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ABSTRACT

Knowledge of the interactions between proteins and
nucleic acids is the basis of understanding various
biological activities and designing new drugs. How to
accurately identify the nucleic-acid-binding residues
remains a challenging task. In this paper, we pro-
pose an accurate predictor, GraphBind, for identify-
ing nucleic-acid-binding residues on proteins based
on an end-to-end graph neural network. Consider-
ing that binding sites often behave in highly conser-
vative patterns on local tertiary structures, we first
construct graphs based on the structural contexts of
target residues and their spatial neighborhood. Then,
hierarchical graph neural networks (HGNNs) are
used to embed the latent local patterns of structural
and bio-physicochemical characteristics for bind-
ing residue recognition. We comprehensively eval-
uate GraphBind on DNA/RNA benchmark datasets.
The results demonstrate the superior performance
of GraphBind than state-of-the-art methods. More-
over, GraphBind is extended to other ligand-binding
residue prediction to verify its generalization capa-
bility. Web server of GraphBind is freely available
at http://www.csbio.sjtu.edu.cn/bioinf/GraphBind/.

INTRODUCTION

Interactions between proteins and nucleic acids participate
in various biological activities and processes, such as gene
replication and expression, signal transduction, regulation
and metabolism (1–3). Studying the interactions between
proteins and nucleic acids is important for analyzing ge-
netic material, understanding protein functions and design-
ing new drugs. Many experimental methods, such as X-ray,
nuclear magnetic resonance spectroscopy and laser Raman
spectroscopy, are designed to solve the native structures of

complexes to investigate molecular interactions. However,
they are usually time-consuming and costly. It is highly
desirable to develop reliable and accurate computational
methods for recognizing nucleic-acid-binding residues in a
large-scale screening manner (4).

Existing computational methods for recognizing nucleic-
acid-binding residues can be generally divided into two
groups according to the used data types: sequence-based
and structure-based methods. Sequence-based methods,
such as ConSurf (5), TargetDNA (6), DRNApred (4),
SCRIBER (3) and TargetS (7), learn local patterns of bio-
physicochemical characteristics using sequence-derived fea-
tures. For example, in TargetDNA, evolutionary conserva-
tive information and predicted solvent accessibility of pro-
teins are extracted from protein sequences and SVMs are
used to identify DNA-binding residues from their sequence
contexts which are determined by a sliding window strat-
egy (6). The advantage of sequence-based methods is that
they can perform a prediction for any protein from its se-
quence alone. However, their performance could be limited
since the potential patterns of binding residues are not ev-
ident from their sequences alone, but are conserved in spa-
tial structures (8,9). Thus, the features captured from pro-
tein sequences might not be sufficient to represent residues
accurately.

Different from sequence-based methods, the assumption
of the structure-based methods is that structural motifs
with specific functions often behave in highly conservative
patterns on local tertiary structures (8,9). The structure-
based methods can be categorized into the following two
types: (i) template-based methods, such as DR bind1 (10)
and TM-SITE (11), which search for reliable templates for
query proteins by structure comparison and infer interac-
tions between the proteins and nucleic acids according to
the principles of physics and chemistry; (ii) feature-based
machine learning methods, such as aaRNA (12) and Nucle-
icNet (13), which construct classifiers with features derived
from protein structures.

*To whom correspondence should be addressed. Tel: +86 21 34205320; Fax: +86 21 34204022; Email: 2008xypan@sjtu.edu.cn
Correspondence may also be addressed to Hong-Bin Shen. Tel: +86 21 34205320; Fax: +86 21 34204022; Email: hbshen@sjtu.edu.cn

C© The Author(s) 2021. Published by Oxford University Press on behalf of Nucleic Acids Research.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which
permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

http://orcid.org/0000-0001-5010-464X
http://orcid.org/0000-0002-4029-3325
http://www.csbio.sjtu.edu.cn/bioinf/GraphBind/


e51 Nucleic Acids Research, 2021, Vol. 49, No. 9 PAGE 2 OF 17

Functional sites are frequently determined by the local
patterns of tertiary structures beyond sequences (14). We
focus on identifying nucleic-acid-binding residues from pro-
tein structures with feature-based machine learning meth-
ods. One major challenge is how to embed the crucial struc-
tural and bio-physicochemical characteristics for down-
stream binding residue recognition. Previous methods usu-
ally use hand-crafted features to represent structures (12).
These methods require strong domain knowledge, and the
hand-crafted features may fail to capture critical informa-
tion of proteins for specific downstream tasks. Some other
methods encode protein structures into a three-dimensional
(3D) Euclidean space(15,16). For example, DeepSite maps
protein atoms into 3D voxels to represent the protein struc-
tures (16). Then 3D convolutional neural networks (3DC-
NNs) (17) are used to extract abstract features of target
residues from their neighborhood based on the 3D volu-
metric representation (16). There are two potential disad-
vantages in 3D volumetric representation of protein struc-
tures: (i) the sparse and irregular distribution of residues
makes it difficult to represent the neighborhood informa-
tion of residues and (ii) it is difficult to guarantee the in-
variance of rotation and translation in the 3D Cartesian co-
ordinate system. Alternately, DELIA calculates a distance
matrix to represent the distance relationship of the residue
pairs. DELIA treats the structures as 2D images and uses
fixed-size convolution kernels (18) to learn patterns from lo-
cal distance relationship for all residues (19), resulting in in-
complete neighborhood information for some residues and
ignoring the knowledge passing between structural adjacent
residues.

To better capture the protein structure information and
the spatial relationships among residues, graphs are em-
ployed to represent the protein structures, where nodes
represent residues and edges are defined according to the
spatial relationships among residues. The graph represen-
tation can not only be invariant to rotation and trans-
lation, but also handle the varying number of the un-
ordered neighbors of residues. Recently, graph neural net-
works (GNNs) have emerged as powerful tools for graph
data in computational biology (20). For example, Fout et
al. present a GNN-based method for classifying pairwise
residue interactions from protein structures (21). Decagon
predicts the side effects of different drug combinations using
graph convolutional networks (GCNs) (22). DimiG infers
microRNA-associated diseases on an interaction graph us-
ing semi-supervised GCNs (23). Torng and Altman propose
a two-step graph-convolutional (Graph-CNN) framework
for predicting drug-target interactions (24). All the above
studies demonstrate that GNNs are effective in processing
the biological and chemical graph data.

In this study, we propose an accurate nucleic-acid-
binding residues predictor, GraphBind, based on the graphs
constructed from structural contexts and hierarchical graph
neural networks (HGNNs). To extract the crucially local
patterns of structural and bio-physicochemical characteris-
tics from protein structures, for each target residue, we first
construct a graph based on the local environment of the
target residue. Initial node feature vectors consist of evo-
lutionary conservation, secondary structure information,
other bio-physicochemical characteristics and position em-

beddings. Position embeddings are calculated from geomet-
ric knowledge that defines spatial relationship of residues
in the structural context. Initial edge feature vectors are
also derived from the geometric knowledge. Then, we con-
struct a hierarchical graph neural network to learn the la-
tent local patterns for binding residue prediction. Edge up-
date module, node update module and graph update mod-
ule are designed to learn the high-level geometric and bio-
physicochemical characteristics as well as a fixed-size em-
bedding of the target residue. In addition, gated recurrent
units (25) are used to stack multiple GNN-blocks, which
take advantage of all blocks’ information and avoid the gra-
dient vanishing problem. The experimental results demon-
strate the superior performance of GraphBind on nucleic-
acid-binding residue prediction. Moreover, we demonstrate
that GraphBind can be extended to other ligand-binding
residue prediction with promising performance.

MATERIALS AND METHODS

In this section, two benchmark datasets are constructed to
evaluate the performance of GraphBind. Then, graph con-
struction and architecture of HGNNs are introduced. Fi-
nally, evaluation protocol and detailed experimental set-
tings are summarized briefly.

