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As microtubule-based structures, primary cilia are typically present on the cells during the
G0 or G1-S/G2 phase of the cell cycle and are closely related to the development of the
central nervous system. The presence or absence of this special organelle may regulate
the central nervous system tumorigenesis (e.g., glioblastoma) and several degenerative
diseases. Additionally, the development of primary cilia can be regulated by several
pathways. Conversely, primary cilia are able to regulate a few signaling transduction
pathways. Therefore, development of the central nervous system tumors in conjunction
with abnormal cilia can be regulated by up- or downregulation of the pathways related to
cilia and ciliogenesis. Here, we review some pathways related to ciliogenesis and
tumorigenesis, aiming to provide a potential target for developing new therapies at
genetic and molecular levels.
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INTRODUCTION

Glioblastoma
GBM is the most common and aggressive primary brain tumor in adults, accounting for 45.6% of
primary malignant brain tumors, despite its low annual incidence of 3.1 per 100,000 compared with
that of cancers deriving from other organs such as the breast and lung, with increased incidence and
decreased survival rate with age (1). Majority of GBM patients suffer recurrence within 32–36
months, and median survival is approximately 10 months (2). Necrosis and endothelial
proliferation are the defining histopathologic features of primary GBM, qualifying it as the
highest grade of brain tumors in the World Health Organization (WHO) classification, i.e., grade
IV. Secondary GBM refers to a minority of GBMs evolving from WHO grade III or IV gliomas (3).
Clinical course of tissue destruction, edema, and epilepsy contribute to the clinical symptoms
including personality changes, mood disorders, sensorimotor deficits, aphasia, and epilepsy (4, 5).
Previous studies have suggested that adult GBM may be derived from neural stem and progenitor
cells, which are located in the subventricular zone, subcortical white matter, and dentate gyrus of the
hippocampus (6, 7). Standard treatment of GBM includes surgery, radiotherapy, antiangiogenic
therapy, and alkylating chemotherapy with drugs such as temozolomide (TMZ). However,
therapeutic efficacy is still limited despite rapid progress in cancer therapy. Consequently, there
is a need for new therapeutic strategies for GBM. Thus, finding molecules and signaling pathways
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associated with proliferation, malignant development, and
therapeutic resistance is significantly necessary to identify new
targets for developing novel approaches for GBM treatment.

O6-methylguanyl DNA methyltransferase (MGMT), a DNA
repair enzyme that counteracts the toxicity of TMZ, plays an
important role in the proliferation and therapeutic resistance of
GBM and remains the most significant biomarker in clinical
decision making, especially in GBM recurrence (8, 9). As a
downstream gene of the sonic hedgehog (SHH) pathway,
whose activation depends on the presence of primary cilia, the
expression level of MGMT is closely correlated with primary cilia
and related pathways, accounting for the close relationship
between GBM and primary cilia. Additionally, aberrant cilia
have been found in six of seven biopsies of GBM patients,
providing further evidence that primary cilia play an important
role in the genesis and development of GBM (10).

Primary Cilia
Cilia are microtubule-based organelles extending from the surface
of cells, and they can be classified into motile and non-motile
(primary) cilia (11). The latter are confirmed as highly conserved
sensorial antenna that may detect several types of stimulations
from the environment, growth factors, neurotransmitters, and
even light (e.g., photoreceptor cells). This organelle is 1~10 mm
long and 0.2~0.3 mm wide, and its core is an axoneme
characterized as 9 + 0 ring structure composed of nine pairs of
microtubule doublets surrounded by a bilayer lipid membrane in
continuity with the plasma membrane (12). The cilia possess
specific proteins and lipids that are required to maintain their
bioactivity. The continuous region sinks in the cell body to form a
structure called “ciliary pit” or “ciliary pocket,” which is closely
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related to endocytosis and formation of endosomes (13). Primary
cilia usually exist in quiescent cells as basal bodies, which are
modified centrioles, to initiate ciliogenesis, and they may be
utilized to organize the mitotic spindle in cell division (11, 14).
When the mitosis is complete, the mother centriole tends to
transform into two distinct centrioles, but only one mature
centriole is capable of nucleating a primary cilium at its distal
end, and it carries fibrous appendages and satellites (15). To
organize and maintain the organized cilia, the intraflagellar
transport (IFT) is developed to transport the components used
to form the axoneme to the ciliary tip via a bidirectional
microtubule-based transportation system between the ciliary tip
and base, which is operated by kinesin and dynein (16).
Additionally, the primary cilia regulate the proliferation of
other ciliated cells living in the microenvironment adjacent to
the ciliated cell via ciliary tip excision and release of ciliary
vesicles (10).

