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Abstract
Ovarian cancer survival varies considerably among patients, to which germline variation may also contribute in
addition to mutational signatures. To identify genetic markers modulating ovarian cancer outcome, we performed a
genome-wide association study in 2130 Chinese ovarian cancer patients and found a hitherto unrecognized locus at
3p26.1 to be associated with the overall survival (Pcombined= 8.90 × 10−10). Subsequent statistical fine-mapping,
functional annotation, and eQTL mapping prioritized a likely casual SNP rs9311399 in the non-coding regulatory
region. Mechanistically, rs9311399 altered its enhancer activity through an allele-specific transcription factor binding
and a long-range interaction with the promoter of a lncRNA BHLHE40-AS1. Deletion of the rs9311399-associated
enhancer resulted in expression changes in several oncogenic signaling pathway genes and a decrease in tumor
growth. Thus, we have identified a novel genetic locus that is associated with ovarian cancer survival possibly through
a long-range gene regulation of oncogenic pathways.

Introduction
Ovarian cancer is the second most lethal gynecological

malignancy after cervical cancer in China1. There is a lack
of effective screening methods for early detection, and
approximately 70% of patients present an advanced stage,
when diagnosed, contributing to the high mortality rate2,3.

Several clinical features and epidemiologic risk factors,
including patient age, health status, lifestyle behaviors,
tumor characteristics, and response to treatment, have
been used to predict ovarian cancer survival4–6. However,
these factors only partially explain the observed hetero-
geneity of survival among ovarian cancer patients.
Genetic components have long been associated with the

etiology of common cancers7. In family studies8–11 and
genome-wide association studies (GWASs)12–14, many
rare and common germline variants have been identified
to confer susceptibility to ovarian cancer. Accumulating
data from genome-wide scans have also reported some
germline variants that may modulate ovarian cancer
prognosis12,15–19. However, the vast majority of these
reported survival associations were not statistically robust
or functionally interrogated. In addition, few studies have
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addressed the impact of ethnicity in ovarian cancer sus-
ceptibility and outcomes13. Specifically for ovarian cancer,
Asian women exhibit lower incidence rates and higher
survival rates than western women20,21. Nevertheless,
among 207,252 women who died of ovarian cancer
worldwide in 2020, nearly one in six deaths occurred in
China22, underscoring the importance of exploring and
mechanistically understanding the causal factors for the
survival of Chinese ovarian cancer patients.
Our recent GWASs of East Asian women have identi-

fied three genetic loci (i.e., 9q22.33, 10p11.21, and 6p25.2)
to be associated with risk of epithelial ovarian cancer
(EOC), which are single nucleotide polymorphisms
(SNPs) on or near COL15A1, ANKRD30A, and
SLC22A2313,23. In the present study, we analyzed germ-
line variants for their associations with the survival of
more than 2000 Chinese ovarian cancer patients and
identified a hitherto unrecognized locus at 3p26.1 to be
associated with the survival. Subsequent fine-mapping
and molecular experiments pinpointed a potentially cau-
sal variant rs9311399 that showed an allele-specific effect
on transcription factor (TF) binding and a long-range
chromosome interaction with a long non-coding RNA
(lncRNA). Finally, deletion of the regulatory region con-
taining rs9311399 through the CRISPR–Cas9-based
technology led to altered cancer growth.

Results
A genome-wide significant locus at 3p26.1 linked to
ovarian cancer survival
As illustrated in the study design (Supplementary Fig.

S1 and Materials and methods), we evaluated associations
between germline variants and overall survival (OS) with
588 deaths from 5697 person-years in 2 large Chinese
ovarian cancer GWASs: the Shanghai Ovarian Cancer
Study (SOCS I and SOCS II, discovery stage) and the
Tianjin Ovarian Cancer Study (TOCS I and TOCS II,
validation stage). The characteristics of these ovarian
cancer cases are shown in Table 1. Among all the ovarian
cancer patients, 76.9% were of serous EOC, and 75.3% had
an advanced stage. The mean age (±standard deviation,
SD) at diagnosis was 54.2 (±10.7) years, and age and
clinical stage were strongly associated with survival (both
P < 0.0001). The median survival time (MST) was 153 and
55.9 months for patients with an early and advanced
disease, respectively.
In the discovery stage of 1346 ovarian cancer cases, we

performed single-marker association tests across
6,577,217 SNPs by Cox proportional hazards regression
analysis in an additive genetic model, with adjustment
for the top three principal components of population
stratification in genotyping data. The discovery GWAS
yielded 78 SNPs that were associated with OS with P ≤
1.0 × 10−5. After LD filtering (r2 < 0.2) and grouping

these SNPs into intervals separated by gaps of at least
250 kb, we selected 31 independent SNPs with the lowest
P within each interval for further replication (Fig. 1a). In
the replication stage of 784 ovarian cancer patients, two
independent variants, rs7631664 (P= 1.23 × 10−4) and
rs142897723 (P= 0.054) were replicated at P < 0.1 with
the same estimated effect direction as those in the dis-
covery. In the joint analysis, only rs7631664 (minor allele
frequency, 0.15) met the conventional genome-wide
significance threshold of P= 5 × 10−8, with hazard ratios
(HRs) of 1.60 (95% CI: 1.32–1.94) in the discovery stage,
1.56 (1.24–1.95) in the replication stage, and 1.58
(1.37–1.83) in the joint analysis (Fig. 1b and Supple-
mentary Table S1). To assess the probability of the
variant being a false positive, we used a Bayesian false
discovery probability (BFDP) test24 based on a prior
P value set to 0.0001 and an upper likely HR of 1.5. We
uncovered rs7631664 and its linked variants on chro-
mosome 3p26.1 with a cut-off value of BFDP < 0.80, as
shown in Supplementary Data S1.
Kaplan–Meier plots further illustrated the association of

rs7631664 genotypes with OS (Fig. 1c). The MST
decreased by 33 months and 48 months for patients
heterozygous and homozygous for the minor rs7631664 G
allele, respectively, compared with patients homozygous
for the major A allele. To assess additional independent
signals at 3p26.1, we performed the analysis by con-
ditioning on the lead SNP rs7631664 but did not observe
any additional signal in this locus, when rs7631664 was
adjusted for in the model (Supplementary Fig. S2).
Considering clinical features are strong factors for sur-

vival, we controlled for age and tumor stage in the Cox
regression model. The association between rs7631664 and
OS remained statistically significant in the adjusted model
(Pcombined= 1.62 × 10−8, Table 2). We further evaluated
associations for the lead SNP rs7631664 in stratification
analyses by diagnostic age, clinical stage, and histo-
pathologic subtype. The strongest association between
rs7631664 and OS was observed among younger patients
(age < 55 years, HR= 1.75 and 95% CI: 1.40–2.18) and
those with clear cell carcinoma (HR= 3.29, 95% CI:
1.21–8.94). However, we found no evidence for an inter-
action or heterogeneity after stratifying the analyses for
rs7631664 by age, stage, or histology (all P > 0.05) (Sup-
plementary Table S2). We also evaluated the associations
of SNPs in GWAS with the survival of high-grade serous
ovarian cancer (HGSOC) only. Although none of the
SNPs reached genome-wide significance in the combined
dataset, the SNP rs7631664 and its linked variants
remained among the top hits given the reduced sample
size (Supplementary Data S2).
Because rs7631664 was newly identified in the present

study, we performed an independent validation consist-
ing of an additional 304 ovarian cancer patients using the
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TaqMan genotyping platform (Supplementary Table S3).
Compared with patients with the rs7631664 A allele,
patients with the G allele had a significantly higher
mortality risk (adjusted HR= 1.79, 95% CI: 1.07–3.00,
P= 0.027).