Benchmark datasets

To evaluate the performance of GraphBind and fairly com-
pare it with other methods, we construct two nucleic-
acid-binding protein benchmark datasets from the Bi-
oLiP database (26) and split them into training and
test sets according to the release date. The bench-
mark datasets are available at http://www.csbio.sjtu.edu.cn/
bioinf/GraphBind/datasets.html.

The DNA/RNA-binding proteins are collected from
the BioLiP database, released on 5 December 2018. This
database is a collection of biologically relevant ligand-
protein interactions that are solved structurally in com-
plexes. If the smallest atomic distance between the target
residue and the nucleic acid molecule is less than 0.5 Å plus
the sum of the Van der Waal’s radius of the two nearest
atoms, it will be defined as a binding residue.

BioLiP contains 48133 nucleic-acid-binding sites from
6342 nucleic-acid-protein complexes in 5 December 2018.
These complexes are divided into 4344 DNA-protein com-
plexes (9574 DNA-binding protein chains), 1558 RNA-
protein complexes (7693 RNA-binding protein chains) and
440 DNA-RNA-protein complexes. We exclude the DNA-
RNA-protein complexes to avoid confusion since no an-
notation is made to distinguish DNA- or RNA-binding
residues in the BioLip database. According to the release
date, protein chains released before 6 January 2016, are as-
signed into original training sets (6731 DNA-binding pro-
tein chains and 6426 RNA-binding protein chains), while
the remaining protein chains are assigned into original test
sets (2843 DNA-binding protein chains and 1267 RNA-
binding protein chains).

DNA/RNA-binding residue prediction suffers from the
data imbalance problem that the number of DNA/RNA-
binding residues is much smaller than the number of non-
binding residues, so we apply data augmentation on the

http://www.csbio.sjtu.edu.cn/bioinf/GraphBind/datasets.html
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Table 1. Summary of the benchmark datasets

Type Dataset Nprotein
a Npos

b Nneg
c PNratiod

DNA DNA-573 Train 573 14479 145404 0.100
DNA-129 Test 129 2240 35275 0.064

RNA RNA-495 Train 495 14609 122290 0.119
RNA-117 Test 117 2031 35314 0.058

aNumber of proteins.
bNumber of binding residues.
cNumber of non-binding residues.
dPNratio = Npos/Nneg.

original training sets. Following previous studies (3,4,27–
29), we transfer binding annotations from similar protein
chains to increase the number of binding residues in the
training sets for the following reasons: (i) proteins with sim-
ilar sequences and structures, although could derived from
different organisms, may have the same biological function;
(ii) different resolutions may lead to minor differences in the
structure for the same protein. To this end, we first apply
bl2seq (30) (E-value < 0.001) and TM-align (31) to assess
the sequence identity and structural similarity between pro-
tein chain pairs. Second, we cluster the chains that have se-
quence identity >0.8 and TM scores >0.5. Third, the anno-
tations of protein chains in the same cluster are transferred
into the chain that has the largest number of residues. Af-
ter transferring binding annotations, we further remove the
redundant protein chains with CD-HIT (32) to reduce the
sequence identity in the training set to be less than 30%. Fi-
nally, we obtain 573 DNA-binding and 495 RNA-binding
protein chains which are served as the training sets. The data
augmentation increases the numbers of DNA- and RNA-
binding residues by 30.7% and 24.3%, respectively. Protein
chains from the original DNA/RNA-binding test set with
over 30% sequence identity measured by CD-HIT (32) to
any chain in the DNA/RNA-binding training set are re-
moved. Finally, we obtain 129 DNA-binding proteins and
117 RNA-binding proteins as the DNA- and RNA-binding
test sets, respectively. The details of the datasets are sum-
marized in Table 1 (see Supplementary Table S1 for training
sets without data augmentation).

Graph construction based on structural contexts

Multiple types of sequence-based and structure-based fea-
tures are extracted, including pseudo-positions, atomic fea-
tures of residues, secondary structure profiles and evolu-
tionary conversation profiles. Then, a sliding sphere defined
in the 3D space is used to extract the structural context for
the target residue centering at the residue. The adjacent ma-
trix calculated based on the pseudo-positions of residues
in the structural context is used to construct the graph.
Besides, the geometric knowledge and bio-physicochemical
characteristics are embedded in node and edge feature
vectors. The pipeline of graph construction is shown in
Figure 1.

Feature extraction. Four types of residue-level features are
derived as following:

The first is pseudo-positions. The centroid of a residue in-
cluding both backbone and side-chain atoms of the residue

is denoted as the pseudo-position of this residue since in-
teractions between proteins and nucleic acids can occur on
both backbone and side-chain atoms (33).

The second is atomic features of residues. For a residue,
we extract the following seven kinds of features of each atom
belonging to the residue (excluding hydrogen atoms): atom
mass, B-factor, whether it is a residue side-chain atom, elec-
tronic charge, the number of hydrogen atoms bonded to it,
whether it is in a ring, and the van der Waals radius of the
atom. The original atomic features of a residue are denoted
as { fs,t}s = 1,...,7, t = 1,...,Na , where fs,t stands for the sth fea-
ture of tth atom and Na stands for the number of atoms
belonging to the residue. Since different residues may have
different numbers of atoms, we average the sth feature of
all the atoms as the processed sth atomic feature xs of the
residue, which results in seven kinds of features for each
residue {xs}s = 1,...,7:

xs = 1
Na

(
t = Na∑
t = 1

fs,t

)
(1)

Finally, we generate an atomic feature matrix with the size
of L×7 for the query protein with L residues.

The third is secondary structure profile. DSSP (34,35)
generates the secondary structure profile as a matrix
with the size of L×14, including one column of residue
water-exposed surface, five columns of bond and tor-
sion angles and eight columns of one-hot encoded sec-
ondary structure with eight states. The eight states of sec-
ondary structure contain B(residue in isolated β-bridge),
E(extended strand, participates in β-ladder), G(310-helix),
H(α-helix), I(π -helix), S(bend), T(H-bonded turn) and
others.

The last is two evolutionary conversation profiles.

(1) PSI-BLAST profile. The alignment tool PSI-BLAST
applies the heuristic algorithms and dynamic program-
ming to search the NCBI’s non-redundant database
(NR) for homologous sequences with three iterations
and E-value < 10−3 (36). The size of the generated
position-specific scoring matrix (PSSM) is L×20. Each
element x in the PSSM is normalized to the range [0, 1]
by a sigmoid function:

x̄ = 1
1 + e−x

(2)

(2) HHblits profile. HHblits, which is based on hidden
Markov models (HMMs), is used to search against the
uniclust30 database with default parameters to gener-
ate HMM matrix for the query sequence(37). The size
of the HMM matrix is L×30. The HMM matrix con-
sists of 20 columns of observed frequencies for 20 amino
acids in homologous sequences, seven columns of tran-
sition frequencies and three columns of local diversities.
Each score is converted to the range [0, 1]:

x̄ = x
10000

(3)

The PSI-BLAST and HHblits profiles are complemen-
tary since their backend algorithms and searched databases
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Figure 1. Pipeline of graph construction used in GraphBind. It consists of three modules: feature extraction, structural context extraction and graph
construction. (A) Feature extraction. Pseudo-positions and atomic features of residues are extracted from protein structures. DSSP, PSI-BLAST and
HHblits are employed to extract secondary structure profiles and evolutionary conversation profiles from protein structures and sequences. (B) Structural
context extraction. The structural context of a target residue is determined by a sliding sphere of a predefined radius rg centering at the residue. (C) Graph
construction. The structural context is further represented by a graph G = (V, E, u, A). V, E, u and A denote the set of feature vectors of nodes, the set
of feature vectors of edges, the graph feature vector and the adjacency matrix, respectively. Nodes in the graph represent residues. The raw feature vector
vraw

i ∈ R
72 of node i is the concatenation of the position embedding and the residue features of node i. Distance matrix is calculated based on pseudo-

positions of residues. We apply the binary threshold rv on the distance matrix to get the adjacency matrix A, which records the connections of nodes. The
raw feature vector eraw

i j ∈ R
2 of edge i j is encoded by the Euclidean distance between the two adjacent nodes, and the cosine of the angle θi j between the

two vectors from the sphere center to the two adjacent nodes, respectively.

are different, which is confirmed in our following experi-
ments.

