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ABSTRACT

The AlphaFold Protein Structure Database (Al-
phaFold DB, https://alphafold.ebi.ac.uk) is an openly
accessible, extensive database of high-accuracy
protein-structure predictions. Powered by AlphaFold
v2.0 of DeepMind, it has enabled an unprecedented
expansion of the structural coverage of the known
protein-sequence space. AlphaFold DB provides pro-
grammatic access to and interactive visualization
of predicted atomic coordinates, per-residue and
pairwise model-confidence estimates and predicted
aligned errors. The initial release of AlphaFold DB
contains over 360,000 predicted structures across
21 model-organism proteomes, which will soon be
expanded to cover most of the (over 100 million) rep-
resentative sequences from the UniRef90 data set.

INTRODUCTION

Proteins are essential macromolecules with vital biological
functions and, thus, are involved in a wide range of research
activities and medical and biotechnological applications,
from fighting infectious diseases to tackling environmental
pollution (1,2). Knowledge of the three-dimensional (3D)
arrangement of the atoms of a protein can provide essen-
tial clues to understanding the roles and mechanisms under-

pinning protein functions (3,4). However, while the Univer-
sal Protein Resource (UniProt) archives almost 220 million
unique protein sequences, the Protein Data Bank (PDB)
holds only just over 180 000 3D structures for over 55 000
distinct proteins, thus severely limiting the coverage of the
sequence space to support biomolecular research globally
(5–7).

Achieving a higher coverage of the sequence space with
experimentally determined high-resolution structures is
very labour-intensive. It often requires a lot of trial and
error, for example, to find suitable constructs or condi-
tions under which a protein is amenable to crystallization.
Although recent advances in the field of electron cryo-
microscopy and hybrid and integrative methods (I/HM)
for structure determination have accelerated the pace of
structure determination, the gap between known protein se-
quences and experimental protein structures continues to
expand (6,8).

One way to close this gap is to predict the structures of
millions of proteins. Increasingly, researchers deploy Artifi-
cial Intelligence (AI) techniques to predict a protein’s struc-
ture computationally from its amino-acid sequence alone
(9–11).

AlphaFold is an AI system developed by DeepMind
that makes state-of-the-art predictions of protein structures
from their amino-acid sequences (9). CASP (Critical As-
sessment of Structure Predictions) is a biennial challenge
for research groups to test the accuracy of their predictions
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Table 1. Structural predictions for complete proteomes in AlphaFold DB

Species Common name Reference proteome Predicted structures

Arabidopsis thaliana Arabidopsis UP000006548 27 434
Caenorhabditis elegans Nematode worm UP000001940 19 694
Candida albicans C. albicans UP000000559 5974
Danio rerio Zebrafish UP000000437 24 664
Dictyostelium discoideum Dictyostelium UP000002195 12 622
Drosophila melanogaster Fruit fly UP000000803 13 458
Escherichia coli E. coli UP000000625 4363
Glycine max Soybean UP000008827 55 799
Homo sapiens Human UP000005640 23 391
Leishmania infantum L. infantum UP000008153 7924
Methanocaldococcus jannaschii M. jannaschii UP000000805 1773
Mus musculus Mouse UP000000589 21 615
Mycobacterium tuberculosis M. tuberculosis UP000001584 3988
Oryza sativa Asian rice UP000059680 43 649
Plasmodium falciparum P. falciparum UP000001450 5187
Rattus norvegicus Rat UP000002494 21 272
Saccharomyces cerevisiae Budding yeast UP000002311 6040
Schizosaccharomyces pombe Fission yeast UP000002485 5128
Staphylococcus aureus S. aureus UP000008816 2888
Trypanosoma cruzi T. cruzi UP000002296 19 036
Zea mays Maize UP000007305 39 299

AlphaFold DB provides free access to over 360,000 predicted structures across 21 proteomes. The data set contains proteins with sequence lengths of
16–2700 and excludes isoforms and sequences with unknown or non-standard amino acids.

against actual experimental data. In 2020, the organizers of
the CASP14 benchmark recognized AlphaFold as a solu-
tion to the protein–structure–prediction problem (12). The
unprecedented accuracy and speed of AlphaFold allowed
the creation of an extensive database of structure predic-
tions at a large scale. It will enable biologists to obtain struc-
tural models for almost any protein sequence, changing how
they tackle research questions and accelerate their projects.
The methodology of AlphaFold and insights gained from
the predictions for the complete human proteome have been
described recently (9,13).

We present the AlphaFold Protein Structure Database
(AlphaFold DB, https://alphafold.ebi.ac.uk), a new data re-
source created in partnership between DeepMind and the
EMBL-European Bioinformatics Institute (EMBL-EBI).
We have created AlphaFold DB to make structure predic-
tions freely available to the scientific community at a large
scale. The first release described here covers the human pro-
teome and those of 20 other model organisms (Table 1). In
the coming months, we plan to have expanded the database
to cover a large proportion of all catalogued proteins (over
130 million cluster representatives from UniRef90).

