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Universal Stochastic Multiscale 
Image Fusion: An Example 
Application for Shale Rock
Kirill M. Gerke1,2,3,4,*, Marina V. Karsanina1,3,4,* & Dirk Mallants1

Spatial data captured with sensors of different resolution would provide a maximum degree of 
information if the data were to be merged into a single image representing all scales. We develop a 
general solution for merging multiscale categorical spatial data into a single dataset using stochastic 
reconstructions with rescaled correlation functions. The versatility of the method is demonstrated 
by merging three images of shale rock representing macro, micro and nanoscale spatial information 
on mineral, organic matter and porosity distribution. Merging multiscale images of shale rock is 
pivotal to quantify more reliably petrophysical properties needed for production optimization and 
environmental impacts minimization. Images obtained by X-ray microtomography and scanning 
electron microscopy were fused into a single image with predefined resolution. The methodology 
is sufficiently generic for implementation of other stochastic reconstruction techniques, any 
number of scales, any number of material phases, and any number of images for a given scale. The 
methodology can be further used to assess effective properties of fused porous media images or 
to compress voluminous spatial datasets for efficient data storage. Practical applications are not 
limited to petroleum engineering or more broadly geosciences, but will also find their way in material 
sciences, climatology, and remote sensing.

Assembling spatial information across a wide range of scales is a crucial component in almost any type 
of industrial or scientific activity1. Spatial information – discrete property values with known coordinates 
– is usually reported by means of digital images where values are represented by intensities and coordi-
nates are marked within a grid with known spatial sizes or image resolution (pixels for 2D images and 
voxels for 3D). Image resolution - a key attribute of all spatial data - has been increasing considerably 
in all scientific fields. For instance, performance of computed tomography has doubled approximately 
every two years since the mid 1980s2. Likewise, electron microscopes (SEM) typically have a 250–300 
times higher resolution than optical microscopes, while the highest spatial resolution of aerial imagery 
is up to 2.5 cm compared to 50 cm for satellite images. These differences in resolution by no means 
suggest that lower-resolution methods need to be abandoned; one of their advantages is their much 
wider field of view or measurement support and, thus, their ability to resolve larger objects than the 
more recent high-resolution devices. This becomes especially relevant for 3D imaging methods such as 
X-ray micro-tomography (XMT), focused ion beam–scanning electron microscopy (FIB-SEM) or neu-
tron tomography, where the very small measurement support of the device is prohibitive of determining 
relevant properties across many locations of the study object. The duality between a sufficiently large, in 
terms of a representative elementary volume (REV), sample size and a sufficient spatial resolution can be 
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resolved by studying the same object at different spatial scales, followed by upscaling and/or downscaling 
information into a single image capturing data from all scales.

Merging information across multiple scales is of interest to many scientific disciplines; some mean-
ingful applications relate to (non-exhaustive list): 1) images of outcrops displaying large-scale features of 
sedimentary units, medium-scale sedimentological facies heterogeneity and fault zones, and small-scale 
fractures3,4 to assemble multiscale information on fracture size and connectivity distribution for simu-
lations of flow and transport; 2) large-scale 2/3D seismic images and 1D high-resolution well-logging 
supported by small-scale core measurements of fluid properties to create realistic oil/gas reservoir mod-
els5 for improving resolution of reservoir characteristics and properties upscaling schemes; 3) medical 
imaging6 for better diagnostics; 4) merging hydrogeological parameters from aquifer pumping tests, 
tracer tests and undisturbed core measurements;7,8 5) fusing micrometer scale XMT and nanometer 
scale FIB-SEM images to derive effective properties such as apparent permeability or gas desorption 
rates of low-permeable carbonates, shales and coal seams9 using pore-scale modelling approaches;10 6) 
combining satellite images with plot-scale and point-scale on-ground measurements of plant species 
distributions, CO2 or CH4 emissions, or soil moisture conditions11,12.

