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Sensory cue-combination in the 
context of newly learned categories
Kaitlyn R. Bankieris1, Vikranth Rao Bejjanki2 & Richard N. Aslin1

A large body of prior research has evaluated how humans combine multiple sources of information 
pertaining to stimuli drawn from continuous dimensions, such as distance or size. These prior studies 
have repeatedly demonstrated that in these circumstances humans integrate cues in a near-optimal 
fashion, weighting cues according to their reliability. However, most of our interactions with sensory 
information are in the context of categories such as objects and phonemes, thereby requiring a solution 
to the cue combination problem by mapping sensory estimates from continuous dimensions onto 
task-relevant categories. Previous studies have examined cue combination with natural categories 
(e.g., phonemes), providing qualitative evidence that human observers utilize information about 
the distributional properties of task-relevant categories, in addition to sensory information, in such 
categorical cue combination tasks. In the present study, we created and taught human participants 
novel audiovisual categories, thus allowing us to quantitatively evaluate participants’ integration of 
sensory and categorical information. Comparing participant behavior to the predictions of a statistically 
optimal observer that ideally combines all available sources of information, we provide the first 
evidence, to our knowledge, that human observers combine sensory and category information in a 
statistically optimal manner.

Objects and events in the natural environment provide observers with multiple sources of sensory information, 
within and across several modalities. In order to construct a coherent percept of this multisensory world, we must 
integrate these sources of information in an efficient manner. For example, the simple act of precisely locating 
your morning beverage as it dispenses into your mug requires the integration of auditory and visual cues to spa-
tial location. If sensory perception were perfectly accurate, this integration would be trivial because the auditory 
and visual cues to spatial location would be identical. In reality, however, sensory signals contain uncertainty 
(potentially due to processing inefficiencies within each sensory modality or noise in the environment) and thus 
do not provide perfect estimates for the stimulus of interest1–3. The imprecise nature of sensory signals can give 
rise to conflicting cue estimates, which makes the task of cue integration a difficult problem. Our successful 
interaction with objects in the world indicates that we capably solve this problem on a daily basis, but what are the 
mechanisms that underlie this process of multisensory integration?

A large body of prior research has evaluated the mechanism of sensory cue-combination across continuous 
dimensions such as size (e.g., ref. 1). In order to arrive at the most precise estimate of an object’s location, for 
instance, prior theories have argued that all available sources of information should be linearly combined in a 
statistically efficient manner, with each cue being weighted according to its reliability (e.g., refs 2 and 4). Applied 
to the morning beverage example, this approach predicts that humans should weight visual cues to the mug’s 
location more heavily than auditory cues, because the human visual system more reliably determines spatial 
location than the human auditory system. Moreover, if this same localization task was performed in the dark 
when visual information is degraded, we would expect visual cues to be down-weighted compared to their 
weights in ample light. Formally, we can represent the information provided by an individual sensory signal A 
about a stimulus S in the world as a likelihood function, p(A|S). The value of S that maximizes this likelihood 
function can be thought of as the estimate of S suggested by A, ŜA. Given two sensory stimuli A and B that are 
conditionally independent (e.g., the sensory uncertainty associated with each modality is independent), the infor-
mation provided by the combination of both the cues can be written as p(A,B|S) = p(A|S)p(B|S). With the assump-
tion that the individual cue likelihood functions are Gaussian, the peak of the combined likelihood function can 
be written as a weighted average of the peaks of the individual likelihood functions. Formally, the combined 
estimate of the stimulus is a weighted linear combination of the estimates suggested by the two sensory signals:

1Department of Brain and Cognitive Sciences, University of Rochester, Rochester, USA. 2Department of Psychology, 
Hamilton College, Clinton, USA. Correspondence and requests for materials should be addressed to K.R.B. (email: 
kbankieris@gmail.com)

Received: 21 March 2017

Accepted: 15 August 2017

Published: xx xx xxxx

OPEN

mailto:kbankieris@gmail.com


www.nature.com/scientificreports/

2SCientifiC REPORTS | 7: 10890  | DOI:10.1038/s41598-017-11341-7

ˆ ˆ ˆ= +S w S w S (1)A A B B

where

w wand
(2)

A B

1

1 1

1

1 1
A

A B

B

A B

2

2 2

2

2 2

=
+

=
+

σ

σ σ

σ

σ σ

and σ2
A and σ2

B are the variances of p(A|S) and p(B|S), respectively. The variance of the combined likelihood 
p(A,B|S) is given by:

(3)
AB

A B

A B

2
2 2

2 2σ
σ σ

σ σ
=

+
.

