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Abstract. Members of the ten‑eleven translocation (TET) protein 
family of which three mammalian TET proteins have been 
discovered so far, catalyze the sequential oxidation of 5‑meth‑
ylcytosine to 5‑hydroxymethylcytosine, 5‑formylcytosine, and 
5‑carboxylcytosine which serve an important role in embry‑
onic development and tumor progression. O‑GlcNAcylation 
(O‑linked β‑N‑acetylglucosaminylation) is a reversible 
post‑translational modification known to serve important roles 
in tumorigenesis and metastasis especially in hematopoietic 
malignancies such as myelodysplastic syndromes, chronic 
myelomonocytic leukemia and acute myeloid leukemia. 
O‑GlcNAcylation activity requires only two enzymes: 
O‑GlcNAc transferase (OGT) and O‑GlcNAcase (OGA). OGT 
catalyzes attachment of GlcNAc sugar to serine, threonine 
and cytosine residues in proteins, while OGA hydrolyzes 
O‑GlcNAc attached to proteins. Numerous recent studies have 

demonstrated that TETs can be O‑GlcNAcylated by OGT, with 
consequent alteration of TET activity and stability. The present 
review focuses on the cellular, biological and biochemical 
functions of TET and its O‑GlcNAcylated form and proposes a 
model of the role of TET/OGT complex in regulation of target 
proteins during cancer development. In addition, the present 
review provides directions for future research in this area.
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1. Introduction

Methylation of cytosines, a common epigenetic modification 
in eukaryotic cells, serves an important role in a variety of 
genetic processes, including gene stability and expression, 
chromosome accessibility and inactivation, and nucleosome 
positioning (1). 5‑methylcytosine (5mC) is produced by DNA 
methyltransferase activity and is located in CG dinucleotides 
in DNA (2). Ten‑eleven translocation (TET) family proteins 
participate in oxidation reactions of 5mC to 5‑hydroxy‑
methylcytosine, 5‑formylcytosine, and 5‑carboxylcytosine 
(5hmC, 5fC, 5caC), which further decrease DNA methylation 
patterns (2).

Post‑translational modifications (PTMs) of proteins 
facilitate immediate responses of cells to intracellular or 
extracellular environmental stimuli by modifying func‑
tions of targeted proteins (3). PTMs are involved in various 
pathological processes such as proliferation, apoptosis and 
migration in tumors (3). O‑linked β‑N‑acetylglucosaminylation 
(O‑GlcNAcylation) is an atypical, dynamic and reversible 
PTM consisting of addition of N‑acetyl‑D‑glucosamine, a 
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unique non‑elongated monosaccharide on proteins (4). Unlike 
classical glycosylation present in the endoplasmic reticulum 
and Golgi apparatus, O‑GlcNAcylation takes place in the cyto‑
plasm, nucleus and mitochondria and is implicated in a wide 
range of effects on cellular function and signaling in metabolic 
diseases and cancer (5). Compared to complex glycosyltrans‑
ferase and glycosidase system of classical glycosylation, 
O‑GlcNAcylation is only regulated by two enzymes: The glyco‑
syltransferase OGT (O‑GlcNAc transferase) and the glycoside 
hydrolase OGA (O‑GlcNAcase) (3). Numerous recent studies 
indicate a close connection between OGT and TET (5‑7). OGT 
can catalyze TET to form O‑GlcNAcylated TET and can also 
interact with TET to form a complex with the ability to further 
modify chromatin which participated in regulating embryonic 
development and cancer progression (6,7). The present review 
focuses on the functional roles of TET family proteins and 
O‑GlcNAcylation in cancer progression, with focus on the 
connection between TET proteins and OGT to clarify the 
effects of these proteins on cancer development.

2. TET family proteins

Epigenetic modifications, which include DNA methylation 
and histone modifications can alter gene expression but 
cannot change the primary sequence of DNA (8) Epigenetic 
modifications has been proven to be widely involved in tumor 
development (9‑11). DNA hypermethylation is observed in 
myelodysplastic syndromes (MDS), acute myeloid leukemia 
(AML), colorectal cancer, hepatocellular carcinoma and 
ovarian cancer (12‑14). TET family proteins function as DNA 
hydroxymethylases in vertebrates and can catalyze conver‑
sion of 5mC to 5hmC, and subsequently to 5fC and 5caC (15) 
(Fig. 1). These three versions of oxidized methylcytosines are 
all associated with DNA demethylation (16,17).