Identification and validation of candidate causal variant
We took three complement approaches to identify the

likely causal variant at 3p26.1 for ovarian cancer survival.
First, we applied statistical fine-mapping on all GWAS
summary statistics at the linkage disequilibrium (LD)
block represented by the proxy SNP rs7631664. By
interrogating the ovary-specific functional annotations in
the PAINTOR annotation-based fine-mapping analysis25,
we identified a 95%-credible set (see Materials and
methods) consistent of five likely causal variants, includ-
ing four highly linked (r2 > 0.9) variants (i.e., rs7631664,
rs6781893, rs3804994, and rs3804995) and a variant
rs9311399 having r2= 0.7 with the proxy SNP (Supple-
mentary Table S4). All the five variants are located in the
intron regions of the ITPR1 gene, not close to the splice
donor/acceptor sites, and thus, they do not impact
protein-coding or splicing; rather, they may exert gene
regulatory functions through altering chromatin structure
and/or operating the activity of cis-regulatory elements.
Among the five linked variants, rs9311399 coincides with

the peaks of three epigenomic marks, including a DNase I
hypersensitivity site and two histone modification
enhancer marks (H3K27ac and H3K4me1) in normal
ovarian tissue (Fig. 2a and Supplementary Table S4). The
rs9311399 variant also scored the highest regulatory
potential in computational prediction modeling in Hap-
loReg26, GWAS4D27, RegulomeDB28, and regBase29

(Supplementary Data S3).
Second, to further shed light on the regulatory potential

of these variants, we subsequently employed ATAC-seq,
luciferase reporter assay, and EMSA to characterize these
variants in ovarian cancer cell lines. We hypothesized that
open chromatin in the selected ovarian cancer cell lines
was representative of open chromatin in ovarian cancer
because of transcriptional similarity (Supplementary Fig.
S3). The ATAC-seq analyses showed that only rs9311399
resided in open chromatin regions in ovarian cancer cells
(OVCA432, DOV13, and SKOV3), which was consistent
with the public epigenomic profiles around the five var-
iants in normal ovarian tissue (Fig. 2a). In the high-depth
ATAC-seq profiling on rs9311399-heterozygous DOV13
cells, we used Sasquatch30 to perform the footprint ana-
lysis and predicted damage potential of rs9311399. By the
k-mer scanning of cutting frequency and calculation of
damaging potential between the effect and non-effect
alleles, the Sasquatch identified a distinct attenuation of

Table 1 Clinical characteristics of patients in each study.

Characteristics Discovery set Replication set Combined (N= 2130)

SOCS-I (N= 337) SOCS-II (N= 1009) TOCS-I (N= 199) TOCS-II (N= 585)

Age at diagnosis, mean (SD) 54.5 (9.9) 54.7 (10.6) 54.7 (9.6) 52.9 (11.7) 54.2 (10.7)

FIGO stage, N (%)

I 13 (3.9) 80 (7.9) 32 (16.1) 142 (24.3) 267 (12.5)

II 31 (9.2) 126 (12.5) 40 (20.1) 63 (10.8) 260 (12.2)

III 258 (76.6) 676 (67.0) 103 (51.8) 350 (59.8) 1387 (65.1)

IV 35 (10.4) 127 (12.6) 24 (12.1) 30 (5.1) 216 (10.1)

Histology, N (%)

HGSOC 303 (89.9) 838 (83.1) 109 (54.8) 311 (53.2) 1561 (73.3)

LGSOC 2 (0.6) 19 (1.9) 6 (3.0) 49 (8.4) 76 (3.6)

ENOC 13 (3.9) 30 (3.0) 58 (29.1) 118 (20.2) 219 (10.3)

CCOC 7 (2.1) 56 (5.6) 5 (2.5) 15 (2.6) 83 (3.9)

MOC 8 (2.4) 29 (2.9) 10 (5.0) 38 (6.5) 85 (4.0)

Other/unknown 4 (1.2) 37 (3.7) 11 (5.5) 54 (9.2) 106 (5.0)

Mortality (%)a 48.1 16.7 48.2 27.5 27.6

Median survival time (months)b 67 95 64 77 75

TOCS Tianjin Ovarian Cancer Study, SOCS Shanghai Ovarian Cancer Study, FIGO International Federation of Gynecology and Obstetrics, HGSOC High-Grade Serous
Ovarian Cancer, LGSOC Low-Grade Serous Ovarian Cancer, ENOC ENdometrioid Ovarian Cancer, CCOC Clear Cell Ovarian Cancer, MOC Mucinous Ovarian Cancer.
aPercentage of the total deaths as recorded by the last date of follow-up.
bMedian survival time was estimated from the KM survival curve.
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Fig. 1 Results of genome-wide association study of survival in ovarian cancer patients. a Manhattan plot of results of genome-wide
association analysis for survival in the discovery stage. Each point represents the negative log P value for an association with overall survival. The
horizontal blue line shows the suggestive threshold of 1 × 10−5. b Regional plot for association statistics at the 3p26.1 region. Results are shown for
SNPs in the region 500 kb up- or downstream of the leading SNP rs7631664. Each dot represents the negative log P value for the association statistics.
The top associated SNP is colored in purple (circle in the discovery stage and diamonds in the combined stages) and the remaining SNPs are colored
according to linkage disequilibrium values (r2) with the top SNP in the discovery stage. c Kaplan–Meier estimates of the overall survival time for
ovarian cancer patients stratified by genotypes of rs7631664. The left, middle, and right represent the discovery cohort from SOCS, replication cohort
from TOCS, and combined cohort, respectively. All P < 0.001 for the log-rank test.

Table 2 HRs and MSTs by rs7631664 genotypes in the discovery, replication, and combined GWAS samplesa.

Genotypes N (%) MST HR (95% CI)b P HR (95% CI)c P

Discoveryd 1.60 (1.32–1.94) 1.77 × 10−6 1.59 (1.31–1.93) 2.54 × 10−6

AA 962 (71.5) 88

AG 354 (26.3) 53

GG 29 (2.2) 46

Replication 1.56 (1.24–1.95) 1.23 × 10−4 1.45 (1.15–1.82) 1.45 × 10−3

AA 540 (68.9) 78

AG 224 (28.6) 53

GG 20 (2.6) 19

Combined 1.58 (1.36–1.83) 8.90 × 10−10 1.53 (1.32–1.78) 1.62 × 10−8

AA 1502 (70.5) 86

AG 578 (27.1) 53

GG 49 (2.3) 38

HR hazard ratio, MST median survival time (months).
aGenotypes of rs7631664 were extracted from directly genotyping data.
bHR (95% CI). HR and P value was calculated using multivariable-adjusted Cox regression under a log-additive genetic model, adjusting for the top three principal
components of population stratification.
cCox regression model was further adjusted by age and clinical stage.
dOne patient with missing genotype of rs7631664 in SOCS-1.
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TF footprint for the rs9311399 A-to-C substitution,
implying that the variant could affect TF occupancy in the
nucleosome-free region (Fig. 2b).
We then cloned DNA sequences with the effect or