These equations (1–3) describe the behaviour of an ideal observer when combining two cues lying along con-
tinuous dimensions for a given sensory stimulus, such as spatial location or size, because this approach minimizes 
the variance of the resulting estimate5. Studies evaluating cue combination across continuous dimensions have 
demonstrated that humans do indeed integrate multiple sources of information efficiently, following this statisti-
cally optimal strategy of weighting sensory cues based on their reliability (e.g., refs 2, 5–12).

Sensory cues, however, are not the only source of information relevant to cue-combination. In our natu-
ral environment, continuous sensory dimensions are often used to form categorical dimensions and ultimately 
abstract semantic dimensions13, 14. A key question, then, is how we integrate information when noisy estimates 
from continuous sensory dimensions need to be mapped onto task-relevant categories. For instance, perhaps after 
you locate your morning beverage, you wish to determine whether it is coffee or black tea. This categorisation task 
not only requires combining multiple sensory estimates (e.g., colour and smell) but also necessitates mapping 
these sensory estimates onto the task-relevant categories of coffee and black tea. Accordingly, the weights given 
to each sensory estimate should be influenced not only by the sensory noise (as in continuous cue integration) in 
each cue, but also by the statistical properties of the task-relevant categories. In the coffee versus black tea exam-
ple, you will likely want to rely more on smell than colour to categorise your beverage because the two beverages 
have less similar smells than colours (i.e., the category means are further separated along the smell dimension 
than along the colour dimension in terms of just noticeable differences; JNDs). If, on the other hand, you were 
deciding between a cup of coffee and a latte, you should give a higher weight to the colour cue than the smell cue 
because coffee and lattes have similar smells but have quite different colours. In other words, in such scenarios 
the precise distributional properties of the task-relevant categories should influence the cue combination process 
(e.g., ref. 15). Specifically, the means and variances (assuming Gaussian distributions) of categories, in addition to 
sensory reliability, should impact how cues are combined in this categorical framework, which is pervasive in our 
day-to-day lives. In this paper, we therefore seek to bridge the gap between the cue integration literature – which 
examines how cues with sensory variance are combined – and an extensive body of categorisation literature 
which investigates how features (with negligible sensory noise) are combined under category uncertainty (e.g., 
refs 16 and 17).

This complex cue integration problem across categorical dimensions could, in principle, be solved by exten-
sion of the continuous cue integration model described above (assuming that the covariance matrices for the 
two categories are equal). Formally, when categorising a multisensory stimulus and assuming once again that the 
sensory signals are conditionally independent, an ideal observer constructs a discriminant vector linearly con-
necting the two categories and projects the stimulus onto this vector18 (see Fig. 1). This projection of the stimulus 
onto the discriminant vector is the decision variable D, which determines the categorisation of the stimulus based 
on some criterion:
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ances of the distribution of the sensory signals occurring in the categories. Lastly, ΔμA and ΔμB represent the 
difference between category means along each cue dimension. Accordingly, the formalization of cue combination 
in tasks involving categorical dimensions posits that an ideal observer should incorporate not only sensory infor-
mation, but also the manner in which that sensory information maps onto relevant categories.

Previous research has investigated whether human performance is consistent with the predictions of this ideal 
model, using real world categories such as phonemes (e.g., refs 15, 18 and 19). Results from these studies suggest 
that humans use both category mappings and sensory information during cue combination across categorical 
dimensions - specifically, the fit of the ideal model was better than the fit of a model that only considers sensory 
information. However, the use of natural categories like phonemes makes it very difficult to conduct a quanti-
tative comparison between an ideal learner and human behaviour for two reasons. First, natural categories are 
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highly entrenched (i.e., over learned) by extensive prior experience with category exemplars. Second, individual 
observers have different experience histories with the distributional properties of category exemplars. Thus, the 
between-participant specificity and limited plasticity of natural categories serve as impediments to a quantitative 
evaluation of cue combination in the context of categories.