TET proteins have a common cysteine‑rich dioxygenase 
region and C‑terminal region which binds to ferrous iron and 
α‑ketoglutarate and catalyzes an oxidation reaction which 
involves hydroxylation of 5mC to 5hmC and further to 5fC 
and 5caC (12). The three TET proteins (TET1, TET2, TET3) 
have differing N‑terminal regions (18). TET1 and TET3 
have a CXXC‑type zinc finger domain (19). TET2 has no 
CXXC DNA‑binding domain, but can interact with a CXXC 
domain protein, inhibitor of disheveled Dvl and Axin complex 
(IDAX) (18).

TET proteins are highly expressed in embryonic stem 
cells (ESCs) (20). They are essential for ESC differentiation 
during embryogenesis and help regulate homeostasis of hema‑
topoietic stem cells, mesenchymal stem celsl and progenitor 
cells (21). TET1 and TET2 are upregulated in ESCs and 
TET3 in oocytes (22). Expression of TET proteins is closely 
related to tumor malignancy (23‑25); and their expression is 
significantly lower in tumor tissues compared with normal 
tissues (24,25). TET2 mutation is often observed in hemato‑
poietic neoplasms including myelodysplastic syndromes and 
chronic myelomonocytic leukemia (26‑28). TET2 expression 
enhances self‑renewal, proliferation potential, osteoblast 
differentiation and hematopoietic supportive capacity of bone 
marrow stem cells in humans and mice (29). Li et al reported 
somatic mutation frequencies of the TET2 gene as 30% in 
MDS, 20% in myeloproliferative neoplasms, 42% in chronic 

myelomonocytic leukemia and 20% in AML (30). In breast 
cancer cells, TET2 occupies active enhancers and facilitates 
proper recruitment of estrogen receptor α, which then tran‑
scriptionally activates TET2 expression to establish a positive 
feedback loop between TET2 and estrogen signaling (31). 
TET2 also exerts tumor‑promoting effects in melanoma and 
osteosarcoma cells (32,33). TET2 expression is enhanced 
in tumor‑associated macrophages and myeloid‑derived 
suppressor cells, and TET2 deletion in myeloid cells results 
in inhibition of melanoma growth (32). TET2 can target the 
promoter of interleukin‑6 (IL‑6) to increase its expression, and 
elevated IL‑6 may promote lung cancer cell metastasis (33).

Studies on aberrant expression of the three types of TET 
proteins in various types of cancer are summarized in Table I.

3. O‑GlcNAcylation

O‑GlcNAcylation is a reversible PTM that typically targets 
proteins in the cytoplasm, cell nuclei (34), or mitochondria (35). 
It can regulate cellular processes at various levels, such as 
transcription, translation, signal transduction or cell metabo‑
lism (36). In general, proteins modified by O‑GlcNAcylation 
are phosphoproteins or parts of macromolecular complexes 
(phosphoglycerate kinase 1), transcription complexes (p53, 
c‑myc), or nucleopores (transmembrane nucleoporin Pom121, 
nucleoporin 155) (37). O‑GlcNAcylation has also been reported 
for numerous functional proteins, including epigenetic regula‑
tion factors including the TET proteins, the SIN3 transcription 
regulator family member A‑histone deacetylases and the 
Polycomb group proteins that regulate DNA methylation, 
chromatin accessibility and chromatin modification (38).

O‑GlcNAcylation often affects subcellular localization, 
stability and function of target proteins (7,39), and in some 
cases helps modulate protein phosphorylation status, protein 
stability, enzymatic activity, protein aggregation and interac‑
tions with other proteins or DNA (5,36,40). O‑GlcNAc activity 
requires two enzymes: OGT and OGA (41). OGT catalyzes 
attachment of GlcNAc to serine (Ser), threonine (Thr) and 
cysteine residues in proteins (40,42).