Primary cilia are highly associated with GBM development
and therapeutic resistance. Cilia-related signaling pathways,
including the SHH, cell cycle–related kinase (CCRK), and
histone deacetylase 6 (HDAC6) pathways, are closely
correlated with the proliferation, malignant development, and
therapeutic resistance of GBM. Other cilium-related pathways,
including the lysophosphatidic acid receptor 1 (LPAR1) and
pericentriolar material 1 (PCM1) pathways, inhibit the
proliferation and development of GBM cell lines. Epidermal
growth factor receptor (EGFR), alpha-type platelet-derived
growth factor receptor (PDGFRɑ), MGMT, and isocitrate
dehydrogenase 1 (IDH1) pathways promote GBM therapeutic
resistance, which is associated with or modulated by the
assembly and disassembly of primary cilia (Figures 1 and 2).
FIGURE 1 | Cilia-related pathways in normal cells.
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PATHWAYS RELATED TO PRIMARY
CILIA AND GBM

The SHH Pathway
It is widely known that the SHH pathway is implicated in several
physiologic and pathologic processes such as angiogenesis,
development of the central nervous system (CNS), tumor
proliferation, therapeutic drug resistance, and progression of
some of the CNS tumors including GBM. Shh is one of the
putative signaling molecules, implicated in the regulation of the
CNS polarity and neural patterning (17). Shh is initially
synthesized as a 45 kDa precursor protein, which is
automatically cleaved into two secreted peptides, namely, 19
kDa Shh-N (amino terminus) and 26 kDa Shh-C (carboxy
terminus). Shh-N has been shown to be the key location of the
signal-mediating function of Shh, while Shh-C mediates its auto-
proteolysis reaction. Auto-proteolysis results in the addition of a
cholesterol molecule at the C-terminus of Shh-N and a palmitoyl
group at the N-terminus of Shh, resulting in the formation of a
dual lipid modified Shh-N, an activated form of Shh with
increased inductive potency and better secretive regulation,
transportation, and distribution ability, thereby enabling long-
range SHH signaling (18–20).

The genes that regulate the presence or absence of cilia affect
the activation of the SHH pathway, as the transduction and
activation of this pathway require primary cilia as the structural
base. It has been reported that Shh levels are much higher in the
microenvironment of GBMs than in other tissues and that the
activation of SHH signaling pathway requires the binding of Shh
to the Patched (PTCH) mediated Smoothened (SMO) (PTCH-
SMO) receptor complex (21), consequently resulting in a more
activated SHH pathway in GBM. PTCH contains a sterol-sensing
domain, which interacts with the cholesterol portion of the dual-
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lipid-modified Shh-N (21). PTCH is believed to suppress SMO
activity directly and indirectly; however, when it binds to Shh,
SMO is activated and stabilized, initiating the downstream
signaling cascade by encoding membrane proteins, which are
similar to G-protein-coupled receptors (22). While primary cilia
exist, the signal transduction process tends to be initiated by the
binding of Shh protein in the extracellular matrix to PTCH1
located on the membrane surrounding the axoneme of the
primary cilia. The binding between these two molecules
triggers PTCH1 removal from the primary cilia, followed by
translocation of SMO from the adjacent membrane to the cilia,
where it inhibits the transformation of the active form of Gli
transcription factor family (GLIA) into the repressor form,
consequently leading to the accumulation of GLIA. GLI, Cos2,
Fu, and suppressor of fused (Sufu) form a tetrameric complex for
the downstream signaling process. This complex results in the
transcription activity of GLI. Cos2 is a kinesin-like protein,
which is mainly a motor domain that binds to ATP and
microtubules (23). Fu is a segment polarity protein, which
binds to Cos2 via its carboxy-terminal and is phosphorylated
in response to hedgehog signaling (24). Sufu is a negative
regulator of the SHH signaling pathway. When Shh ligand is
not present, Sufu directly binds to GLI and inhibits its
translocation to the nucleus, resulting in the cleavage of GLI
by proteasomes into transcriptional repressors, thereby
preventing the downstream pathway activation. Various
molecules in the Gli transcription factor family display
different functions, such as regulation of the transcription of
several oncogenes and tumor-suppressor genes, modulation of
tumor progression, and development of resistance to some
therapeutic drugs (25). For instance, MGMT, a DNA repair
enzyme that can repair damage in cancer cell DNA induced by
some alkylating agents (e.g., TMZ), contributes significantly to
FIGURE 2 | Cilia-related pathways in glioblastoma (GBM) cells.
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the development of resistance to therapeutic drugs specific to
target cell DNA (e.g., TMZ) (26). Moreover, MGMT is
considered a downstream gene whose transcript level can be
regulated by GLI1 (26, 27), a member of Gli transcription factor
family. When the expression of genes upstream of the SHH
pathway is upregulated, the active form of GLI1 leads to its
accumulation and translocation to the nucleus, and then, it
upregulates the expression of MGMT at the transcription level.
The increased expression of MGMT results in enhanced repair of
destroyed DNA, which in turn leads to development of resistance
to TMZ. A recent study revealed that acquired kinase inhibitor
resistance is associated with upregulation of ciliogenesis, failure
of control of cilia length, and increased activation of the SHH
pathway. Manipulating cilia length and integrity via Kif7
knockdown can resensitize GBM cells and confer drug
resistance (28). Collectively, the SHH pathway, the activation
of which depends on primary cilia, can regulate the development
of malignant phenotype and resistance towards therapeutic
drugs via downstream transcription factors, which can regulate
several oncogenes and tumor-suppressor genes.