In the present study, we investigated humans’ ability to integrate sensory cues and category information in an 
efficient manner by teaching participants novel audiovisual categories. Crucially, we manipulated participants’ 
exposure to exemplars from these novel categories, thereby giving us precise control over their knowledge of the 
mapping between sensory dimensions and category identity (referred to as “category information” in the rest of 
the paper). After participants successfully learned these multisensory categories, we tested their cue integration 
with new exemplars and compared their performance to predictions from a categorical cue integration model that 
took into account the mapping between the sensory dimensions and category identity. We found that participants’ 
weights were indistinguishable from the predictions of the statistically optimal categorical cue integration model. 
Thus, our findings represent the first quantitative evidence, to our knowledge, that participants optimally use both 
sensory and category information during a cue integration task involving newly learned categories.

Results
To quantitatively examine participants’ use of category information during cue combination, we taught partic-
ipants novel audiovisual categories (labelled ‘taygoo’ and ‘dohkah’), fully controlling the category exemplars to 
which they were exposed (Fig. 2). The auditory dimension was the pitch (center frequency) of tones in pink 
noise and the visual dimension was the number of dots in a display area. After participants successfully learned 
these categories to 90% accuracy, they made category judgments for auditory only, visual only, and audiovisual 
stimuli (see methods). Crucially, a subset of the audiovisual stimuli presented conflicting cues regarding category 
membership (i.e., the two component cues differ only slightly in how much they support one category versus the 
other) in order to estimate auditory and visual weights used by participants during the cue combination process.

Before comparing participants’ bimodal behaviour to the statistically optimal categorical model, we fit psy-
chometric functions to characterize their behaviour. First, we estimated unimodal sensory variances (audio and 
visual) for each participant by fitting psychometric curves to their categorisation performance in each of the five 
unimodal conditions (four noise levels of auditory only and one noise level of visual only). Fitting participants’ 
unimodal labelling data with cumulative Gaussian distributions (Fig. 3) yielded the point of subject equality 
(PSE) and variance (slope) associated with the participants’ representation of the sensory information available 
in each unimodal cue condition. Next, we fit participants’ categorisation data during each of the four audiovisual 
conditions (noise 1–4) with psychometric curves and simultaneously ascertained the weights that participants 
actually assigned to each modality (Fig. 4).

After calculating participants’ auditory weights during our categorical cue combination task, we examined the 
extent to which their behaviour was consistent with the predictions of an ideal observer using both sensory and 
category information. Before evaluating the predictions of the categorical cue combination model, it is important 
to note that the basic model described in the Introduction (Equations 4–5) assumes conditionally independent 
cues (as shown in Fig. 1). The audio and visual cues used in this experiment, however, are correlated within each 
task-relevant category (i.e., the cluster of exemplars that define the two Gaussian categorical distributions are 
tilted, see Fig. 2). Accordingly, in all of our analyses, we expanded the basic categorical cue combination model, 

Figure 1. Cue combination involving categories. A depiction of the problem where each category is defined by 
two cues. The x and y axes represent the strength of each sensory cue. The circles labelled Y and Z represent the 
mean and covariance of each cue for categories Y and Z for a given participant, under the assumption that the 
two cues are conditionally independent. The grey diagonal line represents the linear discriminant vector D onto 
which an optimal categoriser projects the received bi-cue signal (see text).
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so that the calculation of ideal weights accounted for this correlation20. Given that the reliability of a given cue in 
the categorical regime can be written as:
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(6)