Unlike time-domain and multi-sensor imaging (i.e., merging of images of the same object obtained 
with different imaging techniques, for example, in different wavelengths) where substantial progress was 
made by means of Fourier transform and wavelets1, the spatial domain yet lacks any comprehensive 
methodology to unify information across scales. Previous work regarding merging spatial information 
usually considered a single type of data, often measured by a single image, with very few material phases. 
Radlinski et al.13. combined SEM images and small-angle neutron scattering (SANS) data within a sta-
tistical framework to quantify the structure of porous solid in terms of continuous pore-size distribution 
spanning five orders of magnitude. A similar approach was used to characterize pore structure and 
permeability of sandstone samples using combined information from thin-sections and mercury intru-
sion porosimetry14. Bimodal porous structures were previously created by superimposing two truncated 
Gaussian random fields to simulate vuggy carbonates15. A similar methodology was also recently uti-
lized to synthesize layered structures by connecting two separate images16. These bi-gaussian approaches 
can be considered a special case of the more general pluri-gaussian method popular in geostatistics. 
Previous works further include multiscale structures using truncated pluri-gaussian simulations17,18, 
however mathematically elegant, this approach utilizes only a limited number of statistical descriptors 
and requires tuning. Okabe and Blunt19,20 developed a general approach to a 2/3D reconstruction of 
the structure of porous solids via multiple-point statistics in a multi-grid framework using 2D cuts 
of sandstones. A slightly different Bayesian based approach was reported by Mohebi et al.21. to recon-
struct double porosity features of different artificial and natural porous media samples using coarse and 
high resolution 2D magnetic resonance images. Continuum reconstruction of Fontainebleau sandstone 
was performed using pre-defined grain shapes based on multiscale digitization of sphere pack22. Other 
groups of researchers23,24 modelled carbonate rock structures with pore-sizes varying in size up to four 
orders of magnitude using SEM/thin-section and XMT data; their approach considered a primordial 
filter (static data from coarse scale image) decorated with crystal-filled molds of different size typical of 
dolomite structure. Merging two different scales of pore sizes in rocks was recently demonstrated using 
pore-network generation25–27.

The aim of this study is to develop a general framework for merging information from any number 
of spatial scales of any resolution into a single image, which would be simple, robust, and efficient. The 
methodology will be tested using structural images from shale rocks, for which data fusion will be per-
formed using images at three spatial scales representing different spatial information on the distribution 
of mineral, organic matter and pore phases. Our results are expected to have practical implications in 
numerous disciplines, e.g., petroleum engineering, geosciences, material sciences, hydrology, soil science, 
biology, climatology/ecology, and remote sensing.

Multiscale Fusion of Shale Images
Defining the test problems. The multiscale data fusion method will be demonstrated on the basis 
of two synthetic test problems. However synthetic, these tests are aiming to solve one of the long stand-
ing challenges in petroleum geosciences, i.e. to fuse or merge structure data from macro, micro and 
nanoscale into a single, multiscale structure of shale rock. Shales are the source rock of shale gas and 
shale oil, and are known to have multiscale pore systems, composed of macroscale fractures, micropores, 
and nanoscale pores within gas or oil-producing organic material, referred to as kerogen. The former 
two scales are visible on XMT images, but are usually not connected into a percolation network28. The 
nanoscale pore network is organized in different interconnected clusters and extends through mudrocks 
where desorption and diffusion occurs within the kerogen with subsequent transport into larger-scale 
micropores and fractures produced by hydraulic fracturing29–31. Fractures may be naturally present or 
produced during hydraulic fracturing. XMT can efficiently resolve the 3D geometries of fractures and 
microscale pores within shale rocks, but cannot capture nanoporosity28. Higher-resolution two-dimen-
sional imaging techniques such as SEM or FIB-SEM are effective to discern the pore network down to 
scales of several nm32. Such pore-networks find their application in the simulation of oil and gas flow 
during design and operation of hydrocarbon reservoirs, using so-called pore-scale models that produce 
effective physical properties for use in larger scale cellular Darcy-scale models28,29. To this end, the macro, 
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micro and nanoscale pore-system have to be merged into a single network continuum with proper con-
nections between scales.