In summary, for a query protein, we obtain the pseudo-
position matrix with the size of L×3 and a feature matrix
with the size of L×71. For each column in the feature ma-
trix, the min-max normalization is carried out to linearly
normalize the value to [0, 1]:

x̄ = x − xmin

xmax − xmin
(4)

where xmin and xmax are the minimum and the maximum
values of this feature in the training set, respectively.

Structural context extraction. According to the pseudo-
positions of residues in the tertiary structure, a sphere slides
along the polypeptide chain to obtain the structural con-
text for each residue. For a target residue, the structural
context is defined as a sphere with a radius rg centering at
this residue. All residues in the sphere and their geometric
knowledge form the local structural context of the target
residue. Compared to the overall structure of a protein, the
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binding site is usually more related to the geometric and
bio-physicochemical properties of its local structural envi-
ronment (8–9,15).

Graph construction. In this step, the structural context of
a residue is further represented as a graph. A graph is de-
fined as G = (V, E, u, A), where V = {vi }i=1,...,Nv

and
vi ∈ R

Dv denote the set of feature vectors of Nv nodes and
the feature vector of node i , respectively. Adenotes the adja-
cency matrix with the shape of Nv × Nv. E = {ei j |Ai j = 1}
denotes the set of feature vectors of Ne edges. ei j ∈ R

De

stands for the feature vector of the edge i j between node
i and j . ei j ∈ E if Ai j = 1, ei j /∈ E if Ai j = 0. u stands
for the graph feature vector. In the graph, a residue is de-
noted as a node. Position of ith node pi is defined by
the pseudo-position of the corresponding residue. Residues
around target residues may form specific local geometric
patterns which are informative for binding residue recog-
nition. Motivated by this observation, we use position em-
bedding to represent the positional relationship between
the target residue and each of its contextual residues since
it contains local geometric knowledge around the target
residue. The position embedding of node i is defined as the
normalized Euclidean distance between node i i and the
sphere center,

PEi = 1
rg

∣∣−−→po pi

∣∣ (5)

where po and pi respectively stand for the position of the
sphere center and node i , and −−→po pi is the vector from po
to pi . The raw feature vector vraw

i ∈ R
72 of node i is the

concatenation of the position embedding PEi and the 71
residue features of the node. The set of raw node feature
vectors is denoted as Vraw = {vraw

i }i=1,...,Nv
.

Then, a distance matrix D with the size of Nv × Nv is con-
structed. The element Di j is the Euclidean distance between
node i and node j :

Di j = ∣∣−−→pi p j

∣∣ (6)

We use a threshold rv on D to get the adjacency matrix
A,

Ai j = {1, i f Di j < rv

0, i f Di j ≥ rv
(7)

The value of rv is selected based on the validation set.
The raw feature vector of edge i j is denoted as eraw

i j ∈ R
2,

which consists of two properties related to the geometric
knowledge: (i) the Euclidean distance Di j of node i and
node j j , and (ii) the cosine of the angle θi j between the
two vectors −−→po pi and −−→po p j , which are vectors respectively
from the sphere center to the node i and node j j :

cos
(
θi j

) =
−−→po pi · −−→po p j∣∣−−→po pi

∣∣ ∣∣−−→po p j

∣∣ (8)

where · means dot product. eraw
i j is also normalized to [0,

1]. The set of raw edge feature vectors is denoted as Eraw =
{eraw

i j |Ai j = 1}. It is worth noting that all position-related
features of nodes and edges are defined in terms of the rel-

ative distance between nodes. Thus, GraphBind is invariant
to rotation and translation.

Hierarchical graph neural networks

After constructing the graph of each residue with geometric
knowledge and bio-physicochemical characteristics, a hier-
archical graph neural network (HGNN) is designed to em-
bed the graph to a fixed-size graph-level latent represen-
tation for downstream prediction. The HGNN consists of
three modules. (i) A graph neural network encoder (GNN-
Encoder). It is designed for encoding the set of raw edge
and node feature vectors into the high-level representations
and calculating the graph feature vector from the set of the
encoded node feature vectors. (ii) The gated-recurrent-unit-
based graph neural network blocks (GNN-blocks). Four
GNN-blocks are stacked to expand the range of receptive
fields and hierarchically update the latent feature vectors
of edges, nodes and graph. Each GNN-block embeds the
structural context into a fixed-size graph feature vector. (iii)
A multilayer perceptron classifier (CLF). It is applied for
classifying binding residues with the concatenated vector
from the above four graph feature vectors. The diagram of
the HGNN is shown in Figure 2.

Here, we first introduce two basic operations, multilayer
perception (MLP) and gated recurrent unit (GRU).

(1) MLP. MLP is a point-by-point nonlinear transforma-
tion defined in the Eq. (9), which consists of two linear
layers and a rectified linear unit (ReLU) (38):

MLP (X) = W2 max (0, W1 X + b1) + b2 (9)

(2) GRU (25). GRU is widely used in natural language pro-
cessing for text sequences. It does not erase the previ-
ous information over time, but retains the relevant in-
formation and passes it to the next unit by nonlinearly
weighting the inputs and the hidden states to inference
the outputs. GRU takes advantage of all units’ informa-
tion and avoids gradient vanishing. For each time step
t, based on the input Xt and the previous hidden state
h t−1, the output of GRU is calculated by:

rt = σ
(

Wr Xt + Ur h t−1
)

(10)

zt = σ
(

Wz Xt + Uzh t−1
)

(11)

h̃
t = tanh

(
Wh̃ Xt + Uh̃

(
rt · h t−1

))
(12)

h t = zt h t−1 + (1 − zt) h̃
t

(13)

where σ is the sigmoid activation function and · means
dot product. rt is the reset gate, which determines that
how much information from the previous hidden state
h t−1 can be conveyed. zt is the update gate, which de-
termines the proportion of the previously hidden state
h t−1 and the new hidden state h̃

t
in the updated hidden

state h t (25).
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Figure 2. Diagram of the hierarchical graph neural network (HGNN). The HGNN consists of a GNN-Encoder, four GRU-based GNN-blocks and a
multilayer perceptron classifier (CLF). The GNN-Encoder encodes the set of raw node feature vectors Vraw and the set of raw edge feature vectors Eraw

of the graph into the high-level representations Venc and Eenc , and calculates the graph feature vector uenc from the set of the encoded node feature vectors
Venc . The stacked four GNN-blocks hierarchically update the latent feature vectors of edges, nodes and graph. Four fixed-size graph feature vectors
{uk}k=1,...,4 are obtained. Finally, {uk}k=1,...,4 are concatenated to be fed into the CLF for binding residue prediction.

GNN-Encoder. GNN-Encoder encodes the set of raw
node feature vectors Vraw and the set of raw edge fea-
ture vectors Eraw into the high-level representations of
the nodes Venc = {venc

i }i=1,...,Nv
, edges Eenc = {eenc

i j |Ai j = 1}
and graph uenc. venc

i ∈ R
Dv , eenc

i j ∈ R
De and uenc ∈ R

Du .
First, the encoded edge feature vector eenc

i j is calculated
from the raw edge feature vector eraw

i j and the raw node fea-
ture vectors vraw

i and vraw
j :

eenc
i j = MLPe

enc

([
eraw

i j ; vraw
i ; vraw

j

])
(14)

where MLPe
enc is an MLP operation to perform nonlinear

transformation, and
[
eraw

i j ; vraw
i ; vraw

j

]
means the concate-

nation of eraw
i j , vraw

i and vraw
j .