OGT activity is highly sensitive to the uridine diphosphate 
GlcNAc level, and is altered by variations of glucose, glutamate 
or free fatty acid levels in cells (43). OGT activity is associ‑
ated with epithelial‑mesenchymal transition (EMT), p53, Wnt 
and TGF‑β signaling pathways, inflammatory responses and 
apoptosis in cervical cancer cells (44). Knockdown of OGT in 
colon cells results in upregulation and altered glycosylation of 
E‑cadherin, an important factor in EMT progression and may 
disrupt biosynthesis of glycosphingolipids (lactosylceramide, 
gangliosides and globosides), with consequent reduction of 
gangliosides (ganglioside 3 and ganglioside 2) but increase of 
globosides (globoside 3 and globoside 4) (45). Chronic lympho‑
cytic leukemia (CLL) cells demonstrate high expression of 
O‑GlcNAcylated proteins, including p53, c‑Myc, and Akt and 
enhanced protein glycosylation alters intracellular signaling 
processes (p53 and PI3K/AKT/mTOR signaling pathways) 
in these cells (46). O‑GlcNAcylation increases downstream 
signaling of toll‑like receptors following cytokine stimulation 
in CLL cells (46). On the other hand, high baseline O‑GlcNAc 
levels inhibit responses to such stimulation, resulting in 
increased resistance to TLR agonists, chemotherapeutic agents, 
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B cell receptor crosslinking and mitogens (46). Hart et al (36) 
reported that increased O‑GlcNAcylation of Thr58 on c‑Myc 
inhibited c‑Myc activity and reduced transformation of 
non‑Hodgkin's lymphoma cells.

OGA has O‑GlcNAc hydrolase and associated enzymatic 
activity of lysine acetyltransferase (47‑49) and can therefore 
hydrolyze O‑GlcNAc residues from attached proteins (41). 
Inhibition of OGA expression in rats and mice resulted 
in increased O‑GlcNAcylation of all tissues (50). OGA 
shows high mRNA expression in lung, colon and breast 
cancers (49). In colon cell lines, O‑GlcNAcylation level was 
increased by inhibition of OGA but decreased by inhibition 
of OGT (51). OGA serves an essential role in differentiation 
of ESCs (52,53). Blocking of O‑GlcNAc cycling in mice by 
OGA knockdown resulted in anatomical defects and notable 
changes in expression of pluripotency markers such as Nanog, 
Sox2 and Orthodenticle homeobox 2 (53). OGA knockdown 
in mouse hematopoietic stem cells reduced progenitor pools, 
reduced cell stemness of cells, altered transcription of several 
crucial genes such as hypoxia inducible factor‑1α and cyclin 
dependent kinase inhibitor 1C and increased apoptotic cell 
number in bone marrow (54).

4. O‑GlcNAcylation of TETs

TET proteins mediate DNA demethylation, while OGT medi‑
ates protein O‑GlcNAcylation (39,55). These two enzymatic 
activities may seem to be independent of each other. However, 
several recent studies have revealed the physical and functional 
interactions between TETs and OGT.

Firstly, TETs can be O‑GlcNAcylated by OGT (6,56‑58). 
Addition of a GlcNAc group to Ser and Thr residues of TET 
proteins inhibits TET phosphorylation, since Ser and Thr are 
potential phosphorylation sites (59). Cross‑talk between modified 
Ser and Thr residues facilitates rapid adaptation of TET protein 
localization, activity, or targeting in response to altered envi‑
ronmental conditions or other external stimuli (6,59). Secondly, 
TETs preferentially associate with or bind to OGT in certain 
gene promoters located close to CpG‑rich transcription start sites, 
hence regulating transcriptional levels of these genes through 
epigenetic modification (6). A large proportion of nuclear OGT 
is complexed with TETs (60). Such TET/OGT‑occupied promoter 
regions are characterized by low levels of DNA modification, 
suggesting that TET demethylation activity serves a role in regula‑
tion of CpG island methylation (6). OGT in TET/OGT complexes 
also mediates O‑GlcNAcylation of nearby histone H2B at 
Ser112, thereby facilitating lysine120 ubiquitination of H2B and 
transcriptional activation (61), particularly near transcription start 

sites (62). Thirdly, the TET/OGT complex can serve as a scaffold 
for epigenetic complexes, in addition to its own demethylation 
and O‑GlcNAcylation activities (57,63). Host Cell Factor 1, a 
component of the H3K4 methyltransferase SET1/COMPASS 
complex (63), can be O‑GlcNAcylated by OGT and bind further 
to the TET2/3/OGT complex to mediate transcriptional activation 
through methylation on histone 3 lysine 4 (6). TET/OGT complex 
can also interact with chromatin regulator SIN3 transcription 
regulator family member A and with several components of 
the nucleosome remodeling and deacetylase complex, hence 
enhancing expression of downstream genes, such as single 
stranded DNA binding protein 2 and LIM homeobox 2 regulated 
by TET and maintaining ESC pluripotency (57).