non-effect allele of five corresponding credible SNPs and
inserted them individually into a luciferase reporter
vector with a pGL3-promoter. Upon transfection of
these constructs into OVCA432 or SKOV3 cells, two
variants (i.e., rs9311399 and rs7631664) showed a sig-
nificant difference in the enhancer activities between
effect and non-effect alleles (Fig. 2c and Supplementary
Fig. S4). Cells with the effect alleles, rs9311399-A and
rs7631664-G, had significantly higher luciferase expres-
sion levels, compared with those with non-effect alleles
(P < 0.05). We next performed EMSAs to evaluate

differences in protein binding between the effect and
non-effect alleles. The results revealed distinct allele-
specific protein binding for rs9311399 and rs6781893
(Fig. 2d and Supplementary Fig. S4).
The third approach we took is the expression quanti-

tative trait locus (eQTL) analysis. Through querying
publicly available eQTL resources, such as GTEx portal31

and QTLbase32, we did not observe any significant eQTL
evidence in the normal/malignant ovary tissues, except for
some weak signals in other tissues (Supplementary Data
S4). To ascertain the potential genetic effects of credible
variants on gene expression at the phenotypically relevant
ovarian tumor tissues, we performed a comprehensive
eQTL mapping analysis by using data from 272 TCGA
ovarian cancer samples and 112 Chinese ovarian tumor

Fig. 2 Functional annotations and prioritization of associated SNPs at 3p26.1 region. a Regional plot of association signals in the combined
stages and annotations with ovary-specific epigenomics data, including DNase-Seq, H3K27ac, and H3K4me1 histone modification ChIP-seq profiles
for primary ovary tissue (data from Roadmap), and ATAC-seq profiles from three ovarian cancer cell lines (OVCA432, DOV13, and SKOV3). The region
of rs9311399 overlaps with peaks of H3K27ac, H3K4me1, and DNase I hypersensitivity sites (DHSs) measured by DNase-Seq and ATAC-seq in ovary
tissues/cells. b TF footprint analysis using ATAC-seq. Footprint analysis showed that the rs9311399 associated sequences could affect the TF footprint.
The average profiles estimated by Sasquatch software showed the highest-scoring k-mer pair (blue= reference, red= variant). The k-mers were two
sequences showing the biggest difference of protein footprint with and without the investigated variant. The number represented times that k-mer
within open chromatin sites (indicated by #). c Luciferase reporter assay using vectors containing rs9311399 in OVCA432 cells. Luciferase signals were
normalized to Renilla signals (n= 3). Luciferase reporter assay showed the effect allele A fragment had a higher activity, compared with the non-
effect allele C fragment. d EMSA assay showed rs9311399-A caused enhanced protein binding relative to rs9311399-C using synthetic allele-specific
probes and nuclear extracts from SKOV3 cells. The rs9311399-C allele was associated with a reduction of 20% in the intensity of the shifted protein
band compared to the A allele. The competitor was the unlabeled probe with the corresponding genotype. Statistical comparisons of relative
luciferase activity were undertaken using Student’s t tests. Data are shown as means ± sd with *P < 0.05, ***P < 0.001.
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samples from the Tianjin cohort. In a linear regression
model with adjustment for confounding effects from
DNA copy number variants (CNVs), DNA methylation,
and other clinical factors, rs9311399 was the best variant
that was significantly associated with the expression level
of a lncRNA BHLHE40-AS1 in the Chinese ovarian tumor
dataset (the minor A allele for increased expression, P=
0.002, Fig. 3a) but not in the TCGA dataset (P= 0.614,
Supplementary Fig. S5), suggesting that rs9311399 could
be a population-specific eQTL. When considering only
HGSOC in the Chinese dataset, we observed significant

signals for both three groups of rs9311399 genotype with
BHLHE40-AS1 (P= 0.005) and two groups of genotypes
with BHLHE40-AS1 (P= 0.009) by combining the rare
homozygote and heterozygote samples (Supplementary
Fig. S6). No significant eQTLs between the five credible
SNPs and other neighboring genes were identified in these
two datasets (Supplementary Fig. S5 and Data S5). In
addition, we found that a higher expression of BHLHE40-
AS1 or BHLHE40 (these two genes are transcribed on
opposite strands) was associated with a significantly
decreased OS among TCGA ovarian cancer patients with

Fig. 3 Allele-specific effect of rs9311399 on enhancer activity and protein binding. a eQTL analysis from Chinese ovarian cancer patients
showed the rs9311399 A allele was significantly associated with high expression of BHLHE40-AS1 in ovarian cancer tissues, P= 0.002 for linear
regression adjusted by several confounding factors, and outlier samples in the 1.5 interquartile range (IQR) of gene expression range (measured by
TPM) were removed. b Survival plot for patients in the TCGA dataset. The yellow line represents patients with low expression of mRNA for both
BHLHE40 and BHLHE40-AS1 genes, while the blue line indicates those with high expression of at least one of these two genes. P= 0.034 for the log-
rank test. c Silver staining of rs9311399 A/C DNA pulldown proteins and mass spectrometric analysis of rs9311399-A specific binding proteins. DNA
pulldown of nuclear protein extract from SKOV3 cells with biotin-labeled rs9311399-A and rs9311399-C. The eluates were resolved on SDS-PAGE and
silver-stained. The two differential bands that co-precipitated with rs9311399-A indicated by the black and red arrow were cut from the gel and
followed by mass spectrometric analysis. Detailed results from the mass spectrometric analysis are shown in Supplementary Data S4. d Motif
scanning using ATAC-seq identified HOXB4 and HOXB8 could be altered by rs9311399. e The rs9311399-A probe brought down more HOXB4 or
HOXB8 proteins, compared with the rs9311399-C probe. DNA pulldown followed by immunoblotting with antibodies against the indicated proteins.
For quantification, the intensity of HOXB4 or HOXB8 that co-precipitated with rs9311399-C was set at 1.00.
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a follow-up time >60 months (P= 0.034, Fig. 3b). How-
ever, neither BHLHE40-AS1 nor BHLHE40 was indepen-
dently associated with OS in all ovarian cancer patients
from the TCGA dataset (Supplementary Fig. S7).
Considering the results from fine-mapping, functional

annotations, primary experiment validations, and eQTL
analysis, rs9311399 emerged as a top candidate causal
variant for further downstream functional investigations.