Next, the node feature vector venc
i is updated from the

raw node feature vector vraw
i and the sum aggregation of

the above updated feature vectors of its adjacent edges:

venc
i = MLPv

enc

⎛⎝⎡⎣ vraw
i ;

∑
j∈N(vi )

eenc
i j

⎤⎦⎞⎠ (15)

where N(vi ) is the set of neighbors of node i , and MLPv
enc

is an MLP operation to perform nonlinear transformation.
Finally, the graph feature vector uenc is obtained by per-

forming nonlinear transformation on the sum of the set of
encoded node feature vectors in this graph:

uenc = MLPu
enc

(
Nv∑

i = 1

venc
i

)
(16)

where MLPu
enc is an MLP operation to perform nonlinear

transformation.

Stacked multiple GNN-blocks. Similar to CNNs, the re-
ceptive field can be expanded by stacking multiple GNN-
blocks. Thus, the remote edges or nodes can affect each
other until their latent representations reach stability (39).
A GNN-block updates edge, node and graph feature vec-
tors sequentially, as shown in Figure 3.

(1) Edge update. We first calculate the intermediate edge
feature vector ek′

i j of the layer k, which takes the concate-

nation of the edge feature vector ek−1
i j , the two node fea-

ture vectors vk−1
i and vk−1

j , and the graph feature vector
uk−1 of the previous layer as input. The input is fed into
the nonlinear transformation MLPe to get the interme-
diate output ek′

i j , and GRUe is used to perform nonlin-
ear weighted transformation. The updated edge feature
vector ek

i j of the layer k is derived as following:

ek′
i j = MLPe

([
ek−1

i j ; vk−1
i ; vk−1

j ; uk−1
])

(17)

ek
i j = GRUe

(
ek′

i j , ek−1
i j

)
(18)

(2) Node update. We aggregate the updated feature vectors
of the adjacent edges of node i as its neighbor edge
feature vector. The intermediate output vk′

i is nonlin-
early transformed by MLPv on the concatenation of its
neighboring edge feature vectors, node feature vector
vk−1

i and the graph feature vector uk−1. Then, GRUv

weights vk′
i and vk−1

i to obtain the updated node feature
vector vk

i :

vk′
i = MLPv

⎛⎝⎡⎣ vk−1
i ;

∑
j∈N(vi )

ek
i j ; uk−1

⎤⎦⎞⎠ (19)

vk
i = GRUv

(
vk′

i , vk−1
i

)
(20)

(3) Graph update. The sum of the set of node feature vec-
tors is concatenated with the graph feature vector uk−1

of the previous layer as the input, which is fed into a
nonlinear transformation MLPu to calculate the inter-
mediate graph feature vector uk′

. Then, the graph fea-
ture vector uk is updated using GRUu .

uk′ = MLPu

([
Nv∑

i = 1

vk
i ; uk−1

])
(21)

uk = GRUu
(

uk′
, uk−1

)
(22)
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Figure 3. The GNN-block updates edge, node and graph feature vectors sequentially. The GRUs weight the outputs of the layer k and the outputs of the
layer k − 1 to control the propagation range of edges, nodes and graphs.

Multilayer perceptron classifier. In GraphBind, four graph
feature vectors are obtained from the four GNN-blocks. We
concatenate them as the final representation of the target
residue due to the following reasons: (1) the performance of
deep GNNs may degrade due to the locally diverse graph
structures (40); (2) the back-propagation path of each layer
becomes shorter, which can accelerate the convergence of
the model. Then, the concatenated graph feature vectors are
fed into a multilayer perceptron classifier (CLF) to obtain
the probability of being a binding residue ŷ:

ŷ = softmax
(

W2max
(

0, W1[u1; . . . ; u K ] + b1

)
+ b2

)
(23)

where softmax (xi ) = exi /(1 + ∑
j

exj ),K = 4, uk ∈ R
Du , k =

[1, . . . , K ], W1 ∈ R
256×(K Du ), b1 ∈ R

256, W2 ∈ R
2×256 and

b2 ∈ R
2.

Instead of using a default threshold 0.5 to binarize the
continuous value ŷ into binding or non-binding residue
class, the optimal threshold is determined by maximizing
MCC on the validation set for each benchmark datasets.

Baseline and state-of-the-art methods

In this study, we compare GraphBind with two types of
methods. (1) A geometric-agnostic baseline method, biL-
STMClf, is designed to demonstrate the advantages of geo-
metric knowledge and the HGNN in GraphBind. (2) State-
of-the-art methods for nucleic-acid-binding residue pre-
diction are compared to demonstrate the effectiveness of
GraphBind.

A geometric-agnostic baseline method biLSTMClf. As
shown in Figure 4, biLSTMClf uses the same residue fea-
tures derived from protein sequences and structures as
GraphBind to represent a protein as an L × 71 matrix,
where L stands for the length of a sequence. A symmet-
rical sliding window (6,41–42) is used to capture the se-
quence contexts instead of the structural contexts for target
residues. Thus, a target residue is represented as a ws × 71
matrix, where ws stands for the size of the sliding win-
dow. After obtaining the initial features for target residues,
a two-layer bidirectional long short-term memory network
(biLSTM) is employed to extract the latent representations
of residues. Then, a multilayer perceptron classifier (CLF),
which is also used as the classifier in GraphBind, is used to
predict the binding probability. biLSTMClf is a geometric-
agnostic baseline and it is applied to evaluate whether the
geometric knowledge is necessary for binding residue pre-
diction and if GraphBind can learn informative latent em-
beddings from the geometric knowledge.

State-of-the-art methods. To demonstrate the effectiveness
of GraphBind, we compare it with eight state-of-the-art
methods, including deep-learning-based methods, shallow-
machine-learning-based methods, template-based methods
and consensus methods:

(1) TargetDNA: a sequence-based method for DNA-
binding residue prediction. It takes the evolutionary in-
formation and predicted secondary structure profiles as
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Figure 4. Pipeline of the geometric-agnostic baseline method biLSTMClf. The same residue features as GraphBind are extracted from the protein sequences
and structures. A symmetrical sliding window is used to extract the sequence contexts of residues. We design the biLSTM-based neural network, which
consists of two biLSTM layers and a multilayer perceptron classifier (CLF), to distinguish binding residues from non-binding residues.

input and uses multiple SVMs with boosting as the clas-
sifier (6).

(2) TargetS: a sequence-based method for ligand-binding
residue prediction that takes the evolutionary informa-
tion, predicted secondary structure profiles and ligand-
specific propensity as input and employs the AdaBoost
algorithm as the classifier (7).

(3) NucBind: a consensus method for nucleic-acid-binding
residue prediction. NucBind fuses a sequence-based
method SVMnuc and a consensus method COACH-D
(42,43).

(4) DNAPred: a sequence-based method for DNA-binding
residue prediction. DNAPred proposes a two stage im-
balanced learning algorithm to decrease the impact of
data imbalance problem with an ensemble technique
(44).

(5) RNABindRPlus: a consensus method for RNA-
binding residue prediction. RNABindRPlus combines
outputs from a sequence homology-based method with
those from a SVM classifier (45).

(6) NucleicNet: a structure-based deep learning method to
predict RNA-binding preference on protein surfaces.
NucleicNet analyzes physicochemical properties of grid
points on protein surface and takes a deep residual net-
work as the classifier. The binding score of a residue is
averaged by scores of its 30 nearest grid points (13).