IMPLEMENTATION

The initial version of AlphaFold DB contains over 360
000 predicted structures, corresponding meta-information
and confidence metrics. All the data are publicly accessible
through a cloud-based infrastructure. We have attempted to
predict most sequences in the UniProt reference proteome
in the 16–2700 amino acid length range (as well as 1400-
residue fragments to cover longer human proteins) for the
organisms currently covered. We excluded sequences that
contain non-standard amino acids. We do not provide mul-
tiple isoforms at this point.

The predicted structures contain atomic coordinates and
per-residue confidence estimates on a scale from 0 to 100,

with higher scores corresponding to higher confidence. This
confidence measure is called pLDDT and corresponds to
the model’s predicted per-residue scores on the lDDT-C�
metric (14). lDDT is a pre-existing metric used in the protein
structure prediction field. A key motivation behind lDDT is
to assess the local accuracy of a prediction, awarding a high
score for regions that are well-predicted even if the entire
prediction cannot be aligned well to the true structure. This
is particularly important for evaluating multi-domain pre-
dictions where the individual domains may be largely ac-
curate while their relative position is not. As a confidence
metric based on lDDT, pLDDT also reflects local confi-
dence in the structure, and should be used, for example,
to assess confidence within a single domain. Several other
protein structure prediction resources also use lDDT-based
metrics (15,16). AlphaFold DB stores these values in the
B-factor fields of the mmCIF and PDB files available for
download and uses confidence bands based on these values
to colour-code the residues of the models in the 3D struc-
ture viewer on the structure pages. Residues with pLDDT
≥ 90 have very high model confidence, while residues with
90 > pLDDT ≥ 70 are classified as confident. Residues with
70 > pLDDT ≥ 50 have low confidence, and residues with
pLDDT < 50 correspond to very low confidence (13). It was
recently described that very low confidence pLDDT scores
correlate with high propensities for intrinsic disorder (17).

The Predicted Aligned Error (PAE) is another output of
the AlphaFold system. It indicates the expected positional
error at residue x if the predicted and actual structures are
aligned on residue y (using the C�, N and C atoms). PAEs
are measured in Ångströms and capped at 31.75 Å. Scien-
tists can use these values to assess the confidence in the rela-
tive position and orientation of different parts of the model
(e.g. two domains). For residues x and y in two different do-
mains, if the PAE values (x, y) are low, AlphaFold predicts
the domains to have well-defined relative positions and ori-
entations. If the PAE values are high, then the relative posi-
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Figure 1. Searching AlphaFold DB. AlphaFold DB provides a search engine to find proteins of interest based on gene or protein name, UniProt accession
or organism name. The search results can be filtered if required and clicking on a protein name leads to the relevant protein-specific entry page.

tion and orientation of the two domains are unreliable, and
users should not attach biological or structural relevance to
these. Note that the PAE is asymmetric; therefore, there can
be a difference between the PAE values for (x, y) and (y,
x), for example, between loop regions with highly uncertain
orientation.

Data archival

AlphaFold DB archives and provides access to the atomic
coordinates in PDB and mmCIF formats, PAEs in JSON
format and corresponding metadata in JSON format. While
the coordinates and the PAE files are directly accessible
through URLs, we load and index the metadata using
the open-source search platform Apache Solr (https://solr.
apache.org/) to enable users to search on the AlphaFold DB
web pages. The data files in the archive are versioned, and
previous snapshots of the data will be available via FTP, but
the web pages will always display the latest version.

Data access

AlphaFold DB provides predictions through several data-
access mechanisms: (i) bulk downloads via FTP; (ii) pro-
grammatic access via an application programming interface
(API); (iii) download and interactive visualization of indi-
vidual predictions on protein-specific web pages keyed on
UniProt accessions.

For bulk downloading data from AlphaFold DB, users
can access the uncompressed archive files (.tar) of com-

pressed PDB/mmCIF files (.gz) per reference proteome
from the EMBL-EBI public FTP area at ftp://ftp.ebi.ac.uk/
pub/databases/alphafold. This area contains the TAR files
and a JSON file that provides meta-information, describ-
ing the species names (scientific and common), the refer-
ence proteome identifiers, the number of predicted struc-
tures, and the archives’ sizes. The same information and
files are also available from the Bulk Download page of Al-
phaFold DB at https://alphafold.ebi.ac.uk/download.

We provide access to all entries through a public API end-
point, keyed on a UniProt accession. For example, the end-
point https://alphafold.ebi.ac.uk/api/prediction/Q92793 al-
lows access to all the meta-information and the URLs of all
the archived data files related to the human CREB-binding
protein. UniProt (5), Pfam (18), InterPro (19) and PDBe-
KB (7) use this API to display AlphaFold models on their
web pages.