Functional investigations of the top candidate causal
variant rs9311399
The above-mentioned studies showed that rs9311399

was located in an active chromatin region and may reg-
ulate the enhancer activity of its encompassing DNA
sequence. To identify potential TFs that may be affected
by the allele-specific effect of rs9311399, we first per-
formed DNA pulldown of SKOV3 nuclear protein extract
by using biotin-labeled rs9311399-A and rs9311399-C
probes. Silver staining revealed two specific bands bound
to the rs9311399-A, but not C, allele (Fig. 3c). We
sequenced the proteins isolated from the two bands that
were specifically co-precipitated with the biotin-labeled
rs9311399-A by mass spectrometry (Supplementary Fig.
S8 and Data S6). Motif scan analysis on all TFs char-
acterized by mass spectrometry identified HOXB8 and
HOXB4 as two candidate TFs that preferentially bind to
the effect A allele of rs9311399 (Fig. 3d and Supplemen-
tary Table S5).
Subsequently, we performed DNA pulldown followed

by immunoblotting (IB) with antibodies against the indi-
cated proteins. The results showed that the rs9311399-A
probe brought down HOXB4 (0.54 times) or HOXB8
(2.45 times) more than the rs9311399-C probe (Fig. 3e).
To determine the regulation of HOXB4 or HOXB8 on
BHLHE40-AS1, we used siRNA to silence the expression
of HOXB4 or HOXB8 in SKOV3 cells and found that
knockdown of HOXB8 significantly decreased BHLHE40-
AS1 expression (Supplementary Fig. S9). Besides, over-
expression of HOXB8 was significantly associated with OS
among TCGA ovarian cancer patients (P= 0.038, Sup-
plementary Fig. S10). Thus, we propose that rs9311399
could modulate the activity of cis-regulatory elements by
altering the binding affinities of HOXB4 or HOXB8.
Our eQTL analysis linked rs9311399 to the expression

of BHLHE40-AS1 that is located on the same chromo-
some albeit a 257-kb away. To investigate possible long-
range regulation through chromatin looping, we first
performed the circularized chromosome conformation
capture (4C) using the rs9311399 region as the bait.
Results from this analysis showed that the rs9311399
fragment interacted with the shared DNA region of
BHLHE40-AS1 and BHLHE40 (Fig. 4a and Supplementary
Fig. S11). Virtual 4C analysis of public data on a low-
resolution ovary tissue Hi–C showed a similar result

(Supplementary Fig. S12). To further validate this inter-
action and its likely dependence on rs9311399, we per-
formed an additional allele-specific chromatin
conformation capture assay (3C) on the rs9311399-
heterozygous DOV13 cells. The 3C experiment demon-
strated a distinct physical interaction between the SNP
region and the shared promoter of BHLHE40-AS1 and
BHLHE40 (Fig. 4b), consistent with the 4C results.
Notably, the effect A allele of rs9311399 had a preference
in 3C ligation products, suggesting that this interaction
was allele-specific (Fig. 4c).

The phenotypic impact from deletion of the rs9311399-
associated enhancer
To investigate the molecular processes and cellular

phenotypes underlying the causal variant, we used the
CRISPR–Cas9 system to knock out a 150-bp intronic
enhancer fragment (non-overlapping with splice ele-
ments) that only contained rs9311399 common variant in
OVCA432 cells (Fig. 4d and Supplementary Fig. S13).
Whole-genome sequencing on wild-type (WT) and an
rs9311399 knockout (KO) clone showed no sequence
difference and copy number change at both KO locus and
potential off-target sites (Supplementary Fig. S14). The
quantitative real-time polymerase chain reaction analysis
showed that expression levels of both BHLHE40-AS1 and
BHLHE40 were significantly decreased after the
rs9311399 KO (Fig. 4e), supporting the results from 4C
and 3C analyses. To further investigate downstream bio-
logical functions of the rs9311399-associated enhancer,
we performed RNA-seq in WT and rs9311399 KO cells.
Of the 2,940 differentially expressed genes in three KO
clones versus four WT clones (adjusted P < 0.05 and |
log2foldchange| > 1), 1,430 (48.6%) genes were upregu-
lated, and 1510 (51.4%) were downregulated, suggesting a
global effect of the rs9311399-associated enhancer on
gene expression (Fig. 5a and Supplementary Fig. S15).
Notably, some potential tumor suppressor genes asso-
ciated with tumor growth, such as TP7333, were upregu-
lated in the KO cells, while some likely oncogenes, such as
ITGA434, were downregulated. Additional pathway
enrichment analysis showed that the differentially regu-
lated genes were related to steroid biosynthesis, cell
adhesion, and MAPK signaling pathway in the KEGG
database (Fig. 5b) as well as several Notch signaling and
RET signaling pathways in the Reactome database (Fig.
5c). The colony formation assay showed that tumor
growth capacity was significantly decreased in the KO
cells (Fig. 5d, e), while overexpression of BHLHE40-AS1
slightly increased the colony formation ability of KO cells
(Supplementary Fig. S16). Moreover, the knockdown of
BHLHE40-AS1 in both OVAC432 and SKOV3 cells also
showed the reduction of cell growth (Fig. 5f). Depletion of
BHLHE40-AS1 caused similar differential expression
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changes as in KO cells (Supplementary Fig. S17). How-
ever, the knockdown of BHLHE40 did not significantly
affect cell growth, migration, and invasion (Supplemen-
tary Fig. S18). Taken together, the removal of rs9311399-
associated enhancer fragments led to an alteration in
cancer-related pathways and tumorigenic capacity in
ovarian cancer cells.

Discussion
In this two-stage GWAS study of 2130 ovarian cancer

patients on genetic factors for survival, we used four dif-
ferent bioinformatics and experimental approaches and
identified a hitherto unrecognized survival-associated

locus at 3p26.1, where a putative causal SNP rs9311399
is located, which was found to be significantly associated
with OS of the patients. We found that, mechanistically,
SNP rs9311399 may transcriptionally modulate the
expression of a lncRNA BHLHE40-AS1 through a long-
range chromatin interaction. Abolition of this SNP site by
chromosomal editing resulted in marked phenotypic
alteration. Thus, our results posit that the 3p26.1 region is
a critical site regulating RNA expression of genes to be
involved in ovarian cancer progression and survival.
The region of rs9311399 overlaps with open chromatin

and enhancer marks in both normal ovarian tissues and
cancer cells, suggesting that this variant has a biological

Fig. 4 rs9311399 physically interacts with the promoter of BHLHE40-AS1 and BHLHE40. a 4C plot and associated epigenomic annotations for
rs9311399. Using the rs9311399 region as the bait in OVCA429, 4C result indicated that the rs9311399 fragment could interact with the shared
promoter of BHLHE40-AS1 and BHLHE40. b Enrichment quantification of 3C analysis confirmed chromatin interactions between BHLHE40 promoter
and rs9311399 locus. The primer sites were marked by black dots, and the bait primer was indicated by the black arrow. c Sanger sequencing of 3C
ligation products and the rs9311399 locus from input and 3C samples. The sequence from 3C samples showed a strong allele-specific effect for
rs9311399-A. The black arrow denotes the SNP location. d A schematic diagram shows the region surrounding the rs9311399 to be deleted by the
two sgRNAs. e qRT-PCR analysis indicated mRNA levels of BHLHE40 and BHLHE40-AS1 were reduced after knockout of the rs9311399 locus among
control and KO clones. Statistical comparisons of relative gene expression were undertaken using Student’s t tests. Data are shown as means ± sd
with *P < 0.05, **P < 0.01.
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potential to regulate gene expression. The rs9311399
variant is located in the intron region of the ITPR1 gene,
which is surrounded by several other genes, including
SETMAR, EGOT, BHLHE40, BHLHE40-AS1, and ARL8B.
In a previous study, EGOT was confirmed to be associated
with a favorable prognosis and to enhance paclitaxel
sensitivity in cancer patients35, suggesting a link between
genetic variants at 3p26.1 and cancer survival.
By eQTL, chromosome conformation capture, and

CRISPR–Cas9 KO experiments, we identified a potential
target gene BHLHE40-AS1 at 3p26.1. BHLHE40-AS1 is
the head-to-head antisense of a basic helix-loop-helix
family member e40 (BHLHE40), while BHLHE40 (also
known as DEC1 or SHARP2) belongs to the basic
helix–loop–helix family that is involved in cell growth,
differentiation, apoptosis, and circadian rhythm36–39.
Several lines of evidence suggest that the lncRNA