Three different images of shale structure are shown on Fig. 1 comprising macroscale, microscale and 
nanoscale. Images represent shale samples from Domanic (macroscale) and Upper Jurasic Bazhenov 
(micro and nanoscale) formations, respectively from the Tatar Basin and West Siberian Basin, Russia 
(see brief description in SI). The Bazhenov formation generated about 90 percent of oil reserves of the 
West Siberian basin33. The microscale image displays basically the same solids and kerogen phase as 
the macroscale, whereas the porosity now excludes the fractures (Fig.  1). Finally, the nanoscale image 
provides the kerogen nanoporosity.

Both examples consider merging three multiscale images with scale ratios of 16:4:1. In other words, 
the macroscale is four times coarser than the microscale, which in turn is four times lower in resolution 
than the nanoscale image. For reasons of visibility, a relatively small scale magnification factor of four 
was used. Although the real images used in Fig. 1 have a different scale ratio than 16:4:1, this does not 
preclude their use in our synthetic examples. The original image sizes were 10242 pixels for both macro 
and microscale and 4002 for nanoscale. Each image is first segmented into a binary image of white and 
black phases representing different rock phases (SI Fig. 1). We consider two cases in which unique binary 
phases (i.e. materials) exist at each spatial resolution. In the first case, the macroscale image represents 
spatial information on solids or minerals (white phase) and a mixture of microscale solids not identifi-
able on the macroscale and kerogen (black phase). The latter phase is resolved on the microscale image 
in terms of minerals (white) and poorly defined kerogen (black) phases. Finally, the nanoscale image 
has a sufficient resolution to discriminate the kerogen into kerogen solids (white) and kerogen porosity 
(black). This is a common situation where each spatial scale represents unique information on one of the 
material phases due to a large contrast in resolution or size of structural features. For example, kerogen 
nanoporosity can be resolved only on FIB-SEM/SEM images, while on XMT images kerogen is visible 
only as a single phase representing a mixture with other materials28.

The second case is about merging multiscale pore networks while using exactly the same input 
images. The pore network information includes 1) large cracks (white) and a mixture of solids and 
kerogen (black) on the microscale image, 2) microscale porosity (black) and kerogen phase (white) on 
the microscale image, and 3) similar to first case, kerogen solids (white) and kerogen porosity (black) 
on the nanoscale image.

Both cases represent a simplification of the real shale structure, mainly because the number of rele-
vant phases is reduced in our study28. However, it provides us with an easily comprehensible illustration 
utilizing only binary information for each scale. By considering the resolution of XMT to be 1 μ m and 
representative for the microscale, the image resolutions are fixed as follows: 4 μ m for macroscale, 1 μ m 
for microscale and 250 nm for the nanoscale image. Note that such resolutions are quite typical for 
routine rock imaging, as resolutions of 4–15 μ m are usually obtained for standardized petrophysical cyl-
inders used for laboratory measurements of permeability and other filtration properties10. Resolutions of 
0.7–1 μ m are the usual resolution for desktop scanners with cylindrical subdrilled sample with diameter 

Figure 1. Three images of shale structure representing macro, micro and nanoscale (from left to right). 
Below each image we report some common methods to obtain spatial information for widely differing 
scales. Typical values for field of view and resolution are given in parentheses.
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of 4–10 mm28. The highest resolution is obtained with SEM images, which typically is in the range of 
several tens of nm32.