i
i

i sense i cat,
2

,
2

µ

σ σ
=

∆

+

the discounted reliability due to the correlation between cues is

r r r r i, A, B (7)i i A Bρ′ = − =

where ρ represents the correlation between the two cues from the participant’s point of view. In principle ρ is 
influenced not only by the correlation within each category, but also by the amount of sensory noise on each trial. 
It is worth noting that given our experimental design, we cannot independently estimate the manner in which 
sensory noise affects the correlation from the perspective of individual participants. However, we argue that the 
correlation from a participant’s perspective is dominated in our task by the correlation within each category and 
thus is effectively approximated by it. In support of this argument, we ran several simulations with ρ ranging from 
0.24 (the correlation within each category) to 0 (the value it would take on if sensory noise completely negated 
category correlation), and found almost no influence on the predicted weights (see Supplementary Figure 1). 
Accordingly, in computing the ideal weights, we use the correlation within a category as an effective approxima-
tion for ρ. The ideal weights are:
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Note that in the above formalism, if the correlation is zero, then equation 8 reduces to equation 5.
As a comparison, we also generated predictions from the continuous model (with the discounted reliability 

due to correlated cues included), which considers only sensory uncertainty. Consider a qualitative description of 
what one would expect if only sensory uncertainty, and not category uncertainty, were used in making category 
judgments. As sensory uncertainty is added to the auditory cue, the weight assigned to that noisy auditory cue 
should decrease (and the weight assigned to the visual cue should show a complementary increase). However, if 
category information, in addition to sensory information, plays a role in category judgments, then we should see 
two patterns in participants’ data:

 1) Auditory weights should be higher than those predicted by the continuous model. Use of category information 
predicts this pattern of data because the category means are further apart in the auditory dimension than 
the visual dimension and the individual categories vary less along the auditory dimension than the visual 
dimension.

 2) The rate at which auditory weights decreases as a function of auditory noise should be slower than predicted 
by the continuous model. This prediction also arises from the use of category distributions because the cate-
gory information is constant across noise level (provided there is sufficient sensory information to support 
a category judgment).

Figure 2. Training and Testing stimuli. Black circles represent the occurrence of exemplars of the 2-cue stimuli 
during training. The elliptical clusters of black symbols represent the Gaussian distributions of the two task-
relevant categories. The size of each symbol represents the number of exemplars of each stimulus that were 
presented during one learning block. Grey squares represent testing stimuli (bimodal in center, unimodal along 
the x- and y-axes). Twenty-five repetitions of each testing stimulus were presented. Category labels (taygoo and 
dohkah) and locations (as below or rotated 90°) were counterbalanced across participants.

http://1
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Figure 3. Cumulative Gaussian fits of unimodal trials for a representative participant. The top left panel plots 
all five unimodal cumulative Gaussian fits with the PSE equalized to allow for easier slope comparison. The 
remaining panels plot cumulative Gaussian fits along with data for each unimodal condition separately.

Figure 4. Observed auditory weights for audiovisual trials alongside predictions from the categorical model 
and the continuous model. Weight predictions for both models are generated including the discount for 
correlated cues (see main text and equations 6–8). Data points denote means across individual subject weights 
and error bars denote across-subject standard. Lines are linear fits generated for visualization purposes only.
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Prediction 1: Higher auditory weights compared to the continuous model. If participants are 
considering category information while performing this cue integration task, their auditory weights should align 
with the predictions of the categorical model, which are higher than those of the continuous model. While the 
continuous model uses only sensory information to determine auditory weights, our participants (and the cat-
egorical model) have access to the distributional information of the categories. The fact that the category means 
have a greater distance between them along the auditory frequency dimension makes auditory cues more inform-
ative than visual cues at the category level. Likewise, there is less variance for auditory frequency versus visual 
numerosity within a category, again making auditory information more reliable than visual information at the 
category level. To test whether participants used this category information, we fit a mixed-effects linear regression 
predicting auditory weights from weight type (actual, categorical model predictions, continuous model predic-
tions) and noise level (1–4) with a full random effects structure (i.e., random intercepts and slopes per partic-
ipant). With participants’ observed weights as the reference level (i.e., coded as 0), the beta coefficients for the 
two other levels of weight type (categorical model predictions, continuous model predictions) indicate whether 
or not the participants’ weights differ from each of these model predictions. Our analysis found that participants’ 
actual auditory weights were significantly higher than the continuous model’s predictions (ß = −0.08, SE = 0.04, 
p < 0.05) but did not differ from the categorical model’s predictions; ß = 0.03, SE = 0.04, ns. These results demon-
strate that participants’ auditory weights did not align with the predictions of a model using only sensory infor-
mation, and were quantitatively indistinguishable from the predictions of a model that incorporates both category 
and sensory information during cue combination. This finding supports the notion that human observers are 
sensitive to the distributions of categories during cue combination in such categorical tasks.