The LPAR1 Signaling Pathway
Lysophosphatidic acid (LPA), which exists widely in the human
body, is a small bioactive glycophospholipid extracted from
membrane phospholipids with many different biological
functions associated with GBM progression, such as
stimulation of cell proliferation, cytoskeleton recombination,
cell survival, cell differentiation, and DNA synthesis and ion
transport, via binding to a variety of G-protein-coupled
receptors (9). LPAR1 acts as the central signaling hub for
extracellular-intracellular and intracellular-extracellular signal
transduction, mediating various molecular and biological
functions, including cell survival, cell migration, cell adhesion,
cytoskeletal changes, cell proliferation, immune function, Ca2+

mobilization, and myelination (29, 30).
LPAR1 is associated with GBM, and it has been confirmed

that the primary cilia can moderate GBM development and cell
proliferation in vivo and in vitro via the LPAR1 signaling
pathway (31). A recent study clearly demonstrated the
interaction between cilia and LPAR1 signaling pathway in
GBM cells (31). When cilia are present, LPAR1 is sequestered
in the primary cilia, and compartmentalization of LPAR1 and its
downstream effectors, Gɑ12 and Gɑq, which are located on the
cell membrane, prevents the interaction between LPAR1 and
G-protein-coupled receptor subunits, restricting its cell
proliferative signaling. In contrast, loss of the primary cilia
eliminates spatial barriers and results in redistribution of
LPAR1 to the plasma membrane, where it binds to Gɑ12 and
Gɑq and facilitates the activation of downstream pathways,
promoting the proliferative function of LPA and unlocking the
potential for unlimited proliferation of GBM cells, consequently
maintaining a highly proliferative phenotype. LPAR1 inhibitor
Ki16425 reduces cell growth only in deciliated astrocytes, thereby
validating the abovementioned findings. Furthermore, Gɑq
activates phospholipase C, which produces diacylglycerol
(DAG) from phosphatidylinositol 4,5-bisphosphate. DAG
activates classic and novel protein kinase C (PKC) (32).
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Valdés-Rives et al. conducted in vitro experiments and found
that LPAR1 induces PKC ɑ isozyme (PKCɑ) translocation from
cell membrane to the nucleus in GBM cells viaG-protein-coupled
receptors, promoting GBM cell growth (33). Taken together, the
loss of cilia can induce LPAR1 relocation and activate
downstream G-protein-coupled receptor signaling pathways,
enhancing the proliferation of GBM cells. This is suggestive of a
potential target site of GBM prevention and treatment.