Re-scaling correlation functions and stochastic reconstructions. The backbone of the data 
fusion approach lies in the use of stochastic reconstruction34,35, a mathematical technique that produces 
a statistically similar representation of the real image and possess similar statistical properties. Previous 
examples have usually used the same image from one or all scales1,21,23,24, an approach that limits the 
size of reconstructed images or requires to use tiling (replicating similar image by connecting its copies 
of itself). Tiling is not useful for natural porous media as natural properties are not periodic and, thus, 
phases would not meet each other at the edges of tiles. Stochastic reconstructions using correlation func-
tions is a versatile technique36 capable of dealing with any image size and with a wide range of complex 
structural descriptors. In addition to geometrical complexity, the image size is another important factor 
as it determines whether or not the image is large enough to capture all spatial features accurately.

Among many stochastic reconstruction techniques applicable to heterogeneous porous media, the 
more popular ones are: (i) the original method of Yeong-Torquato, combining correlation functions with 
simulated annealing35, (ii) the multiple-point statistics method19,20,37,38 and (iii) Gaussian random fields39. 
The modified Yeong-Torquato method was chosen here for reconstruction of all three scales because (i) 
of its ability to reproduce both isotropic and anisotropic porous media40 and (ii) the correlation functions 
can be rescaled to accommodate either smaller or larger scales. Spatial two-point correlation functions 
can take different forms (e.g. linear, cluster) and are calculated as probabilities of different image events 
or patterns related to a line segment of given length r41. An important feature of the correlation functions 
is the ability to be scaled, by which the resolution of the original correlation function can be upscaled or 
downscaled (Fig. 2a). Upscaling of two-point probability function dates back to the 90s34 and was rou-
tinely performed to coarsen the Guassian random field reconstructions to minimize scarce computational 
and memory resources of that time. Later on, both upscaling and downscaling of hypothetical two-point 
probability functions were used to create synthetic bimodal structures15,16. Rescaling of different types 
of directional correlation functions calculated from multiscale images of real porous media as part of 
the Yeong-Torquato stochastic reconstructions has, to the best of our knowledge, not been previously 
reported. Linear r interpolation is used for downscaling the macroscale image producing an increased 
resolution (a factor of four in Fig. 2b); a similar approach was used for upscaling the correlation function 

Figure 2. Example of four times downscaled correlation functions for macroscale image. Inset shows a 
magnification of the beginning part of the functions.
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resulting in a coarsening of the resolution (SI Fig. 6). One of the main advantages of rescaling correlation 
functions is the ability to stochastically reconstruct images originally different in resolution into images 
with identical resolution, i.e., representing a super-resolution process for binary image42. This approach 
does not require any assumptions about unresolved spatial information (e.g., about fractal characteris-
tics43). The latter means that smooth interpolation does not necessarily produce similar results compared 
to correlation functions calculated directly on the magnified image. Nevertheless, this is exactly what 
we want at this stage, as higher resolution details are implemented later. Downscaling and upscaling 
by interpolation provides reasonable accuracy for our images, as was demonstrated in a comparison 
between reconstruction tests on some simple images involving both rescaled correlation functions and 
direct image scaling (see SI for details).

The reconstruction procedure involves developing all images (three in the current example) with the 
same resolution: our example considers 1 μ m resolution, the intermediate of three scales, to demonstrate 
both up and downscaling procedures. In theory, images of identical resolution can be based on any of 
the original scales, although the smallest-scale resolution would be preferred. Downscaling the correla-
tion functions for the 4 μ m resolution macroscale image four times produces a reconstructed image of 
1 μ m resolution at the microscale. To illustrate the applicability of the method to other reconstruction 
techniques such as multiple-point statistics, simple coarsening of the images is applied for nanoscale 
image before reconstruction rather than rescaling the correlation functions (the original nanoscale image 
resolution was coarsened four times by image rescaling, i.e., from 4002 to 1002 pixels, which produced 
a relatively similar reconstruction as based on a set of rescaled correlation functions with some loss of 
porosity, see examples and discussion in SI Fig. 7–9). Three images of equal size (40962 pixels) are gen-
erated with a resolution of 1 μ m based on correlation functions for macro, micro and nanoscale images. 
For reasons discussed in SI (SI. 2 and SI Fig. 5), nanoscale image tiling was used, which involved a 
reconstructed 10242 pixel image that was multiplied four times to obtain a 40962 pixel image. By applying 
periodic boundary conditions during stochastic reconstruction, tiling produces smooth images without 
edge connection problems. Input images and resulting stochastic reconstructions are shown in Fig.  3 
(separate images are also available in SI). Methodological details about stochastic reconstructions are 
covered in the Materials and Methods section.