(7) aaRNA: a sequence- and structure-based artificial neu-
ral network classifier for RNA-binding residue predic-
tion. aaRNA employs a structural descriptor Laplacian
norm to measures surface convexity/concavity over dif-
ferent length scales (12).

(8) DNABind: a consensus method for DNA-binding
residue prediction. DNABind integrates a sequence-
based SVM classifier, a structure-based SVM classi-
fier and a template-based method. DNABind extracts
four topological features including degree, closeness,
betweenness, and clustering coefficient to represent the
geometric knowledge (46).

Evaluation measurement

To assess the performance of GraphBind and other meth-
ods, we report the following five metrics. The four metrics
for binary outputs, recall (Rec), precision (Pre), F1-score
(F1), and Matthews correlation coefficient (MCC), are cal-

culated as follows:

Rec = TP
TP + FN

(24)

Pre = TP
TP + FP

(25)

F1 = 2 · Rec · Pre
Rec + Pre

(26)

MCC = TP · TN − FN · FP√
(TP + FN) (TP + FP) (TN + FN) (TN + FP)

(27)

where TP, FP, TN and FN are abbreviations for true pos-
itives (number of correctly predicted samples as binding
residues), false positives (number of incorrectly predicted
samples as binding residues), true negatives (number of
correctly predicted samples as non-binding residues) and
false negatives (number of incorrectly predicted samples as
non-binding residues). Recall measures the proportion of
true binding residues that are correctly predicted as bind-
ing residues. Precision measures the proportion of the true
binding residues in the predicted binding residues. F1 and
MCC are calculated from multiple indicators and are objec-
tive metrics when the positive-negative sample ratio is not
balanced.

In addition, we report the area under the receiver opera-
tor characteristic (ROC) curve (AUC) to assess the predic-
tion score. ROC is a graphical plot of the true positives ratio
against the false positives ratio over the entire range of dif-
ferent thresholds for the probability. Of the five metrics, F1,
MCC and AUC are overall metrics, especially when the test
set is imbalanced. All the reported metrics are averaged val-
ues of 10 repeated running of the methods.

Significance test

Significance tests are performed to investigate if the im-
provement of MCCs and AUCs are due to a noisy estimate
of model performance. Similar to the procedure used in pre-
vious studies (4,42), we randomly sample 70% of the test set
and calculate the MCCs and AUCs of the best-performing
method and other methods, which is repeated 10 times. The
Anderson-Darling test is used to evaluate if the measure-
ments are normal. If the measurement is normal, the paired
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t-test is used to calculate significance of the measurement.
otherwise, the Wilcoxon rank sum test is applied. If the ob-
tained P-value <0.05, the difference between a given pair of
methods is considered statistically significant.

Experimental settings

Twenty percent of the proteins from the original training set
in Table 1 are used to construct the validation set Vval and
the remaining protein chains are used to construct the train-
ing set Vtr . We also use CD-HIT to ensure that the sequence
similarity between the validation set and the training set is
less than 30%. During the training process, grid search is
used to find optimal hyperparameters.

We employ the Adam optimizer with β1 = 0.9, β2 =
0.999, ε = 10−8 and learning rate is 5 × 10−5 for model op-
timization on the cross-entropy loss as:

Loss =
∑

vi ∈Vtr

(yi ln ŷi + (1 − yi ) ln (1 − ŷi )) (28)

where yi is the label of a residue and ŷi is the probability
corresponding to yi .

Dropout (47) is applied to each MLP module with a rate
of Pdrop = 0.5 to avoid overfitting. To accelerate conver-
gence and improve generalization performance, batch nor-
malization (48) is employed on every convolution layer in
MLP.

RESULTS

In this section, we first conduct ablation studies to investi-
gate different settings on the performance of GraphBind.
Then, we compare GraphBind with the geometric-agnostic
baseline and state-of-the-art methods on the nucleic-acid-
binding benchmark datasets to demonstrate the advantages
of the proposed structural-context-based graph representa-
tions and the HGNN. Moreover, we investigate the contri-
butions of different features, the impact of data augmen-
tation with transferring binding annotations, and how they
impact GraphBind when using predicted structures from se-
quences.

Ablation studies on GraphBind

To investigate the contributions of different settings of
GraphBind, we conduct ablation studies on GraphBind
with different settings on the validation set from DNA-
573 Train. These results are given in Table 2.

As shown in Table 2, experiments A–D evaluate the con-
tributions of different settings for graph construction. As
shown in the experiment A, pseudo-positions denoted by
the centroid of residues yields higher performance than de-
noted by the alpha-C atoms, and achieves similar results to
be denoted by the centroid of the residue side-chains. The
results demonstrate that centroid of residues or residue side-
chains are more correlated to binding sites than sole back-
bone alpha-C atoms. The experiment B shows that it is ben-
eficial to take the relative distance between each node and
the sphere center as the position embedding, since the posi-
tion embedding can be used to distinguish nodes when up-
dating the graph feature vector. As shown in the experiment

C and D, a smaller radius of the structural context and fewer
edges limit the receptive field of the network, resulting in a
worse performance. However, a larger radius for the struc-
tural context and more edges also bring no benefit to the
performance but take longer training time.

We also test different network components for the
HGNN in GraphBind. In the experiment E, the edge fea-
ture vectors are ignored, and the Eqs. (15) and (19) are re-
placed by Eqs. (29) and (30), respectively.

venc
i = MLPv

enc

⎛⎝⎡⎣ vraw
i ;

∑
j∈N(vi )

vraw
j

⎤⎦⎞⎠ (29)

vk′
i = MLPv

⎛⎝⎡⎣ vk−1
i ;

∑
j∈N(vi )

vk−1
j ; uk−1

⎤⎦⎞⎠ (30)

The decreasing performance of the experiment E demon-
strates the importance of integrating edge feature vectors
into the node update module and the importance of the ge-
ometric knowledge. The experiment F applies the max ag-
gregation instead of sum aggregation, leading to a lower
performance. It is probably because the max pooling oper-
ation only records the maximum value and loses the infor-
mation of other nodes. As shown in the experiment G, we
investigate the impact of the number of GNN-Blocks and
stacking these GNN-Blocks with or without GRU opera-
tion. If GRU is not used, GRUe, GRUv and GRUu are
removed, and the outputs ek

i j , vk
i , uk are set as the inter-

mediate outputs ek′
i j , vk′

i , uk′
, respectively. The results show

stacking only two GNN-blocks leads to performance degra-
dation, since the receptive field of stacking fewer GNNs
is limited. Adding more GNN-Blocks without GRU also
leads to a worse performance. The result demonstrates that
deeper GNN can benefit from GRU because it takes ad-
vantage of all blocks’ information. The experiment H shows
that setting latent representation of the size of 128 for edges,
nodes and graphs can extract more discriminate features
and yields better performance.