BHLHE40-AS1 is relevant in tumorigenesis. For example,
BHLHE40-AS1 could drive breast cancer invasion and
progression in a step-wise manner from normal, non-
transformed cells to highly invasive disease40. Consistent
with these studies, our results showed that tumor for-
mation was significantly decreased in the rs9311399-
associated enhancer KO ovarian cancer cells. Meanwhile,
the knockdown of BHLHE40-AS1 effectively suppressed
tumor cell growth. However, we did not observe clear
functional changes in cell growth, migration, and invasion
after the knockdown of BHLHE40, probably due to
BHLHE40 functioning as a hypoxic responsive TF that
may only work under a hypoxia environment41. Besides
BHLHE40-AS1 and BHLHE40, the rs9311399-associated
enhancer may also regulate other multiple target genes
responsible for the observed phenotypic diversity between
KO cells and knockdown of BHLHE40-AS1. In colony
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Fig. 5 Deletion of rs9311399-associated enhancer leads to alteration in cancer-related pathways and tumorigenic capacity. a Volcano plot
of RNA-seq for differentially expressed genes between OVCA432 WT and KO cells. b, c Pathways enrichment analysis of RNA-seq differentially
expressed genes using KEGG and Reactome gene sets. d, e The representative images showed colony formation assay. Deletion of rs9311399-
associated enhancer reduced colony formation in OVCA432 WT and KO cells. f siRNA-mediated knockdown of BHLHE40-AS1 attenuates cell
proliferation in both OVCA432 and SKOV3 cells. Statistical comparisons of colony numbers or cell proliferation were undertaken using Student’s t
tests. Data are shown as mean ± sd with **P < 0.01, ***P < 0.001.
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formation assay, loss of the rs9311399-associated enhan-
cer significantly reduced tumor formation, indicating that
this locus could harbor important genes for cancer growth
and metastasis.
Intriguingly, our results uncovered that HOXB4 and

HOXB8 are bound to rs9311399, in which an enhanced
binding affinity at the effect allele was observed. Studies
have found that HOXB4 is aberrantly expressed in ovarian
cancer tissues and cell lines, compared with normal
ovaries42,43, while HOXB8 is associated with shorter
survival in several independent ovarian cancer follow-up
studies43,44. These imply that the gain of HOXB4 or
HOXB8 binding to rs9311399 may be a plausible driver
that affects ovarian cancer progression and survival.
Although our experiments showed that rs9311399 could
alter its enhancer activity through allele-specific HOXB4
or HOXB8 binding and long-range interaction with target
gene BHLHE40-AS1, the dependence of these two effects
was not yet tested in the present study. In addition, we
observed abnormalities of multiple signaling pathways in
cancer progression, when the rs9311399-associated
enhancer was knocked out. Among these oncogenic sig-
naling pathways, the mitogen-activated protein kinase
(MAPK) cascade pathway and RET signaling are critical
for human cancer cell proliferation, dissemination, and
resistance to drug therapy24,45,46. Therefore, we speculate
that other cancer patients who carry the effect allele at
3p26.1 may also have a poorer prognosis as well. This
hypothesis needs to be tested in other cancer patient
cohorts in the future.
Because the exact etiology of ovarian cancer is currently

unknown, precision prevention and treatment remain
difficult to implement. There are very few studies that
have reported genetic variants as predictors for ovarian
cancer outcome, because many host and clinical factors
may contribute to cancer patients’ survival, confounding
the effect from genetic variants. On the other hand, it is
yet not known to what extent the effects of genetic factors
may have on survival outcomes, particularly in ovarian
cancer patients. Studies have reported that BRCA2
mutations are correlated with the survival of patients with
ovarian serous carcinoma47,48. Previous studies also
showed that germline variants at 1q22, 3q13, 9p22, 10q22,
10q23, 11q13, 11p15, and 19p13 were likely to be asso-
ciated with survival outcome12,15–19, but none of these
reached genome-wide significance. By using a hypothesis-
driven pathway approach, we previously also identified a
few genetic variants in the Notch signaling pathway to be
associated with OS in ovarian cancer patients49, which
was also confirmed in the present study with a much
larger sample. Although limited studies examined the
genetic polymorphisms with ovarian cancer susceptibility
and prognosis, there is no evidence to suggest that the
3p26.1 region is associated with ovarian cancer risk. These

results suggest that the genetic contribution to ovarian
cancer prognosis may be independent of the contribution
to disease susceptibility.
In summary, we have identified 3p26.1 locus that

modulates progression in ovarian cancer cell line and thus
survival of the patients. The biological mechanisms
underlying the observed survival associations provide
strong plausible support for the germline variant
rs9311399 to be one of the causal variants, and the
uncovered long-range enhancer–promoter interaction
associated with this causal variant may lead to a better
understanding of ovarian tumor growth and progression.
Although we had adjusted for several available prognostic
factors in the present study, including diagnostic age and
clinical stage, it will be important to examine the utility of
this genetic variant in the presence of different surgical,
radiotherapy, and chemotherapy regimens in future stu-
dies with much larger patient cohorts, which may provide
the scientific basis for individualized management and
drug development in precision medicine of ovarian cancer
once further validated.

Materials and methods
Study participants and design
All the participants were ethnic Chinese, who were

newly diagnosed with histopathologically confirmed pri-
mary ovarian cancer. Patients with non-primary ovarian
tumors were excluded. To assess the association with OS,
we restricted the analysis to the patients with a definite
clinical stage and a complete follow-up. The discovery
stage included patients mostly from Shanghai (SOCS-I
and SOCS-II), who were genotyped by various platforms.
The SOCS-I study included 504 patients treated for
ovarian cancer mainly at Fudan University Cancer Center
(FUSCC) between 2009 and 201223. The last follow-up
time was December 2016. We excluded 167 patients
because of either lack of clinical stage or no definite
survival status up to the last follow-up. The SOCS-II study
included 1047 patients treated for ovarian cancer at
FUSCC between 2012 and 2015. The last follow-up time
was December 2017. We excluded 38 patients because of
either insufficient clinical data or insufficient follow-up
data. We combined summary statistics of the SOCS-I and
SOCS-II after imputation and association tests performed
separately. The replication stage included patients mostly
from Tianjin and Hebei (TOCS-I and TOCS-II), who
were also genotyped by various platforms. The TOCS-I
study included 223 patients treated for ovarian cancer at
Tianjin Medical University Cancer Institute and Hospital
(TMUCIH) between 2004 and 2012, and their char-
acteristics were described previously23. The last follow-up
date was September 2016, and we excluded 24 patients
because of either insufficient clinical or follow-up data.
The TOCS-II study included 417 patients diagnosed with
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invasive and borderline ovarian cancers at TMUCIH and
additional 394 ovarian cancer patients diagnosed at the
Fourth Hospital of Hebei Medical University between
2005 and 2014. The last follow-up date was January 2017.
We excluded 226 patients because of either missing
information on age, insufficient clinical data, insufficient
follow-up data, or failure in DNA sample quality control.
All the patients were followed up every 3 months after
treatment completion for the first 2 years, every 6 months
for the next 3 years, and annually for the following years
thereafter. We combined summary statistics of the
TOCS-I and TOCS-II after imputation and association
test performed separately.