Merging multiscale images. The overall workflow schematic for merging spatial information from 
macro, micro and nanoscale images is shown in SI Fig. 10. Once images of similar size and resolution 
have been created from rescaled correlation functions, the workflow proceeds with the actual merging 
step. This involves a step by step embedding of all phases according to the following sequence (based 
on the shale rock data for the first case). The example considers a two-step infilling of the non-mineral 
phase (white coloured phase in Fig.  4); in theory merging scales could also be applied to the mineral 
phase if subsequent higher resolution images exist with identification of different minerals. At first, we 
merge macro and microscale information by substituting mineral and kerogen phases (purple on Fig. 4) 
into the white phase on the macroscale image to obtain the combined macro-microscale image. Step 
two involves merging the previously obtained image with nanoscale information: the kerogen structure 
is substituted (orange on Fig. 4) into the white phase. Note that the white phase before each infilling step 
represents a phase which is not properly spatially resolved and, thus, requires information substitution 
from a higher-resolution imaging method. In summary, embedding is performed by overlaying three 
stochastic reconstruction images with decreasing scale (increasing resolution) whereby the mineral phase 
(blue on the macroscale and purple on the microscale) is opaque and the non-mineral phase (white) is 
transparent for the next higher-resolution scale (Fig. 4). For the second case of multiscale porosity, the 
merging procedure is similar, except that white and black phases are treated differently. The final fused 
image (Fig. 5) is shown in binary way to clearly highlight the multiscale pore network (shown in black) 
and solids (white).

While the overall methodology is similar for both examples, there is a difference in the way images 
are merged and phases combined. The first example is specifically designed for applications where a spa-
tial arrangement of numerous phases, materials or values is important: e.g., for 1) multiphase materials 
such as composites41,44, 2) soil moisture, carbon fluxes or vegetation maps11,12, 3) porosity, permeability 
and other hydraulic properties distributions5,7,8,45. Our second example highlights the problem of merg-
ing multiscale pore-networks that can be used for pore-scale modelling of effective properties (such 
as apparent and relative permeabilities10,25–29) or utilized for flow and transport simulations in highly 
heterogeneous formations3,4,46,47. An example involving both approaches can be important for modelling 
shale gas production rates, or for multiphase flow in mixed-wet systems where knowledge of not only 
the pore-network itself, but also of pore forming material is crucial to properly quantify desorption rates 
or menisci configurations10,30. All full size fused images from these examples are available as 40962 pixels 
tiff files and are included into SI.

Discussion and Outlook
The methodological framework for merging spatial information from different scales into a single dataset 
has many potential applications. The relevance of this method to earth sciences was illustrated by solving 
the long standing challenge of combining multiscale structural information for shale rock. The backbone 
of our method is based on stochastic reconstructions using rescaled correlation functions. This stochastic 
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approach is especially useful in case high-resolution data cannot be obtained for the entire object under 
study, a case that exists for shales as FIB-SEM/SEM imaging is too laborious to be performed within the 
whole volume of the rock sample. However, for reasons of display clarity, the test problem was solved in 
2D only, although the extension to 3D is straightforward48. Note that 3D problems can be solved using 
only a set of 2D images (cross-perpendicular 2D cuts for anisotropic 3D structures) as input data, thus 
highlighting another very important advantage of the stochastic approach. It is important to mention that 
for porous media applications such as the shale example considered here, 3D realization of our technique 
with real scale ratios will result in large 3D images with over a billion of voxels. With recent advance-
ments in CFD/pore-scale modelling on the core-scale volumes49,50, our methodology is now also very 