Although TET proteins and OGT have been hot topics 
of research in recent years, very limited knowledge of TET 
function and TET O‑GlcNAcylation in cancer development 
and progression exists. TET/OGT complex contributes to 
certain epigenetic modifications, such as DNA demethylation, 
histone O‑GlcNAcylation, histone methylation associated 
with positive regulation of gene expression, hence providing a 
direct link between epigenetics and cellular metabolism (62). 
Hsu et al (64) reported that TET1 demonstrated reduced 
expression in prostate and breast cancers, and suppresses 
cancer cell invasion by promoting expression of tissue 
inhibitors of metalloproteinases. In a study of cervical cancer 
cells, Guan et al (65) observed that nuclear localization and 
O‑GlcNAcylation of TET3 were modulated by glucose 
metabolism, and that gene expression was regulated through 
TET/OGT‑mediated epigenetic changes in response to nutrient 
availability. The role of O‑GlcNAcylated TET proteins in 
cancer progression is an exciting topic for future study. Based 
on current finding in the field, a working model of the role 
of TET/OGT complex in regulation of target proteins during 
cancer development may be proposed (Fig. 2).

5. Discussion

The TET proteins (TET1, TET2, TET3) catalyze conversion 
of 5mC to 5hmC. O‑GlcNAcylation is a reversible PTM and 
it can O‑GlcNAcylate TETs (59). OGT and O‑GlcNAcylation 
have been clearly demonstrated to serve an important role in 
tumorigenesis and metastasis (66). TET proteins can recruit 
the OGT to chromatin, which promotes post‑transcriptional 
modifications of histones and facilitates gene expression (40). 
It was reported that TET2 mediates OGT modification on H2B 
Ser112 and is associated with highly transcribed genes (62). 
In addition, TET/OGT complex can serve as the scaffold for 
epigenetic complexes (7,63).

Figure 1. TET proteins catalyze conversion of 5mC to 5hmC, 5fC and 5caC. Fe, ferrous; ATP, adenosine triphosphate; TETs, ten‑eleven translocation family 
proteins; 5mC, 5‑methylcytosine; 5hmC, 5‑hydroxymethylcytosine; 5‑fc, 5‑formylcytosine; 5‑caC, 5‑carboxylcytosine.
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However, the present review had some limitations, such 
as the research of TET/OGT complex mainly focused on the 
function during embryonic development (6,7,55). The role of 
TETs and their O‑GlcNAcylation in cancer development is 
largely unknown (60). The essential characteristic of cancer 
is uncontrolled cell proliferation resulting from accumulated 
alterations of cell metabolism and signaling pathways (67). One 
trait of cancer initiation is the dynamics of O‑GlcNAcylation 
are highly sensitive to availability of nutrients and oxygen, 
determined by the cellular microenvironment (68). Aberrant 
glucose metabolism in cancer cells may alter O‑GlcNAcylation 
of TET proteins and therefore affect their stability; conversely, 
TET loss‑of function in cancer may influence the nuclear 
and/or cytoplasmic distribution of OGT, which in turn may 
affect the stability of tumor suppressors and oncogenes such 
as p53 (69), MYC (70), and β‑catenin (71). The dysregulated 
expression and loss‑of‑function mutation of TET family 
proteins participated in the progress of a variety of cancers 
especially hematopoietic malignancies (29). Hence, it is logical 
to raise the question about whether TET/OGT is involved in 
cancer development and how they get involved. TETs can be 
post‑translationally modified by the nutrient‑sensing enzyme 
OGT, also suggesting a connection between metabolism and 

the epigenome (6,62). In addition to suggesting a broader role 
for the TET/OGT complex, the present review provides infor‑
mation about the interaction between OGT and TET proteins, 
which may provide new insights into the development of 
cancer.

6. Conclusions

TET proteins can interact with and undergo O‑GlcNAcylation 
by OGT and O‑GlcNAcylation can alter properties of TET 
enzymes (62). TET/OGT complexes are primarily targeted 
to promoter regions through interaction of TET with DNA, 
and TET‑linked OGT can O‑GlcNAcylate a wide variety of 
proteins (58). Relationships between OGT and TETs during 
cancer pathological processes remain to be elucidated. 
Identification of modified proteins present upstream and 
downstream of TET/OGT complex will be useful in this 
regard. The functions of TETs and their O‑GlcNAcylation in 
cancer development is an important topic for future studies.
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