Genotyping, imputation, and quality control
For TOCS-I and SOCS-I, we used a clean GWAS gen-

otyping dataset from our previous case–control GWAS
analysis23, in which participants were genotyped with the
Illumina HumanOmniZhongHua-8 BeadChip v-6.0 (Illu-
mina, CA, USA). Patients in SOCS-II were genotyped by
Infinium Global Screening Array (GSA) BeadChip (Illu-
mina, CA, USA). We applied extensive quality control
(QC) metrics to the raw genotyping data to filter both
unqualified samples and SNPs. We excluded SNPs from
further analysis if they (1) did not map to autosomal
chromosomes; (2) had a low call rate (< 95%) in GWAS
samples; (3) had a minor allele frequency (MAF) < 0.05;
and (4) had a significant deviation from Hardy-Weinberg
equilibrium (P < 1 × 10–5). We also removed participants
from further analysis, if they (1) had a genotyping call rate
< 95% and a heterozygosity rate > 6 SD; (2) had sex dis-
crepancies between the records and genetically inferred
data; (3) were duplicate samples or probable relatives (all
PI_HAT > 0.185); and (4) participants of divergent
ancestry. Patients in TOCS-II were genotyped by
OncoArray-500K BeadChip (Illumina, CA, USA). Details
of the genotype calling for this GWAS have been descri-
bed elsewhere13. We applied additional QC as described
above for the overall variants. GWAS data QC and
management were performed with PLINK50. No evidence
of population stratification was observed in both the
discovery set and replication set (lambda = 1.008 and
1.022, respectively).
Given different genotyping platforms were used, we did

genome-wide imputation for each GWAS dataset and
then combined all the expanded GWAS data. Specifically,
we used SHAPEIT251 and IMPUTE252 to impute untyped
SNPs by using the LD information from all samples from
the 1000 Genomes Project dataset (Phase 3 data, October
2014 released). Before imputation, we excluded a small
number of SNPs (≤ 3.6%) with adenine-thymine or
guanine-cytosine alleles to avoid strand flipping. We
performed post-imputation QC by filtering out SNPs with
a missing rate > 5%, MAF < 0.05 and info score < 0.3.

After filtering, approximately 6 million SNPs were used
for downstream analysis.
Finally, the most significant SNP was selected and

genotyped using a TaqMan genotyping platform (ABI
7900HT Real-Time PCR system, Applied Biosystems) in
an additional validation dataset consisting of 304 ovarian
cancer patients recruited from Zhejiang Cancer Hospital.
We implemented several measures in the validation assays
for QC, including (1) no template controls (NTC) were
included on every assay plate, and (2) persons who per-
formed the genotyping assays were not aware of the test
or control status of the samples.

Statistical analysis of GWAS data
The clinical stage was categorized as Stage I–IV according

to the WHO 2003 classification and International Federa-
tion of Gynecology and Obstetrics (FIGO) staging system53.
Stage subcategories coalesced for analytic purposes into
summary stage categories yielding four-stage classifications
(e.g., Stage IA–IC were grouped as Stage I). Clinical char-
acteristics among patient cohorts were compared by the
Student’s t test for continuous variables, Chi-square, or
Fisher’s exact tests for dichotomous and categorical vari-
ables for bivariate analysis. OS time was calculated as the
number of months from the date of diagnosis until death or
the last follow-up. Follow-up was censored right on the date
of death or on the date last known alive if death did not
occur, whichever came first. We calculated the top three
eigenvectors from directly genotyped data for each patient
cohort by EIGENSOFT, which implemented the EIGEN-
STRAT algorithm54. Considering different characteristics
among patient cohorts, we performed genome-wide ana-
lyses for associations with survival using Cox regression
models for each of the TOCS-I & II and SOCS-I & II
datasets separately. For the adjustment model, we used
ProbABEL from the GenABEL suite of programs55, with
adjustment for the top three eigenvectors in the primary
Cox regression model. Given the known strong associations
between age, clinical stage, and prognosis, we further
adjusted for age (continuous) and FIGO stage (I–IV). Sur-
vival distributions for the most survival-associated variants
were compared using the Kaplan–Meier method and
log-rank test.
For the combined analysis, we used the meta-analysis

summary statistics using METAL software56 weighted by
β coefficients and the inverse of the corresponding stan-
dard errors (IVW). Heterogeneity of allele frequencies
among the patient cohorts was assessed by I2 statistic and
tested by Cochran’s Q test. Statistical significance was
assessed at the genome-wide level (P= 5 × 10−8). For
conditional analysis, we converted genotypes of the lead
SNP, to the minor-allele dosage format and did Cox
regression analysis with adjustment for the dosage of the
SNP and top three principle components. Summary
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statistics were derived from a meta-analysis using the
IVW method as described above.
We performed stratification analyses by age, stage, and

histological type in all ovarian cancer cases. Heterogeneity
was assessed by use of Cochran’s Q-test and I2 statistics.
The test for the statistical interaction between a SNP and
a prognostic factor (effect beyond additive) was performed
by the inclusion of a SNP-prognostic factor cross-product
term in the Cox model and assessed by use of a likelihood
ratio test with 1 df.

Annotation-based fine-mapping
We annotated SNPs in the survival-associated locus

using VEP57 and tissue/cell type-specific epigenomes data
from Roadmap Epigenomics Project (ovary primary tissue,
E097)58, including chromatin accessibility and histone
modification profiles. To determine candidate causal var-
iants in the locus, we performed an annotation-based fine-
mapping analysis using PAINTOR’s framework25 on all
GWAS summary statistics (the adjusted model) at the
SNP-located LD block. We first partitioned all variants into
relatively independent LD blocks estimated by LDetect59.
The LD information of variants in the blocks containing
signals with P-value ≤ 5 × 10−5 were extracted from EAS
populations of the 1000 Genomes Project60, while the
epigenomic annotations in ovary primary tissue E097 were
obtained from Roadmap58. We further ranked the output
posterior probabilities from the largest to the smallest and
determined the 95% credible set by taking the cumulative
sum of descending posterior probabilities until it was at
least 0.95.

Functional variants prioritization
To prioritize the regulatory potential of fine-mapped

credible SNPs in the desired locus, we first inspected
functional evidence using HaploReg26 and GWAS4D27.
Then, we retrieved prediction scores for credible SNPs
using RegulomeDB28 and regBase29. For tissue/cell type-
specific prediction, we calculated regulatory probability by
cepip61 and GWAS4D on the matched ovary primary
tissue. Finally, we prioritized the most likely functional
SNPs supported by these sources of evidence.