Figure 3. Original segmented images (a–c) and corresponding stochastic reconstructions (d–f) used for 
image fusion. Original macroscale (a), microscale (b), and nanoscale (c) image. Reconstructed macroscale 
(d), microscale (e), and nanoscale (f) image. Insets show magnified area to compare with original image.
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appealing for upscaling of porous media properties, or for verifying other approaches such as averaging/
homogenization51,52, pore-network generation25–27, or continuum Darcy-scale simulations28,46,47.

Other advantages of the data fusing method include: (i) provided that input data is representative for 
all given scales and phases, merging can be performed using limited data (i.e. a single REV size image 
for each embedded phase suffices), (ii) a combination of any practical number of scales and/or images 
can be performed, and (iii) for each of the final phases, the resulting image is statistically similar to the 
original images. Rescaling of correlation functions for obtaining a multiscale image has several additional 
benefits (based on the shale rock example): (i) it keeps phase ratios constant for any rescaling, and (ii) it 
does not produce “pixelized” cubical objects during downscaling (SI Fig. 7). The rescaling reconstruction 
can be further refined by incorporating information from higher-resolution images for cross-correlation 
with lower-resolution images or by performing rescaling using so-called basis functions44,53.

At this stage the abilities of the proposed method are limited mainly by 1) computational resources 
(as merging scales of higher resolution contrasts requires stochastic reconstructions of larger images), 
and 2) accuracy of the stochastic reconstructions. The first limitation can be effectively resolved by 

Figure 4. A step by step embedding of three phases (minerals, kerogen, and pores) by fusion of three 
stochastic reconstructions. Phases are combined as follows: step 1 combines (i) resolved mineral (blue) 
and unresolved non-mineral phase (white) on macroscale image plus (ii) mixture of resolved minerals 
and kerogen phases (purple) and unresolved kerogen with nano-pores (white) on microscale image; step 
2 combines the output of step 1 plus (iii) resolved kerogen (organic matter) phase (orange) and resolved 
kerogen nano-porosity (white) on nanoscale image.
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incorporating hierarchical stochastic reconstruction methods54,55, implementing some means of paral-
lelization56 and more sophisticated pixel/voxel interchange strategies55,57, or by using tiling. Details on 
computing resource specifications and the computation times for the current example are provided in 
SI (section SI. 6). Reconstruction accuracy can be further improved by using a more comprehensive set 
of correlation functions to better capture image information content, as at present no universal method 
exists58,59. A detailed discussion on current issues related to reconstruction accuracy was recently pub-
lished60 and is not reported here. It was proven15 that an intact autocorrelation (two-point probability) 
function for a superimposed bimodal structure is the same as for a fully resolved image. This leads us to 
conclude that the accuracy of our merging methodology should depend only on the accuracy of the sto-
chastic reconstruction. The main drawback of the current realization is that cross-correlations between 
different phases during merging are not taken into consideration. This can be an issue if non-stationarities 
or transition zones are present at border regions between different phases (i.e., correlation functions for 
a material close to an interface is different from the bulk phase). Such information is not available 
in our synthetic dataset, as interfaces between embedded phases are not resolved on images (e.g., the 
kerogen-minerals interface is not captured on an SEM image) and requires more research. If better input 
data can be obtained, cross-correlations can be effectively implemented during merging procedures as a 
separate simulated annealing cycle. The same approach can be used for “stitching” together tiles obtained 
from rescaling and reconstruction of multiple input images derived from the same spatial scale.