GraphBind is superior to geometric-agnostic biLSTMClf

We benchmark GraphBind against the geometric-agnostic
baseline method biLSTMClf. These two methods share the
same training sets, validation sets and test sets. Performance
comparison between biLSTMClf and GraphBind is shown
in Figure 5 (see Supplementary Table S2 for details). Graph-
Bind yields higher F1-score, MCC and AUC, which are
0.072(0.078), 0.079 (0.084) and 0.031(0.056) higher than
those of biLSTMClf on DNA(RNA)-binding benchmark
sets, respectively. Two observations can be drawn from
the comparison. First, geometric knowledge is necessary
for DNA/RNA-binding residue recognition task. Second,
GraphBind is more effective than biLSTMClf for learning
latent embeddings of local patterns around target residues,
since GraphBind can abstract the patterns of local struc-
tures in an end-to-end way from both geometric knowledge
and bio-physicochemical characteristics.
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Table 2. Ablation studies on GraphBind with different settingsa

Posb PEc rg
d rv

e EUf Ag GRUh NL
i Dj Rec Pre F1 MCC AUC

Base C T 20 10 T S T 4 128 0.676 0.537 0.598 0.558 0.926
(A) SC 0.593 0.591 0.592 0.552 0.922

CA 0.633 0.537 0.581 0.538 0.921
(B) F 0.650 0.528 0.583 0.540 0.920
(C) 15 0.634 0.551 0.589 0.548 0.919

25 0.656 0.540 0.593 0.551 0.923
30 0.580 0.594 0.587 0.547 0.913

(D) 5 0.622 0.472 0.537 0.490 0.910
13 0.663 0.540 0.595 0.555 0.923

(E) F 0.570 0.483 0.523 0.474 0.899
(F) M 0.561 0.407 0.472 0.418 0.875
(G) 2 0.630 0.524 0.573 0.529 0.914

3 0.647 0.551 0.595 0.554 0.925
5 0.647 0.545 0.592 0.550 0.925
6 0.688 0.522 0.586 0.545 0.924

F 2 0.670 0.523 0.587 0.546 0.925
F 4 0.637 0.541 0.585 0.543 0.922
F 6 0.669 0.504 0.575 0.533 0.922

(H) 64 0.593 0.527 0.558 0.513 0.910

aOnly different settings are given and other settings (empty values) are the same as the base model. These metrics are calculated on the validation set of
DNA-573 Train and the highest values are bolded.
bPseudo-position of a residue: C, SC and CA stand for the centroid of residue, the centroid of residue side-chain and the position of alpha-C atom,
respectively.
cUse the relative distance from every node to the sphere center as position embeddings of nodes (T) or not (F).
dRadius of the structural context: it defines the nodes belonging to a graph of a residue, and its unit is Å.
eThe threshold of adjacent matrix: it binarizes a distance matrix to the adjacent matrix to define the adjacent edges belonging to a node, and its unit is Å.
fUse the edge feature vectors (T) or not (F).
gThe aggregation operation in the node update module and the graph update module. S and M stand for sum and max operation, respectively.
hUse GRU (T) or not (F). If GRU is not used, the output ek

i j , vk
i , uk equal the intermediate output ek′

i j , vk′
i , Uk′

, respectively.
iThe number of GNN-blocks.
jDe, Dv and Du stand for the dimension of encoded edge feature vectors, the dimension of encoded node feature vectors and the dimension of encoded
graph feature vectors, respectively. We set De= Dv= Du.

Figure 5. Performance comparison between biLSTMClf and GraphBind on nucleic-acid-binding test sets.

Comparison with state-of-the-art methods on benchmark sets

For the purely sequence-based methods (i.e. TargetDNA,
TargetS, DNAPred and RNABindRPlus) we upload the
protein sequences of the test sets to their webservers. For the
methods with structures as the input, we upload the PDB

files (49) of the test sets to their webservers or standalone
softwares.

Performance comparison of GraphBind with state-of-
the-art methods on nucleic-acid-binding test sets are re-
ported in Table 3 and the ROC curves are provided in
Figure 6. As shown in Table 3, GraphBind yields a bet-
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Table 3. Performance comparison of GraphBind with state-of-the-art methods on nucleic-acid-binding test setsa

Dataset Method Rec Pre F1 MCC
P-values of

MCC AUC
P-values of

AUC

DNA-129 Test TargetDNAb 0.417 0.280 0.335 0.291 1.45 × 10−11 0.825 1.64 × 10−11

TargetSc 0.239 0.370 0.291 0.262 4.85 × 10−12 N/A N/A
DNAPredd 0.396 0.353 0.373 0.332 7.09 × 10−12 0.845 2.14 × 10−11

SVMnuce 0.316 0.371 0.341 0.304 1.89 × 10−12 0.812 1.98 × 10−11

COACH-De 0.324 0.360 0.341 0.302 1.99 × 10−13 0.761 8.60 × 10−16

NucBinde 0.323 0.373 0.346 0.309 3.72 × 10−13 0.797 6.38 × 10−11

DNABindf 0.601 0.346 0.440 0.411 1.04 × 10−8 0.858 1.57 × 10−11

GraphBind 0.676 ±0.027 0.425 ±0.017 0.522 ±0.005 0.499 ±0.004 N/A 0.927 ±0.006 N/A

RNA-117 Test RNABindRPlusg 0.273 0.227 0.248 0.202 2.96 × 10−10 0.717 8.42 × 10−13

SVMnuc 0.231 0.240 0.235 0.192 7.21 × 10−11 0.729 9.28 × 10−13

COACH-D 0.221 0.252 0.235 0.195 3.99 × 10−11 0.663 1.14 × 10−12

NucBind 0.231 0.235 0.233 0.189 8.24 × 10−12 0.715 1.29 × 10−11

aaRNAh 0.484 0.166 0.247 0.214 5.61 × 10−11 0.771 2.45 × 10−12

NucleicNeti 0.371 0.201 0.261 0.216 4.64 × 10−10 0.788 1.03 × 10−10

GraphBind 0.463 ±0.036 0.294 ±0.017 0.358 ±0.008 0.322 ±0.008 N/A 0.854 ±0.006 N/A

aWe report the averages and standard deviations after having performed the experiments ten times.
bResults are computed using the TargetDNA server at http://csbio.njust.edu.cn/bioinf/TargetDNA/.
cResults are computed using the TargetS server at http://www.csbio.sjtu.edu.cn/bioinf/TargetS/.
dResults are computed using the DNAPred server at http://csbio.njust.edu.cn/bioinf/dnapred/
eResults are computed using the NucBind server at http://yanglab.nankai.edu.cn/NucBind/.
fResults are computed using the DNABind server at http://mleg.cse.sc.edu/DNABind/.
gResults are computed using the RNABindRPlus server at http://ailab-projects2.ist.psu.edu/RNABindRPlus/.
hResults are computed using the aaRNA server at http://sysimm.ifrec.osaka-u.ac.jp/aarna/.
iResults are computed using the standalone program at https://github.com/NucleicNet/NucleicNet.

Figure 6. The ROC curves for GraphBind and state-of-art methods on DNA-129 Test(A) and RNA-117 Test(B).

ter performance than state-of-the-art methods. The F1-
score, MCC and AUC of GraphBind are 0.082(0.097),
0.088(0.106) and 0.069(0.066) higher than the second high-
est values on DNA(RNA)-binding test set, they are a rel-
ative increase of 18.6%(37.2%), 21.4%(49.1%), 8% (8.4%),
respectively. The MCCs of the structure-based methods
(DNABind, aaRNA, NucleicNet and GraphBind) are gen-
erally higher than those of sequence-based methods (Tar-
getDNA, DNAPred, TargetS, RNABindRPlus and SVM-
nuc), indicating the importance of structural information.
The lower AUCs of the template-based method COACH-
D are probably because the similarities between the tem-

plates and the queries are not high enough, leading to many
zero scores for the queries (42). The superiority of Graph-
Bind over DNABind and aaRNA proves that the structural-
context-based graph representation is more suitable for rep-
resenting the local structural information of residues than
the hand-crafted structural descriptors for recognizing the
binding residues. In addition, the superiority of Graph-
Bind over NucleicNet demonstrates that the HGNN in
GraphBind can capture more important geometric and bio-
physicochemical characteristics from graph representation
than those captured with CNNs from 2D image represen-
tation in NucleicNet. Furthermore, significance tests are

http://202.119.84.36:3079/TargetDNA/
http://www.csbio.sjtu.edu.cn:8080/TargetS/
http://csbio.njust.edu.cn/bioinf/dnapred/
http://yanglab.nankai.edu.cn/NucBind/
http://mleg.cse.sc.edu/DNABind/
http://ailab-projects2.ist.psu.edu/RNABindRPlus/
http://sysimm.ifrec.osaka-u.ac.jp/aarna/
https://github.com/NucleicNet/NucleicNet
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A B

C D

Figure 7. Visualization of two cases predicted by GraphBind and the second-best methods. For the first protein chain 5WX9 A from DNA-129 Test, the
results predicted by DNABind(A) and GraphBind(B) are shown. For the second protein chain 5Z9W A from RNA-117 Test, the results predicted by
NucleicNet(C) and GraphBind(D) are shown.

performed between GraphBind and other methods, which
shows that the improvement on MCCs and AUCs are sta-
tistically significant. ROC curves shown in Figure 6A and
B also verify the effectiveness of GraphBind. In addition,
we calculate the MCC of each protein chain independently
and draw the distribution of MCCs for the second-best
DNA-binding predictor DNABind, the second-best RNA-
binding predictor NucleicNet and GraphBind in Supple-
mentary Figure S1, which also verifies the performance of
GraphBind.