The CCRK-ICK/MAK Pathway
CCRK overexpression is found in conjunction with loss of cilia
among various CNS tumors, including GBM, and the high
expression level is typically in concert with the high mortality
and poor prognosis of patients with CNS tumors. Additionally,
homologs of CCRK, such as LF2 in Chlamydomonas and
NIH3T3 in zebrafish, can regulate the formation and length of
primary cilia (34, 35). Collectively, these findings suggest that
CCRK may play a key role in the human primary cilia formation,
subsequently contributing to the occurrence and development of
several tumors. Yang et al. indicated that overexpression of
CCRK, whose upstream regulator is phosphoinositide 3-kinase,
can induce loss of cilia through its substrate ICK/MAK,
consequently promoting the proliferation of GBM cells (36).
Overexpression of CCRK leads to a loss of cilia induced by serum
starvation via phosphorylation activation of ICK, resulting in a
reduced ability to inhibit cell cycle re-entry of cilia and
deregulation of the cell cycle progression, as determined via
EdU incorporation (37). The majority of cilia loss is induced by
the activation of ICK, which is caused by the kinase activity of
CCRK, and the rest is caused by the structure of non-
phosphorylated ICK. Therefore, CCRK is considered as an
oncogene owing to its ability to induce cell cycle progression
and increase the proliferative capacity of GBM cells. Accordingly,
depletion of CCRK and ICK can inhibit the proliferation of
cancer cells by stabilizing the structure and function of the
primary cilia in a KIF3a-dependent manner (35). In addition,
the primary cilia–dependent SHH pathway is also regulated by
CCRK, as CCRK possesses the ability to inhibit ciliogenesis. As
an early event in the activation of the SHH pathway,
translocation of Gli3 is significantly upregulated following
depletion of CCRK (36).

The HDAC6-Related Pathway
As an epigenetic modification, acetylation induced by histone
acetyltransferase (HAT) can reduce the expression level of target
genes. HDAC6 was initially found to be a deacetylase that can
remove an acetyl group from the histone and, subsequently,
restore the expression level of genes downregulated by
acetylation (38). Therefore, the balance between HAT and
HDAC6 levels plays an important role in the maintenance of
normal expression of genes encoding structural or non-structural
proteins, including some oncogenes and tumor-suppressor
genes, and consequently, this balance maintains the
homeostasis in the human body and prevents the occurrence
and development of some tumors. When the balance between
HAT and HDAC6 levels is dysregulated, the probability of tumor
occurrence significantly increases due to an imbalance in the
August 2021 | Volume 11 | Article 718995
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expression of oncogenes and tumor-suppressor genes. Apart
from histone deacetylation, HDAC6 can also deacetylate some
proteins located in the plasma or on the cell membrane, such as
acetylated a-tubulin (27). As the assembly of the primary cilia
requires acetylated a-tubulin, HDAC6 may deacetylate and
destroy the protein component needed to form the axoneme of
the primary cilia. Therefore, high expression of HDAC6 tends to
appear in concert with the loss of the primary cilia in GBM
biopsies and cultured cell lines. Taken together,HDAC6 has been
gradually considered as an oncogene as its overexpression may
promote malignancy and enhanced proliferation via inhibition
of assembly of the primary cilia. Thus, depletion of HDAC6
levels, which results in promotion of ciliogenensis as well as cell
apoptosis induced by TMZ and reversal of malignancy, is
becoming a potential strategy in developing new therapies for
GBM. In addition to the reversion of malignancy induced by
HDAC6 depletion, alteration in the sensitivity of GBM cells to
TMZ is triggered by not only HDAC6 depletion but also
deactivation of the SHH pathway due to the loss of cilia,
leading to a reduction in the MGMT level and DNA repairing
ability (39, 40).

The PCM1-Regulated Pathway
PCM1 is an essential pericentriolar protein that plays a
significant role in cell division and survival, especially in
centrosome stability, microtubule and actin organization, and
centriolar duplication prior to mitosis and ciliogenesis, in normal
and malignant cells, such as GBM cells (41). Centriolar satellites,
majorly composed of PCM1, are non-membrane cytoplasmic
granules that are located around the centrosome and play crucial
roles in transporting centrosome proteins from the cytoplasm to
the centrosome during centrosome assembly or ciliogenesis.
Therefore, diseases, such as ciliopathies, may possibly occur
when centriolar satellites become deficient (42). In addition,
PCM1 has been shown to bind to several centrosome proteins
to ensure that they are accurately located (43, 44). Thus, PCM1,
centriolar satellites, and the centrosome are significantly
implicated, closely correlated, and function together in cell
cycle dynamics and ciliogenesis in GBM cells.