Prediction 2: Smaller effect of noise on the auditory weights. The second unique prediction made 
by the categorical model of cue combination is that auditory weights should decrease more slowly, across the four 
noise levels, than predicted by the continuous model. That is, the effect of noise on auditory weights should be 
smaller if participants are using category information in addition to sensory information. This prediction arises 
because in addition to sensory information, the categorical model utilizes information regarding the category 
distributions, which does not change as a function of noise (provided that there is sufficient sensory information 
available to infer the relevant category). If participants used category information in an ideal manner during this 
task, their auditory weights should align with the predictions of the categorical model and not the continuous 
model. Using the mixed-effects linear regression described above, we investigated the rate at which participants’ 
auditory weights decreased as a function of noise. With participants’ observed weights as the reference level (i.e., 
coded as 0), the beta coefficients for the interaction of noise level (1–4) and the two other levels of weight type 
(categorical model predictions, continuous model predictions) indicate whether or not the noise effect for par-
ticipants’ weights differs from each of these models’ predictions. This analysis revealed that participants’ auditory 
weights decreased as a function of noise at a rate significantly different from the continuous model’s predic-
tions (ß = −0.05, SE = 0.02, p < 0.05) but indistinguishable from the categorical model’s predictions; ß = 0.00, 
SE = 0.02, ns. These results demonstrate that the rate at which participants down-weighted auditory information 
across the noise levels is better predicted by the categorical model than the continuous model. Participants did 
not use sensory variance as the sole factor influencing their cue weights, but additionally integrated the informa-
tion provided by category structure into their cue weights. Taken together, our findings represent the first set of 
evidence demonstrating that humans quantitatively integrate both sensory and category information during cue 
combination across categorical dimensions in a manner consistent with statistically-optimal behaviour.

Discussion
In the present study, we examined the computational principles underlying cue combination in a domain that 
involves multidimensional categories by quantitatively analysing human behaviour during a categorisation task 
with novel audiovisual stimuli. Critically, a statistically optimal model of cue integration over categorical variables 
predicts that the distributional properties of the categories themselves (specifically, separation of categories along 
each cue dimension and category variance along each cue dimension) in addition to sensory variability should 
influence cue weighting. In contrast to natural (i.e., over-learned) categories for which it is very difficult to esti-
mate the internal knowledge of the category distributions for any given participant, creating novel audiovisual 
categories allows us to have strict control over participants’ exposure to the stimulus exemplars that define these 
categories. Thus, we were able to quantitatively compare human behaviour to that of an ideal observer who uti-
lizes both category and sensory information. Our results extend many prior findings in the literature examining 
cue integration along continuous dimensions, demonstrating that humans appropriately weight sensory cues as 
a function of their reliability. We find that this principle also holds true when the cues to be combined lie along 
a categorical dimension, extending the findings of Bejjanki et al.18 from natural speech categories to recently 
learned artificial categories. Furthermore, for the first time to our knowledge we demonstrate the optimal use of 
category information (i.e., separation and variance) during a cue combination task by demonstrating that human 
behaviour quantitatively and qualitatively matched a statistically optimal observer that is sensitive to these sources 
of information. It is also important to note that previous models of cue combination in the categorisation liter-
ature did not incorporate the role of sensory variance because category information was always suprathreshold.