Case studies

In this section, we visualize two cases from the test sets
predicted by GraphBind and the second-best methods
DNABind and NucleicNet for DNA-binding proteins and
RNA-binding proteins, respectively. We select two cases
that have MCCs close to the overall MCCs (shown in Table
3) on the DNA-129 Test and RNA-117 Test, respectively.
One is the DNA-binding protein 5WX9 A, and the other is
the RNA-binding protein 5Z9W A.

The DNA-binding protein 5WX9 A has 131 residues,
and 21 of them are binding residues (Figure 7A and B).
GraphBind currently predicts 20 true binding residues and
32 false positive residues. For this protein, GraphBind
achieves Rec = 0.952, Pre = 0.385, F1 = 0.548, MCC =
0.496 and AUC = 0.945. On this case, DNABind predicts
only 14 true binding residues and 32 false positive residues,
achieving Rec = 0.667, Pre = 0.304, F1 = 0.418, MCC =
0.289 and AUC = 0.806.

The RNA-binding protein 5Z9W A has 388 residues, 11
of them are binding residues (Figure 7C and D). For this
protein, GraphBind predicts 10 true binding residues and
only one true binding residue is missed, yielding a perfor-
mance with Rec = 0.909, Pre = 0.154, F1 = 0.263, MCC
= 0.339 and AUC = 0.938. However, NucleicNet predicts
no binding residue in 5Z9W A. All of the 11 true binding
residues are incorrectly predicted as non-binding residues,
yielding a Rec = 0.000, Pre = 0.000, F1 = 0.000, MCC =
–0.041 and AUC = 0.760.

Feature importance analysis

As mentioned above, we extract the atomic features of
residues (AF) and secondary structure profiles (SS) from
protein structures, as well as PSSM and HMM pro-
files from protein sequences. In this section, we inves-
tigate the impacts of different feature combinations for
GraphBind. On DNA-129 Test, we evaluate GraphBind
with the following 5 feature combinations: (i) PSSM, (ii)
HMM, (iii) PSSM+HMM, (iv) PSSM+HMM+SS and (v)
PSSM+HMM+SS+AF. Figure 8 illustrates the MCC and
AUC against different feature combinations, and the de-
tailed metrics are reported in Supplementary Table S3.

As shown in Figure 8, when looking at the single feature,
HMM is more discriminate against PSSM. When combin-
ing HMM and PSSM, GraphBind yields improvement in
the MCC, which is a more objective metric than AUC for
imbalanced data. Integrating secondary structure features
further improves the performance of GraphBind. Finally,
GraphBind with the combination of all these features yields
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Figure 8. Performance of GraphBind with the different feature combina-
tions of residue features on DNA-129 Test.

the highest MCC, indicating that these four kinds of fea-
tures are complementary.

The impact of data augmentation with transferring binding
annotations

In this study, we transfer binding annotations from sim-
ilar proteins as a data augmentation method to increase
the number of binding residues in the training sets. After
transferring the annotations, the numbers of DNA- and
RNA-binding residues in the training sets are expanded
by 30.7% and 24.3%, respectively. We compare the perfor-
mance of GraphBind trained on the training sets with and
without data augmentation. The results on independent test
sets are shown in Figure 9 (see Supplementary Table S4 for
more details). For both DNA- and RNA-binding test sets,
the higher recalls of GraphBind with data augmentation
indicate that more true binding residues are identified. It
is meaningful because DNA/RNA-binding residue predic-
tion suffers from data imbalance and the majority of the
training samples are non-binding residues. The results con-
firm the benefit of data augmentation.

The impact of predicted protein structures on GraphBind

GraphBind is designed for constructing graphs and mak-
ing predictions based on experimental protein structures. To
test if GraphBind can be applied on a much larger popula-
tion of proteins without experimental structures, we evalu-
ate the performance of GraphBind with protein structures
predicted by MODELLER (50) from protein sequences. We
employ TM-align (31) to calculate the similarity between
predicted structures and experimental structures in PDB
(49). As shown in Supplementary Table S5, the predicted
structures have a negative impact on the prediction perfor-
mance of GraphBind. There are two main reasons. (i) The
graphs constructed from structural contexts are directly de-
rived from the positions of residues in protein structures,
and those residues that are highly deviated from the exper-
imental structure are no longer included in the structural

contexts, leading to a negative impact in the constructed
graphs. (ii) The adjacent matrix, position embeddings of
nodes and raw edge feature vectors in the HGNN are also
based on the position relationship of the residues.

We further compare GraphBind with sequence-based
methods on the subsets consisting of predicted pro-
tein structures with the TM-scores >0.5 (Table 4). TM-
scores >0.5 indicates a certain degree of similarity between
experimental structures and predicted structures (51). As
shown in Table 4, the recalls of GraphBind are higher than
these sequence-based methods, which indicates GraphBind
is preferred to predicting more residues as binding residues
to improve the coverage of true binding residues when pro-
tein structures are changed.

In summary, although predicted structures degrade the
performance of GraphBind, GraphBind also has a cer-
tain robustness when the structure transformation is not
too large. This phenomenon inspires that we can construct
graphs based on protein sequences to apply GraphBind on
more proteins without experimental structures.

DISCUSSION

In this section, the latent graph feature vectors are visual-
ized to show the representation ability of GraphBind. In ad-
dition, GraphBind is trained and evaluated on other ligand-
binding datasets to evaluate the generalization capability
and practicality. Finally, we discuss the advantages and lim-
itations of GraphBind.

GraphBind learns effective latent graph feature vectors for
residues

In this section, we employ t-SNE (52) to visualize the raw
graph feature vectors and the latent graph feature vectors
learned by GraphBind. For a target residue, the sum of the
raw feature vectors of all nodes Vraw in a graph serves as
the raw graph feature vector, which has the size of 72. The
latent graph feature vector learned by GraphBind with the
size of 512 is the concatenation of embedded four graph
feature vectors from four GNN-blocks. t-SNE is employed
to project the high-dimensional feature vectors into the
2D space. Figure 10A and B illustrate the distribution of
samples encoded by raw graph feature vectors and latent
graph feature vectors on DNA-129 Test, respectively. As
shown in Figure 10A, we can see that binding and non-
binding residues overlap and are indistinguishable. Figure
10B shows that most binding residues are clustered together
and separated from most non-binding residues. The results
demonstrate that the latent graph representations learned
by GraphBind greatly improves the discriminability of bind-
ing and non-binding residues.

Extending GraphBind to other types of ligands

We explore the applications of GraphBind in recognizing
other types of ligand-binding residues. We compare Graph-
Bind with TargetS (7), S-SITE (11), COACH (11), IonCom
(53), ATPbind (54) and DELIA (19) on the five benchmark
ligand sets collected from ATPbind (54) and DELIA (19),
including three metal ions (i.e. Ca2+, Mn2+ and Mg2+) and
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Figure 9. Performance comparison of GraphBind trained on the nucleic-acid-binding training sets with or without data augmentation by transferring
binding annotations.

