the mouse receptors
compared to the human receptors. Screening of additional
libraries may find compounds that are more active and
could also help to improve the quality of the pharmaco-
phore model. The ethanolamine moiety in the center of the
ligand structure seemed essential for activity. In addition,
agonist activity required a phenyl group at the hydroxy
end. In our finding, this could be replaced by another
aromatic ring system suggesting scaffold hopping. Further
studies are also needed to evaluate potential bioisostere
replacements for the ethanolamine moiety. In our study,

Figure 7. The interaction of 20 – yellow, 21 – pink, and mirabegron-green in hβ3-AR and mβ3-AR.
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the pharmacophore model unexpectedly also detected an
antagonist.
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