In future research, this model could be used to investigate the properties of cues that yield statistically-optimal 
cue combination as well as the development of this ability. While it is possible that learners can combine any set 
of cues in this categorical manner, causal inference likely plays a role in which cues are considered relevant to 
category membership (e.g., refs 10 and 21). Since we counterbalanced the relationship between the cues across 
participants (i.e., some participants learned that the category taygoo was defined by low pitch and small numer-
osity while others learned the same category was defined by low pitch and large numerosity), our results suggest 
that these statistically-optimal principles span some variation in cue relationships. However, further research is 
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needed to determine what limitations exist for the sets of cues and their relationships that can be combined in 
this manner. Additionally, adapting this paradigm to a developmental context would allow for an examination 
of how ideal categorical cue-integration develops (cf., ref. 22). Given that children have less experience with the 
world, it is possible that the cues they are willing to combine in a categorical manner differ from those that adults 
consider viable for categorical cue combination. Relatedly, examining categorical cue combination in children 
may allow natural categories to be investigated in a way that is not possible with adult’s entrenched categories. 
Thus, the present study not only demonstrates quantitatively ideal use of both sensory and category information 
for cue combination in adults, but also opens up several avenues for future research with children and other spe-
cial populations.

Methods
Participants. Our analysed dataset includes fifteen naïve participants with no known hearing problems and 
normal or corrected-to-normal vision who were recruited from the Rochester area and compensated $10/hour 
for their participation. One additional participant was dropped from the final sample because he failed to learn 
the novel categories to criterion (see below) within four training blocks. Another participant was excluded from 
group analyses because his performance for unimodal auditory trials at the highest noise level was indistinguish-
able from chance across all auditory steps and was thus unable to be fit with a psychometric function. Participants 
were tested individually in a quiet room over a span of four sessions on consecutive days, with each session last-
ing approximately one hour. Ethical approval was obtained from the University of Rochester Research Subjects 
Review Board and methods were carried out according to their guidelines and regulations (including obtaining 
informed consent from all participants).

Stimuli. We created novel categories defined by two cues: number of visual dots and auditory pitch (see 
Fig. 2). The number of dots ranged from 11 to 47 in 15 equally discriminable steps. These steps fall along a math-
ematically logarithmic scale because number is perceived according to Weber’s law. As seen in Fig. 4, black dots 
were positioned pseudorandomly within a predefined square area to create a specific level of numerosity with no 
dot overlap. Pitch stimuli were pure tones with frequency ranging from 264 Hz to 502 Hz in 15 equally discrimi-
nable steps (again, along a logarithmic scale). We created three additional noise levels for these auditory stimuli 
by adding pink noise (a signal in which power is inversely proportional to the frequency of the signal: 1/f) to the 
pure tones in increasing percentages. Noise level 1 stimuli were 100% pure tones with 0% pink noise added; noise 
levels 2–4 were composed of pure tones with 83.3%, 93.8%, and 96.8% pink noise added, respectively, and nor-
malized for overall acoustic energy (percentages indicate percent noise of the root-mean-square value). Extensive 
pilot testing was conducted to carefully select these cues and their parameters so that the steps along each dimen-
sion have equal sizes when expressed as JNDs. Novel categories were defined as two-dimensional Gaussian distri-
butions in the auditory-visual space of the two cues (with the frequency of occurrence of each stimulus rounded 
to integers as depicted in Fig. 2). Importantly, the two categories in this auditory-visual space cannot be separated 
using only one cue. That is, no horizontal or vertical line drawn in Fig. 2 will separate these two categories, which 
necessitates the use of both cues for successful categorisation. Half of the participants learned the categories 
depicted in Fig. 2 (small number and low pitch, large number and high pitch) and the other half learned these 
categories rotated 90 degrees (small number and high pitch, large number and low pitch).

Procedure. Participants were told that scientists had just discovered two new species and their task was two-
fold: (1) to become an expert at classifying samples and (2) to help the scientists categorise unclassified samples. 
We informed participants that the two species, labelled with the nonsense words taygoo and dohkah, could be 
discriminated using both the pitch of their calls (i.e., auditory frequency) and the number of droppings they 
produce (i.e., number of visual dots).