Table 4. Comparison of GraphBind with the sequence-based methods on the subsets consisting of predicted protein structures with TM-scores >0.5 in
the nucleic-acid-binding test setsa

Type Nprotein
b Method Rec Pre F1 MCC AUC

DNA 71 TargetDNA 0.433 0.335 0.378 0.332 0.839
TargetS 0.278 0.451 0.344 0.320 N/A
DNAPred 0.423 0.433 0.428 0.389 0.859
SVMnuc 0.320 0.408 0.358 0.323 0.796
GraphBind 0.500 ±0.032 0.346 ±0.016 0.408 ±0.007 0.367 ±0.008 0.838 ±0.012

RNA 44 RNABindRPlus 0.314 0.307 0.310 0.265 0.770
SVMnuc 0.269 0.305 0.286 0.243 0.752
GraphBind 0.361 ±0.036 0.249 ±0.013 0.293 ±0.010 0.244 ±0.011 0.795 ±0.010

aWe report the averages and standard deviations after having performed the experiments ten times.
bThe number of proteins with TM-scores >0.5 in the nucleic-acid-binding test sets.

Figure 10. Visualization of the distribution of samples encoded by raw graph feature vectors (A) and latent graph feature vectors learned by GraphBind
(B) on DNA-129 Test using t-SNE.
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Figure 11. Performance comparison of GraphBind and DELIA on the five
ligand-binding test sets.

two biologically relevant molecules (i.e. ATP and HEME).
The details of the five benchmark sets are described in Sup-
plementary Section S1 and Supplementary Table S6. They
are selected for generalization test since the amount of bind-
ing residues of these ligands is large enough for our deep
models. We follow the same training and evaluation proto-
col on these five types of ligands as stated in previous sec-
tions. Hyperparameters are adjusted on each ligand-specific
validation set. The performance comparison of GraphBind
with the six state-of-the-art methods are reported in Sup-
plementary Table S7. The MCCs and AUCs of GraphBind
and the state-of-the-art DELIA are illustrated in Figure
11. The results show that GraphBind yields an improve-
ment of 0.023–0.107 on MCC and 0.011–0.068 on AUC on
Ca2+, Mn2+, Mg2+ and HEME compared to the second-
best DELIA. The results suggest that the graph constructed
from protein structural context is more powerful and suit-
able in representing structure information than the 2D dis-
tance matrix, and GraphBind is also effective in predicting
ligand-binding residues.

Ligand-general GraphBind-G transferred from ligand-
specific GraphBind still achieves a promising performance

GraphBind is a ligand-specific method which trains a model
p1er ligand to learn ligand-specific binding patterns. Thus,
GraphBind is limited to predict binding residues for those
ligands with small number of verified binding residues. Dif-
ferently, ligand-general methods train models on pooled
binding residues from multiple ligands, so they learn the
common patterns of a large types of ligands and are able
to predict binding residues for unseen ligands but cannot
predict which ligand the residue would bind to.

Here, we train a ligand-general model, GraphBind-G,
with the same architecture as GraphBind.We compare
the GraphBind-G with another ligand-general method,
P2Rank (55). To make a fair comparison, we train and eval-
uate the ligand-general GraphBind-G on the ligand-general
benchmark set from P2Rank. This benchmark set con-
sists of a training set CHEN11, a validation set JOINED
and a test set COACH420. The training set CHEN11 con-

tains binding sites between 476 ligands and 251 proteins,
and the test set COACH420 consists of binding sites be-
tween 420 proteins and a variety of drug targets and lig-
ands. GraphBind is a residue-centric method. However, no
ligand-binding residue annotations are given in this bench-
mark set. According to P2Rank, we define a ligand-binding
residue with a distance less than 5.5 Å from the center of
the mass of the ligand to the closest residue atom. For the
pocket-centric P2Rank, we treat all residues in the predicted
binding pockets as the predicted binding residues.

Performance comparison of the GraphBind-G and
P2Rank on the COACH420 test set is summarized in Table
5. The higher recall and lower precision of P2Rank indi-
cate that more positive binding residues are predicted with
a higher false positive rate. It should be noted that P2Rank
focuses on how to accurately predict the pocket positions
of binding sites and assumes that a binding site may har-
bor a larger ligand, possibly leading to a higher false posi-
tive rate (55). The F1-score and MCC of GraphBind-G are
0.158 and 0.081 higher than those of P2Rank. The results
indicate that the GNN-based GraphBind-G outperforms
the random-forest-based P2Rank, demonstrating the ad-
vantages of GNNs over traditional machine learning meth-
ods and the validity of our method on ligand-general bind-
ing residue prediction. The general model of GraphBind-G
is also available as an online service at the same website.

The advantages of GraphBind

The superior performance of GraphBind over geometric-
agnostic biLSTMClf demonstrate the importance of the ge-
ometric knowledge. Most of the compared methods first
extract geometric and bio-physicochemical characteristics,
then these features are fed into a supervised classifier for
predicting binding residues (12,13). These methods separate
the feature engineering and classification. For example, the
deep-learning-based NucleicNet represents the structure as
2D image with physicochemical environment, which is fur-
ther processed using CNNs for classifying binding residues
(13). However, GraphBind is trained in an end-to-end way,
it is able to refine the geometric and bio-physicochemical
characteristics by taking the local structural context topol-
ogy into account. In summary, the superior performance of
GraphBind benefits from two aspects: (i) the graph repre-
sentation based on structural context is suitable for repre-
senting the geometric and bio-physicochemical knowledge
of target residue’s local environment and (ii) the HGNN
is an efficient algorithm to learn the high-level patterns for
binding residue prediction.

The limitations of GraphBind

Current GraphBind performs predictions upon protein
structures. As shown in Table 4, taking predicted structures
as inputs for GraphBind would reduce its performance, sug-
gesting the structure quality matters the geometric knowl-
edge, which is important for the HGNN. In the future
work, we expect to figure out a new approach to build het-
erogeneous graphs through integrating protein primary se-
quences, which may be robust to the structure information
alone. Another potential extension of current GraphBind is
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Table 5. Comparison of the performance of ligand-general GraphBind-G and P2Rank on the COACH420 test seta

Method Rec Pre F1 MCC AUC

P2Rankb 0.888 0.079 0.145 0.224 N/A
GraphBind-G 0.477 ±0.037 0.223 ±0.013 0.303 ±0.007 0.305 ±0.008 0.889 ±0.007

aWe report the averages and standard deviations after having ran GraphBind-G ten times.
bResults are calculated based on the predictions from https://github.com/rdk/p2rank-datasets.

to add the module of predicting specific DNA/RNA inter-
action components, which would provide more useful clues
for deeply understanding the interaction mechanisms (13).

CONCLUSION

In this study, we propose GraphBind, protein structural
context embedded rules learned by the hierarchical graph
neural network (HGNN) for recognizing nucleic-acid-
binding residues. Considering that nucleic-acid-binding
residues are mainly determined by the local patterns of pro-
tein tertiary structures and bio-physicochemical environ-
ment, we first present a structural-context-based graph rep-
resentation to represent the bio-physicochemical character-
istics and geometric knowledge of residues and their varying
number of the unordered neighbors, and it has the invari-
ance of rotation and translation. Furthermore, the HGNN
is proposed to learn the effective fixed-size latent represen-
tations from edge and node feature vectors of graphs. The
results demonstrate the superiority of GraphBind on recog-
nizing nucleic-acid-binding residues, and the generalization
capability on identifying binding residues for multiply types
of ligands and general ligands.
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