As a key component of centriolar satellites and the functional
activity of the centrosome, PCM1 plays a vital role in GBM cell
mitosis, cell cycle, cell proliferation, and sensitivity to standard-
of-care therapeutic agent TMZ via regulation of ciliogenesis (41).
Frontiers in Oncology | www.frontiersin.org 5
PCM1 restricts Mindbomb 1, an E3 ligase associated with Notch
signaling, to satellites via tethering, and thus, prevents its
translocation to centrioles, which would otherwise promote
Talpid3 destabilization through polyubiquitination, failure to
recruit ciliary vesicles associated with Talpid3-bianding protein
Rab8a, or inhibition of cilium assembly (45, 46). PCM1-
associated cilia formation thus inhibits GBM progression and
cell proliferation. Furthermore, studies have found that sorting
nexin 17, a P-selectin binding protein, can recruit and stabilize
ubiquitin-specific protease 9X, a deubiquitinating enzyme that is
able to regulate the integrity of centriolar satellites in mitotic
cells, antagonize Mindbomb 1-induced ubiquitination and
degradation of PCM1 via binding to PCM1, and inhibit PCM1
ubiquitination during ciliogenesis (47, 48). In addition, Plk4, a
conserved protein kinase that regulates the centriole duplication
cycle, is required for PCM1 phosphorylation, followed by
adequate spatial distribution and organization of centriolar
satellites, which facilitate ciliogenesis (49, 50). By sequestering
proteins in the centriolar satellite compartment, PCM1 promotes
ciliogenesis, thereby inhibiting GBM progression.
PATHWAYS RELATED TO CILIA AND
THERAPY RESISTANCE OF
GBM SUBTYPES

Based on genomic and transcriptomic data, the Cancer Genome
Atlas Research Network (2008) has provided a detailed view of
the genomic alterations and affected signaling pathways and
stratified GBM into four subtypes: classical, mesenchymal,
proneural, and neural GBM (51). Each subtype displays
different genomic features that affect the resistance
mechanisms associated with or modulated by the primary cilia
(Table 1).

Classical GBM
Classical GBM is defined by EGFR amplification and CDKN2
depletion with a distinct lack of additional abnormalities in TP53,
NF1, PDGFRɑ, or IDH1 genes (60). EGFR extensively regulates
cellular processes during cell development, and it is critically
associated with tumorigenesis and tumor cell invasion (61). EGFR
has been found to be localized on the primary cilia in astrocytes
TABLE 1 | Therapeutic strategy and cilia-related pathways associated with glioblastoma development and therapy resistance.

Cilia-related pathway Promotion/inhibition of proliferation Therapeutic strategy

Pathway involved in GBM development SHH Promote Vismodegib (52), Sonidegib (52)
LPAR1 Inhibit ND
CCRK-ICK/MAK Promote ND
HDAC6 Promote Ricolinostat (53), Citarinostat (53)
PCM1 Inhibit ND

Pathway involved in GBM therapy resistance EGFR Promote Afatinib (54), Dacomitinib (55), Panitumumab (56, 57)
PDGFRɑ Promote SHP099 (58)
MGMT Promote TMZ (59)
GBM, glioblastoma; SHH, sonic hedgehog; LPAR1, lysophosphatidic acid receptor 1; CCRK, cell cycle-related kinase; HDAC6, histone deacetylase 6; PCM1, pericentriolar material 1; EGFR,
epidermal growth factor receptor; PDGFRɑ, alpha-type platelet-derived growth factor receptor; MGMT, O6-methylguanyl DNA methyltransferase; TMZ, temozolomide; ND, not determined.
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and neuroblasts (62). EGFR activates phosphatidylinositol
(3,4,5)-trisphosphate, partly through phosphoinositide 3-kinase-
induced phosphorylation of phosphatidylinositol 4,5-
bisphosphate into phosphatidylinositol (3,4,5)-trisphosphate
and the hydrolysis of phosphatidylinositol 4,5-bisphosphate by
activation of phospholipase C-gamma 2 (63). Following this,
phosphatidylinositol (3,4,5)-trisphosphate activates the Akt
signaling pathway and regulates the cell cycle (64). Amplified
EGFR expression in classical GBM can sustain EGFR signaling,
Akt activity, and DNA repair mechanisms via the primary cilia
and, thus, promote resistance towards EGFR-targeted therapy
(65). In addition, classical GBM has the highest MGMT
methylation rate among the four subtypes, which confers a
strong ability of repairing destroyed DNA and, hence,
resistance to TMZ therapy (66).