Having numerous advantages, correlation functions are not the only stochastic reconstruction methods. As 
mentioned earlier, other techniques include 1) Gaussian random fields39, 2) multiple-point statistics19,20,37,38, 
3) entropic descriptors61, 4) morphological algorithms23,24, and 5) process-based or grain algorithms62,63. 
Multiple-point methods, for instance, can be easily implemented here by scaling all input images to a fixed 
resolution, as was done with the nanoscale image in our test problem. Many possibilities exist to hybridize 
our approach. For example, for sedimentary rocks, multiple-point methods can be used for the macroscale, 
process-based methods can be used for the microscale and correlation functions for the nanoscale. Irrespective 
of the reconstruction method implemented, any number of phases can be implemented by multiphase seg-
mentation64. For example, in our shale rock test case, microscale pores and chalcedony porosity in the mineral 
phase could be incorporated28. The basic idea of embedding information into different phases is shown in SI 
Fig. 11. This shows that however the realization of merging (or superimposing) in current examples is similar 
to that in the pluri-gaussian methodology, it is actually more flexible and allows for more diverse superpo-
sitioning. Tiling (or other modifications) can be also implemented at this stage to incorporate information 
from different images of the same phase, e.g. numerous SEM images of kerogen with different pore structure 
and porosity values28. Different degrees of determinism can be employed during fusing as, for example, if 
the coarsest information available covers the whole object under study a direct structure can be used during 
merging instead of stochastic reconstruction (SI Fig. 12). The number of phases and reconstruction accuracy 
can also be significantly increased by multiphase reconstruction methods45,55,65.

Figure 5. Multiscale pore network obtained from fusing three different scales representing macrocracks, 
microscale and nanoscale porosity. Merging is performed in similar manner as on Fig. 4; porosity is shown 
in black, while white represents solids.
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In addition to applications in the aforementioned scientific fields, the multiscale data fusion meth-
odology can help resolve a number of other fundamental challenges, such as: 1) to study and determine 
REVs66 of physical parameters used (coupled with pore-scale modelling) in large-scale simulation models 
of flow, mass transfer and electromagnetic or seismic wave propagation, 2) to reconstruct statistically 
inhomogeneous random media67 by sequential reconstruction and subsequent merging of homogeneous 
parts, and 3) to compress voluminous images by representing them as numerous sets of correlation func-
tions allowing reconstruction on a short notice as an efficient way of data storage and retrieval.

Materials and Methods
To stochastically reconstruct each single-scale image for a given size we utilize different sets of (rescaled) 
directional correlation functions40,68 computed from original binary images of real rocks. This involves 
the Yeong-Torquato technique35 based on simulated annealing optimization69. In this study three types 
of correlations functions are employed: (i) the two-point probability function S2 describing the probabil-
ity that two points separated by a vector displacement ( , )r x x1 2  between x1 and x2 lie in the same phase, 
(ii) the linear function L2 describing the probability that the whole segment r lies within the given phase, 
and (iii) the two-point cluster function C2 describing the probability that two point separated by r lie in 
the same cluster. Reconstructions using S2 alone are known to be inaccurate due to the numerous degen-
eracy states and insufficient information content59. Simultaneous use of S2 and L2 was shown to improve 
reconstruction quality significantly70 and addition of C2 was effective in solving connectivity issues36,44. 
It is well known that two-point probability functions do not discriminate between binary phases, this 
means that one cannot improve statistical information for a given structure by computing both ( )S w

2  and 
( )S b
2  (superscript refers to the binary phase, which is either white or black). The L2 and C2 functions, 

unlike two-point probability functions, do discriminate between phases and can be utilized simultane-
ously to increase information content of the correlation function sets used for the reconstruction proce-
dure. We calculate S2, L2 and C2 functions in two orthogonal and two diagonal directions, which were 
then used separately during reconstruction40.