Ovarian tumor tissues, genotyping, RNA sequencing, and
methylation profiling
Human ovarian malignant tissues were acquired from

the cancer biobank of TMUCIH. We used 112 Chinese
ovarian cancer patients with available tumor tissues in the
tissue-based analysis. These patients included 67 serous
cystadenocarcinoma, 33 endometrioid adenocarcinoma,
and 12 other epithelial carcinomas. Ovarian tumor DNA
of each sample was extracted and genotyped by Illumina
GSA v-1 BeadChip. Total RNA of ovarian tumor tissue
was extracted by the standard Trizol method. We used

2-µg RNA for RNA sequencing according to the manu-
facturer’s instructions. In brief, mRNA was purified from
total RNA using poly-T oligo-attached magnetic beads.
Sequencing libraries were generated using NEBNext®

UltraTM RNA Library Prep Kit for Illumina® (NEB, USA)
following the manufacturer’s recommendations. Sequen-
cing was conducted with the Illumina NovaSeq 6000
platform and 150-bp paired-end reads were generated.
For methylation profiling, the EZ-96 DNA Methylation-
Gold kit (Zymo Research) was used for treating 500 ng of
tumor DNA from each sample with sodium bisulfite.
Bisulfite-treated DNA was assessed using the Illumina
Infinium HumanMethylationEPIC (850 K) BeadChip and
scanned by the Illumina iScan System.
Germline genotypes were processed and imputed fol-

lowing the same procedures as mentioned above. DNA
CNVs were calculated by the Illumina cnvPartition algo-
rithm. We filtered out CNV regions that have low con-
fidence values (<35). Clean RNA-seq reads were obtained by
removing reads containing adapter, reads containing ploy-N
and low-quality reads from raw data. Index of the reference
genome (hg19) was built using STAR62 and paired-end
clean reads were aligned to the reference genome using
STAR. We used RSEM63 to count the reads numbers
mapped to each gene. Raw methylation signal intensities
were processed using the bigmelon64 package, and the data
were then normalized using the wateRmelon65 package.

eQTL analysis
We performed regional eQTL analyses for all credible

SNPs and expression levels of genes within the 1-MB
region spanning lead SNP for the above-mentioned 112
Chinese tumor samples and 272 ovarian tumors from the
Cancer Genome Atlas (TCGA). We used Transcripts Per
Kilobase Million (TPM) from RSEM to quantify gene
expression levels. We calculated the average of the seg-
mented copy-number scores of gene coding regions as the
gene-based somatic copy-number measures and the
average methylation beta value of the probes that fall
within gene coding regions as gene-based methylation
measures. After removing outliers in the 1.5 interquartile
range (IQR) of gene expression range (measured by
TPM), we regressed for the effects of CNV, methylation,
age, clinical stage, and grade. Associations between SNP
genotypes and mRNA expression levels were tested by
linear regression66 using the following model: y= SNP+
CNV+meth+ age+ stage+ grade (grade ∈ {‘low’,
‘medium’, ‘high’ }, stage∈ {‘HGSOC’, ‘ENOC’, ‘clearcell’,
‘mix’, ‘MOC’, ‘LGSOC’}).

Cell lines and cell culture
The human SKOV3 cell line was obtained from the

American Type Culture Collection (ATCC). The human
OVCA429, OVCA432, and DOV13 cell lines were gifts
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from Dr. Wei Zhang of The University of Texas MD
Anderson Cancer Center in Houston, Texas, and pre-
served in our lab. SKOV3 and DOV13 were cultured in a
complete RPMI 1640 medium (RPMI 1640 with 10%
FBS). OVCA429 and OVCA432 were cultured in a com-
plete DMEM medium (DMEM with 10% FBS). All cells
were incubated at 37 °C with 5% CO2.

ATAC-seq analysis
The ATAC-Seq library was built with TruePrep DNA

Library Prep Kit V2 (Vazyme) as previously described67.
For ATAC-seq, 5 × 104 cells (OVCA432, DOV13, and
SKOV3) were harvested and washed by PBS. Cells were
re-suspended in the lysis buffer (10 mM Tris-HCl pH 7.5,
10 mM NaCl2, 3 mM MgCl2, 0.05% NP40). The lysates
were centrifuged for 3 min at 1500 G, 4 °C. The super-
natants were carefully removed. Transposition reaction
mix, which consisted of 10 μl of 5 × TTBL, 5 μl of TTE
Mix V50 and 35 μl of ddH2O, was used to re-suspend
nuclei pellet and incubated at 37 °C for 30min. The
transposed DNA was purified by VAHTS DNA Clean
Beads (Vazyme) and PCR-amplified with the following
mixture: 24 μl of purified DNA, 10 μl of 5 × TAB, 5 μl of
PPM, 5 μl of N5 primer, 5 μl of N7 primer, and 1 μl of
TAE. The thermal cycle was as follows: 72 °C for 3 min;
98 °C for 30 s; and thermocycling at 98 °C for 15 s, 60 °C
for 30 s and 72 °C for 3 min; following by 72 °C 5min. The
amplified ATAC-Seq library was purified with VAHTS
DNA Clean Beads and eluted with 30 μl ddH2O.
Sequencing was conducted using the Illumina NovaSeq

6000 platform and 150 bp paired-end reads were gener-
ated. Clean reads were obtained by removing reads con-
taining adapter, reads containing ploy-N and low-quality
reads from raw data. We used MACS68 to generate profile
signals and call peaks.

Motif scanning and TF footprint analysis
For potential SNP-associated TFs appeared in mass

spectrometry assay, we collected their motifs from JAS-
PAR69 and CIS-BP70 database. We took 30 bp of the sur-
rounding sequence and constructed the mutated sequences
for alternative alleles. We scanned the paired sequences
using PWMSCAN71 and measured the score of binding
affinity change using the log-odds of probabilities. For TF
footprint analysis, we generated high-depth ATAC-seq for
DOV13 (rs9311399 heterozygote cell line) and used Sas-
quatch30 to estimate and visualize the effects of rs9311399
on TF binding.

Luciferase reporter assay
DNA fragments containing SNPs of the candidate

causal variants were amplified from OVCA432 DNA. The

amplified DNA fragments were inserted into the SacI and
Nhe I sites of the pGL3-promoter vector. Different alleles
were introduced into the vector by the PCR-based
mutagenesis method. OVCA432 or SKOV3 cells were
transiently co-transfected with the pGL3-promoter con-
taining SNP with pRL-CMV Renilla luciferase reporter as
a reference. The cells were harvested 24–48 h after
transfection, and luciferase activities were measured by a
Dual-Glo Assay System (Promega).

Electrophoretic mobility shift assay (EMSA)
EMSA assays were performed using the LightShift

Chemiluminescent EMSA Kit (Thermo Fisher Scientific).
Nuclear proteins from SKOV3 cells were extracted using
NE-PER Nuclear and Cytoplasmic Extraction Reagents
(Thermo Fisher Scientific). 5′-biotinylated double-
stranded DNA oligonucleotides corresponding to differ-
ent alleles of SNPs were generated by denaturing equal
amounts of complementary oligonucleotides for 15 min at
95 °C, followed by cooling to room temperature. The
probe was incubated with 4 μg of nuclear proteins in
10mM Tris pH 7.5, 55 mM KCl, 1 mM DTT, 5% glycerol,
0.05% NP40, 2.5 mM MgCl2, 0.25 mM EDTA, 1 µg of poly
(dI–dC), at 4 °C for 1 h. For competition assays, a 200-fold
amount of unlabeled probe was added in the binding
mixture reactions. Reactions were then resolved on a 6%
non-denatured polyacrylamide gel electrophoresis at
100 V for 90min, followed by transferring to a nylon
membrane. The transferred DNA was cross-linked to the
membrane for 15min under 254 nm UV-light. Biotin-
labeled probes were detected using a luminol/enhancer
solution and a stable peroxide solution according to the
manufacturer’s protocol.