Mesenchymal GBM
Mesenchymal GBM is characterized by a high frequency of NF1
mutation/deletion, low NF1 mRNA expression, and PTEN
mutation (60). Studies have shown that a loss of NF1
expression results in resistance to endocrine therapy, through
both estrogen receptor-dependent and -independent
mechanisms in advanced breast cancer (67). However,
associations between NF1 activity and cilia-related therapeutic
resistance in mesenchymal GBM remain unclear.

Proneural GBM
Proneural GBM is characterized by amplification of PDGFRɑ
expression and point mutations in IDH1 and TP53 genes (60).
PDGFRa localizes to the primary cilia in astrocytes and
neuroblasts. PDGFRa receptor in the primary cilium leads to
the onset of a number of downstream signaling pathways within
the cilium, including the Akt and Mek1/2-Erk1/2 pathways, to
regulate the cell cycle and directional cell migration (64). IDH1
mutations have previously been associated with secondary GBM
(68). Hence, amplification of PDGFRa expression can sustain
PDGFRa signaling via the primary cilia and enhance resistance
of proneural GBM to therapy.

Neural GBM
Neural GBM is genetically associated with neural, astrocytic, and
oligodendrocytic gene signatures. Their expression patterns are
similar to those in the normal brain tissue, which can be
differentiated based on the morphology using light microscopy (60).
CONCLUSION

GBM is the most common and malignant brain tumor in adults
with poor prognoses, short recurrence period, and low survival
rate. Common cancer therapies, such as surgical resection,
radiotherapy, and chemotherapy, are widely applied for
treating GBM, but the therapeutic effect remains to be limited.
Therefore, there is a need to explore new therapeutic strategies to
combat GBM. Studies have shown that the primary cilia may
play dual roles in GBM progression, which should be highly
Frontiers in Oncology | www.frontiersin.org 6
considered for devising potential methods of GBM treatment.
Thus, cilia-elated signaling pathways could be novel targets for
GBM treatment.

In this review, we summarized five primary cilium-related
signaling pathways moderating the development and therapeutic
resistance of GBM. The SHH pathway promotes DNA repair and
TMZ resistance. Drugs targeting the SHH pathway have been
developed, of which vismodegib and sonidegib have been approved
by the Food and Drug Administration for treating basal cell
carcinoma (52). Thus, it is necessary to develop SHH inhibitors
for GBM treatment, which is possible. The CCRK-ICK/MAK
pathway induces cilium loss and promotes GBM development.
Drugs targeting CCRK are being developed, but no CCRK-specific
inhibitor is publicly available due to lacking information on the 3D
structure of the CCRK protein (69). Accordingly, research on the
3D structure of the CCRK protein is essential to develop CCRK
inhibitors for GBM therapy. HDAC6 inhibits cilia formation, and
HDAC6 inhibitors ricolinostat and citarinostat are currently being
tested for cancer treatment (53). Therefore, it is necessary to test the
efficacy of these HDAC6 inhibitors and conduct clinical trials for
use in GBM treatment. The PCM1 pathway facilitates cilia
formation and inhibits GBM progression, while the LPAR1
pathway promotes GBM cell proliferation. Considering that no
drugs targeting these two pathways have been reported, it is
possible and suggestive to develop new GBM therapies targeting
the PCM1 and LPAR1 pathways.

In conclusion, further research is required to obtain a deeper
understanding of the potential involvement of and the signaling
pathways related to the primary cilia in regulating cell proliferation
and the impact on GBM development and its resistance to
therapeutic drugs. We expect major progress in the following
years, which may allow for designing cilia-based and molecular
targeted therapies to offer new treatment strategies against GBM.
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