AlphaFold DB provides graphical access to and in-
teractive visualization of all the predictions and meta-
information for the broader scientific community through
web pages. These pages contain all the available informa-
tion for a protein of interest, keyed by its UniProt acces-
sion. They allow users to analyse the prediction and down-
load the corresponding model files (in PDB and mmCIF
formats) and PAE files (in JSON format).

AlphaFold DB web pages

AlphaFold DB provides convenient access to its predic-
tions through a set of web pages (https://alphafold.ebi.ac.
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Figure 2. Meta-information and 3D visualization of the AlphaFold structure predictions. The protein-specific web pages display essential metadata for the
protein of interest, such as known biological functions and cross-references to UniProt and PDBe-KB. Users can download the predicted models in PDB
and mmCIF format, and an interactive molecular viewer visualizes the structure, coloured by the per-residue pLDDT confidence measure.

uk). These pages contain an introduction to the AlphaFold
system, address the most frequent questions, enable bulk
download of complete proteomes, and offer a search engine
for finding pages specific to a protein of interest (Figure 1).
Users can search by gene name, protein name, UniProt ac-
cession or organism name. The search results can be filtered,
for example, only to show human proteins.

Each protein has a dedicated structure page that shows
basic information (drawn from UniProt (5) and PDBe (6))
and three separate outputs of the AlphaFold model. The
first two outputs are the 3D coordinates and the per-residue
confidence metric pLDDT, which is used to colour the
residues of the model in the integrated 3D molecular viewer,
Mol* (20). Model confidence can vary significantly along a
chain, making it essential to analyse the confidence mea-
sures before interpreting structural features. The lower con-
fidence bands appear to correlate well with backbone flexi-
bility and intrinsic disorder (13) (Figure 2).

The third output is a pairwise confidence prediction,
which helps to assess the reliability of relative domain posi-

tions and orientations as well as the global topology of the
protein (Figure 3). The plot is coloured by the pairwise PAE
values and it helps users to identify which domains have reli-
ably predicted positions and orientations relative to one an-
other, where dark green indicates high confidence. Selecting
a region in the plot also highlights the corresponding part
of the sequence in the 3D viewer.

CONCLUSION AND OUTLOOK

Since the mid-1950s, the scientific community has been us-
ing ever-more advanced experimental methods to deter-
mine over 180 000 structures of proteins, nucleic acids, and
complexes in atomic detail, and archive them in the PDB,
the single worldwide archive of experimental macromolecu-
lar structure data managed by the wwPDB consortium (21).
This collective body of work has vastly improved our un-
derstanding of many fundamental processes in health and
disease, as evidenced in part by many Nobel Prizes for struc-
tures deposited in the PDB. Recently, determining the struc-
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Figure 3. Visualization of Predicted Aligned Errors. Protein-specific pages contain an interactive 2D plot of the PAE values. This tool interacts with the 3D
molecular viewer to facilitate the identification of domains whose relative positions and orientations AlphaFold predicts with confidence. In this example
(https://alphafold.ebi.ac.uk/entry/Q93074), AlphaFold has high confidence in the relative position of domains at residues 1–500 (green) and residues 1200–
1700 (blue), but not with the region between 500–1200 (orange) nor the C-terminus.

ture of the SARS-CoV-2 viral proteins enabled scientists to
understand how it operates and to identify potential treat-
ments and develop new vaccines (3). However, figuring out
the exact structure of a protein remains an expensive and
often time-consuming process. Thus, we only know the 3D
structure of a tiny fraction of all proteins currently known
to science.

The first release of AlphaFold DB contains over 360 000
predicted structures from 21 model-organism proteomes.
Having access to these highly accurate models will greatly
impact biology, from enabling structure-based drug de-
sign to providing data for high-throughput structural bioin-
formatics research that will tackle fundamental biological
questions. We have already gained some invaluable insights
from the predictions of the human proteome (13).

In the coming months, we will expand AlphaFold DB
to provide structural predictions to include additional pro-
teomes to support research in neglected diseases and to
cover the set of highly annotated proteins in SwissProt, tak-
ing the number of structures available to >1 million. This
will be followed by another update in 2022 to include struc-
tures for most representative sequences from the UniRef90
data set (>100 million structures). Future updates will also
aim to overlay annotations onto the predicted structures
and display this information on 2D sequence-feature view-
ers. AlphaFold DB will enable biomedical scientists to use
3D models of protein structures as a core tool, driving re-
search and innovation across multiple fields by providing
open access to an ever-growing number of predicted struc-
tures.

DATA AVAILABILITY

All the AlphaFold predictions are publicly available
through multiple data-access mechanisms. Coordinate files

in PDB and mmCIF formats are available in TAR
archives per proteome through FTP at ftp://ftp.ebi.ac.uk/
pub/databases/alphafold. Meta-information and URLs to
individual UniProt accessions are available via a public
API endpoint. For example, https://alphafold.ebi.ac.uk/api/
prediction/Q92793 provides all the information for UniProt
accession Q92793 (https://www.alphafold.ebi.ac.uk/entry/
Q92793).
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