Provided with correlation functions, we reconstruct spatial structure using the Yeong-Torquato tech-
nique, which tries to match correlation functions of a given realization with an original reference struc-
ture by pixel permutations. If a set of two-point correlation functions used in reconstruction is provided 
in the form of ( )α rf 2 , where α is a type of correlation function and r is a segment of varying length, the 
difference between two realizations of the structure can be expressed as the sum of squared differences 
between sets of correlation functions:35,40,68

∑ ∑= ( ) − ( ) ,
( )α

α αˆE w [f r f r ]
1a r

2 2
2

where ( )αf r2  and ( )
α

f̂ r2  are the values of the correlation function sets for two realizations (where the 
former represents a reference structure while the latter represents the structure under reconstruction), 
wα is a weighting factor used to improve convergence. In Eq. 1 E represents the “energy” of the system, 
which is minimized by the simulated annealing algorithm. Initially, we create a random structure and 
start to change pixel positions, while checking the system’s energy according to Eq. 1. Because at the 
beginning of this process the characteristic sizes of phase aggregates are typically smaller than for the 
original image, it is reasonable to accept more permutations even if they do not reduce E. For the pur-
pose of allowing greater flexibility at the initial stage of the inverse modelling scheme, a cooling schedule 
is invoked for the simulated annealing algorithm which describes the probability of accepting any per-
mutation p in the following way:

( → ) =





, ∆ <
(−∆ / ), ∆ ≥

,
( )

E
E T E

p E E
1 0

exp 0 2
old new

where T is the so-called “temperature” of the system, as interpreted from the Boltzmann distribution 
used in the lower part of Eq. 2, and

∆ = − . ( )E E E 3new old

The initial temperature T is chosen so that the probability p for ∆ ≥E 0 equals 0.548. The idea behind 
the cooling schedule is that simulated annealing will result in a global minimum of energy E, and would 
not get stuck in some local minima. From numerous trials and experience in reconstructing different test 
cases, we chose a slightly slow cooling schedule based on geometrical progression of the form:

( ) = ( − )λ, ( )T k T k 1 4

where k is time step and λ  is a parameter smaller but close to unity.
To accelerate simulations, we optimize recalculation of correlation functions to avoid recalculating the 

whole set after each pixel permutation. For this purpose we used a very efficient purpose-built 
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optimization algorithm developed for S2 and L2 functions; a similar approach has not yet been developed 
for the C2 function. Although some speed-up improvements for cluster functions have been reported44, 
reconstructions based on small domain sizes suggests that they are still less efficient compared to S2 and 
L2 functions. Also, instead of random permutations, we adopted a relatively simple permutation approach 
following ref. 70 . This involved (i) choosing a random location within a phase of interest, and (ii) choos-
ing two random directions in which two pairs of pixels with a minimum distance in-between are selected 
such that they satisfy the conditions of lying in opposite phases and at the interface. Finally, further 
reduction in computational effort can be based on limiting the length of segments used for calculating 
correlation functions for the reconstruction procedure, i.e. by applying a cut-off to r .

Periodic boundary conditions were applied for correlation function evaluation during both the refer-
ence set evaluation and reconstruction procedure. The reconstruction procedure was terminated after 106 
consecutive unsuccessful permutations. We used the annealing schedule parameter λ  =  0.999999 for all 
reconstructions. Weighting factors wα were chosen according to the recently proposed methodology71. 
Rescaling was performed only for the macroscale image as explain in Fig. 2b by taking averages between 
adjustment points. During the reconstruction procedure each direction for each function is included 
separately in Eq. 1. Following sets of correlation functions were used: − −( ) ( ) ( )S L Lw

2 2
w

2
b  for macroscale 

and microscale images (evaluated in four directions, resulting in a total of 12 correlation functions), and 
− − −( ) ( ) ( ) ( )S L L Cw

2 2
w

2
b

2
b  for the nanoscale image (resulting in a total of 16 functions). Details about 

correlation function sets as well as resulting full images for each scale can be found in SI Fig. 2–5.
Macro and microscale images were binarized by the indicator kriging segmentation method72,73; the 

nanoscale SEM image was segmented as described in ref. 28.
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