DNA pulldown assay
5′-biotinylated double-stranded DNA oligonucleotides

were mixed with SKOV3 nuclear extract in binding buffer
containing 10mM Tris pH 7.5, 55 mM KCl, 1 mM DTT,
5% glycerol, 0.05% NP-40, 2.5 mM MgCl2, 0.25 mM
EDTA. Reactions were incubated at 4 °C for 6 h, followed
by adding the streptavidin sepharose beads (GE) into the
mixture for 2 h to bind the oligonucleotides–protein
complex. The DNA-coupled beads were washed three
times with the binding buffer. Beads were resuspended in
a 20 μl sodium dodecyl sulfate (SDS) sample buffer.
Finally, proteins were separated on a 12% SDS poly-
acrylamide gel followed by silver staining or IB analysis
with the indicated antibodies.

Mass spectrometry assay
The interested bands were excised from the gel, fol-

lowed by in-gel tryptic digestion. The resulting peptides
were loaded onto a homemade reversed-phase analytical
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column on an EASY-nLC 1000 UPLC system followed by
tandem mass spectrometry (MS/MS) in Q ExactiveTM

Plus (Thermo). The electrospray voltage 2.0 kV was
applied. The m/z scan range was between 350 and 1800
for a full scan, and intact peptides were detected in the
Orbitrap at a resolution of 70,000. All MS/MS data were
processed using Proteome Discoverer 1.3. Trypsin was
specified as a cleavage enzyme allowing up to 2 missing
cleavages. A mass error was set to 10 ppm for precursor
ions and 0.02 Da for fragment ions. Carbamidomethyl on
Cys was specified as fixed modification and oxidation on
Met was specified as variable modification. Peptide con-
fidence was set at high, and peptide ion score was set >20.

Circularized chromosome conformation capture (4C) assay
The 4C experiment was performed by setting rs9311399

as bait72. We used HindIII as the first restriction enzyme
and NlaIII as the second restriction enzyme. Briefly,
OVCA429 cells were counted carefully, and 1 × 107 cells
were used for the 4C experiments. After cross-linking
with 2% formaldehyde, cells were lysed with cold lysis
buffer (50 mM Tris-HCl pH 7.5, 150mM NaCl, 5 mM
EDTA, 0.5% NP-40, 1% Triton X-100 and 1× complete
protease inhibitors [Roche]), digested with HindIII and
ligated with T4 DNA ligase. Then, the samples were
second digested with NlaIII and ligated with T4 DNA
ligase. The ligated samples were purified using the QIA-
quick PCR Purification Kit (QIAGEN). The 4C-seq frag-
ments were generated by PCR using a high-fidelity DNA
polymerase (Vazyme), and then the DNA library was
constructed by Illumina library preparation Kit (Vazyme,
ND-607). The 4C-seq libraries were sequenced on the
HiSeq X Ten Platform. We used 4C seqpipe73 to analyze
and visualize the interaction spectrum. We also used the
virtual 4C function in the 3D Genome Browser to confirm
identified long-rang interaction74.

Chromatin conformation capture (3C) assay
The 3C experiment was performed according to desired

DNA fragments in 4C results75. DOV13 cells (1 × 106)
were cross-linked with formaldehyde and lysed by 50mM
Tris pH 7.5, 150mM NaCl, 5 mM EDTA, 0.5% NP-40, 1%
Triton X-100. Nuclei were digested with 200U HindIII
(NEB) at 37 °C overnight. The DNA was ligated using T4
ligase (NEB) overnight at 37 °C. Subsequently, DNA was
purified by phenol-chloroform. Control template gener-
ated by a mixture of equal amounts of different PCR
products was digested with HindIII and followed by
ligation and purification. The PCR products were con-
firmed by Sanger sequencing. Allele specificity for 3C was
determined by the signal at rs9311399. We quantified 3C
and control PCR products and estimated cross-linking
frequencies between the anchor and test fragments.

Generation of rs9311399-associated enhancer KO cells
The rs9311399 KO cells were generated from

OVCA432 cells with the CRISPR-Cas9 System (Cas9-
2hitKO) according to the manufacturer’s instructions
(HedgehogBio, Shanghai, China). Target guide RNAs
(target 1, 5′-CACCGAATTGCATTCGGTTTCTATC-3′;
target2, 5′-CACCGATAGGCACACATGAAGCGGA-3′)
were predicted by CRISPOR76. OVC432 cells (6 × 105)
were transfected with 2 μg of a CRISPR–Cas9 vector
carrying two guide RNA-expressing cassettes and empty
vector, respectively, in 6-well tissue culture plates for
2 days. The cells were transferred to 10-cm dishes and
cultured with a medium containing puromycin (1 μg/ml)
for a week. The culture medium was changed every
2–3 days. Individual cell colonies were isolated by limiting
dilution. After 2 weeks, the cells were observed under a
microscope. Cells from those wells containing only one
cell colony were selected and allowed to expand from a
96-well plate to a 12-well plate. Genomic DNA of the cells
was extracted. KO efficiency was assessed by PCR and
verified by genomic DNA sequencing. To determine the
genotypes of KO cells, the rs9311399 region was amplified
from OVCA432 KO DNA, and DNA fragment was
inserted into a pMD20-T vector (Takara) by TA cloning.
After transformation into DH-5α competent cells, DH-5α
colonies were selected to determine the genotypes by
Sanger sequencing. Independent clones with both wild-
type genotype (control) and rs9311399-associated
enhancer homozygous deletion were used to perform
RNA-seq and phenotype experiments.

CRISPR off-target analysis
We used GATK v4.1.377 for SNV/Indels calling and

CNVkit78 for copy number variation calling. We com-
pared SNV/Indels in ±500 bp around rs9311399 and ±
20 bp around potential off-target sites predicted by
CRISPOR.

Differential expression and pathway analysis
RNA-seq was performed as described above on four

wild-type clones and three rs9311399 KO OVCA432
clones, and each clone was sequenced with two technical
replicates. Differential expression analysis of RNA-seq
data was performed using the DESeq279. Genes with an
adjusted P < 0.05 and |log2foldchange| > 1 found by
DESeq2 were assigned as differentially expressed genes.
Gene-set enrichment analyses for KEGG80 and Reac-
tome81 pathways were performed by WebGestalt82.

Colony formation assay
OVCA432 control cells and OVCA432 KO cells were

detached with 0.25% Trypsin–EDTA, centrifuged, and
re-suspended in DMEM with 10% FBS and counted.
About 1 × 103 cells (OVCA432 and OVCA432 KO) were
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seeded into 6-well plates in triplicate. Cells were cul-
tured for 10 days at 37 °C in 5% CO2. Colonies were
washed with PBS three times and fixed with cold methyl
alcohol for 10 min. Colonies were stained with 0.01%
crystal violet for 10 min. The number of colonies con-
taining more than 50 cells was counted. All the experi-
ments were repeated twice.

Lentivirus transduction
The lentiviruses, produced by GenePharma, were used

to transduce OVCA432 KO cells. Stable cells expressing
BHLHE40-AS1 and control cells were selected by pur-
omycin for at least 1 week.

siRNA knockdown
All siRNAs were synthesized by GenePharma. siRNAs

were transfected by Lipofectamine RNAiMAX (Thermo
Fisher Scientific). The final concentration of the siRNA
was 50 nM, and cells were harvested 24 h after transfec-
tion for the proliferation assay.

Proliferation assay
Transfected OVCA432 and SKOV3 cells were plated

in 12-well plates in triplicate. At the indicated time, cells
were washed with PBS to remove the dead cells. Cells of
each well were trypsinized, and cell number was
determined by cell counting using a hemocytometer.
Relative cell growth was normalized to the cell number
of Day 1.
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