Training. Each of the four sessions began with a training phase composed of a variable number of blocks, 
depending on each participant’s learning rate. Each training block presented the full distribution of audiovisual 
category stimuli (103 of taygoo and 103 of dohkah) to ensure that all participants experienced the same category 
statistics. Participants completed as many blocks as necessary to reach 90 percent classification accuracy, with a 
maximum of four training blocks. As seen in Fig. 5, each trial within a training phase block presented an audio-
visual stimulus for 500 ms drawn without replacement from the two-dimensional Gaussian category distribu-
tions (see Fig. 2). Two buttons labelled ‘taygoo’ and ‘dohkah’ then appeared on the touch screen and participants 
touched a button to submit their classification. Feedback indicating whether their choice was correct or incorrect 
was displayed on the screen for 1000 ms before the next trial began. Category and button labels were counterbal-
anced across participants.

Testing. After 90 percent classification accuracy was reached, participants progressed to the testing phase. 
Audio only, visual only, and audiovisual trials were included in the test phase (Fig. 5). Eight blocks of approxi-
mately 130 testing trials were completed during each session – six blocks presenting audiovisual stimuli and two 
blocks presenting audio only and visual only trials intermixed. The order of these blocks (unimodal or bimodal 
first) was counterbalanced within participant across day. Each test trial displayed a visual stimulus (or a speaker 
icon in the case of audio only trials) for 500 ms while an auditory stimulus of equal length was played for audio-
visual and audio only trials. As in the practice trials, participants then selected their answer by touching one of 
two buttons but did not receive feedback. A blank screen was presented for 500 ms before the next trial began. We 
concentrated our unimodal auditory test items on the seven steps in the middle of the auditory frequency range 
(steps 5–11), from the mean of one category to the mean of the other category. Since the purpose of these uni-
modal trials was to ascertain a full psychometric function for each cue individually, and the difference between 
category means on the numerosity cue is only two steps, we included all 15 numerosity steps in the visual only 
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trials. The audiovisual trials consisted of 31 unique combinations of audio and visual cues (central grey squares 
in Fig. 2), some of which introduced slight discrepancies between individual cues. For most audiovisual stimuli, 
that is, the likelihood that the visual component was a ‘taygoo’ was not equal to the likelihood that the auditory 
component was a ‘taygoo.’ Introducing such discrepancies (i.e., cue conflicts) is crucial for quantitatively measur-
ing cue weights during the integration process. We presented only small cue conflicts to prevent participants from 
noticing discrepancies, thus encouraging cue integration4. Auditory stimuli in audiovisual trials and audio only 
trials were presented at four different noise levels randomly interleaved throughout the test phase. We presented 
25 repetitions of each of these test stimuli, yielding a total of 4175 test trials across four sessions.

Data Analysis. To analyse categorisation behaviour, we fit psychometric curves to participants’ labelling per-
formance for each of the nine stimulus conditions (one noise level of visual only trials, four noise levels of audi-
tory only trials, and four noise levels of audiovisual trials). For each unique stimulus, the raw response data were 
organized into arrays specifying the number of trials that a participant responded ‘taygoo’ (out of 25 repetitions). 
Realizing that individual naïve participants’ data did not always span the entire range from 0.0 to 1.0, we used 
modified cumulative Gaussian psychometric functions including lapse rates to model their behaviour more accu-
rately23. This psychometric function modelled the probability of selecting the category ‘taygoo’ as a mixture of an 
underlying Gaussian discrimination process and a random guessing process. We coded participant responses as 
yi = 0 for a response of ‘dohkah’ and yi = 1 for a response of ‘taygoo’. We used the following psychometric model:

γ γ λ µ σ= | = + − − Φ

= | = − = |

p y x x
p y x p y x

( 1 ) (1 ) ( ; , )

( 0 ) 1 ( 1 ) (9)
i i i

i i i i

where yi is the participant’s categorisation of stimulus xi on trial i. µ and σ are the mean and standard deviation of 
the cumulative Gaussian, respectively. For the current task, µ represents the Point of Subjective Equality (PSE) 
between the two categories, and σ represents the discrimination threshold. Lapse rate parameters are represented 
by γ and λ, where γ is the base rate of responding ‘taygoo’ when there is no evidence for category ‘taygoo’, and λ 
is the miss rate, i.e., the probability of responding incorrectly regardless of the amount of information for category 
‘taygoo’. We constrained the lapse parameters to be between 0.0 and 0.25, held them constant across noise levels 

Figure 5. Trial structure. Training: example of audiovisual training trials with feedback. Testing: example of 
visual only, audio only, and audiovisual testing trials without feedback.
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within a condition (audio only, video only, or audiovisual), but allowed them to vary across conditions. Allowing 
lapse rates to vary across this range accommodates the possibility that our naïve participants may have a high 
degree of uncertainty for some of the stimuli (compared to highly trained psychophysical observers), without 
unduly biasing the slope and PSE parameters of the psychometric curve. We used maximum likelihood functions 
to estimate the parameters of participants’ psychometric functions.

Estimating parameters for unimodal performance. The visual only stimuli were presented with no added noise 
(level 1 only). Accordingly, the likelihood of a subject making a decision Yi on visual only trial i, when presented 
with stimulus xi can be written as:

l x Y x Y[( (1 ) ( ; , )) ] [(1 ( (1 ) ( ; , )))(1 )] (10)i i i i iγ γ λ µ σ γ γ λ µ σ= + − − Φ + − + − − Φ −

The likelihood function for the entire set of visual only data for a given subject is then:

∏=
=

L l
(11)Vis

i

N

i
1

where N is the total number of visual only trials.
The audio only trials were presented at four noise levels. Thus, the likelihood of a subject making a decision Yi j,  

on audio only trial i for noise level j, when presented with stimulus xi j,  can be written as:

γ γ λ µ σ

γ γ λ µ σ

= + − − Φ

+ − + − − Φ −

l x Y

x Y

[( (1 ) ( ; , )) ]

[(1 ( (1 ) ( ; , ))) (1 )] (12)

i j i j j j i j

i j j j i j

, , ,

, ,

The likelihood function for the entire set of audio only trials for a given subject is then given by

L l
(13)

Aud
j i

N

i j
1

4

1
,∏ ∏=

= =

where N is the number of audio only trials for each noise level and there are four noise levels.

Estimating parameters for audiovisual performance. During each trial of the audiovisual categorisation task, 
participants were presented with an audio and visual stimulus simultaneously. Crucially, in a subset of the audio-
visual stimuli, there were cue conflicts between the two modalities, which allows for the estimation of the weights 
that participants used in combining the two cues. Under the linear cue combination assumption, we consider the 
effective stimulus in this task to be a weighted combination of the two stimuli. Parameters for the psychometric 
model (µ σ γ λ, , , and ) and the weights assigned to each modality (w wanda v) for bimodal performance were 
computed from maximum likelihood fits to the raw bimodal performance data for each participant. Specifically, 
the audiovisual condition had four noise levels, so the likelihood of a subject making a decision Yi j,  on audiovisual 
trial i for noise level j, where the presented stimulus was xai j,

 in the auditory domain and xvi j,
 in the visual domain, 

can be written as:

γ γ λ µ σ

γ γ λ µ σ

= + − − Φ − +

+ − + − − Φ − + −

l w x w x Y

w x w x Y

[( (1 ) (((1 ) ); , )) ]

[(1 ( (1 ) (((1 ) ); , ))(1 )] (14)

i j a v a a j j i j

a v a a j j i j

, ,

,

i j i j

i j i j

, ,

, ,

Since w wanda v sum to one, the above expression replaces wv with − w1 a. The likelihood function for the entire 
set of audiovisual trials for a given subject is then given by:

∏ ∏=
= =

L l
(15)

AV
j i

N

i j
1

4

1
,

where N is the number of audiovisual trials at each of the four noise levels.

Avoiding local maxima when fitting psychometric functions. To avoid converging on local maxima, rather than 
on the desired global maximum likelihood, we repeated each maximum likelihood fit starting from five randomly 
chosen initial values for the parameters. We then selected the parameters that corresponded to the fit with the 
best maximal likelihood value, across the five fitting runs, as the best-fit parameters for the psychometric model.

Data Availability. The datasets generated during and analysed during the current study are available from 
the corresponding author on reasonable request.
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