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Abstract: The retinal pigmented epithelium (RPE) plays a critical role in photoreceptor survival and
function. RPE deficits are implicated in a wide range of diseases that result in vision loss, includ-
ing age-related macular degeneration (AMD) and Stargardt disease, affecting millions worldwide.
Subretinal delivery of RPE cells is considered a promising avenue for treatment, and encouraging
results from animal trials have supported recent progression into the clinic. However, the limited
survival and engraftment of transplanted RPE cells delivered as a suspension continues to be a major
challenge. While RPE delivery as epithelial sheets exhibits improved outcomes, this comes at the
price of increased complexity at both the production and transplant stages. In order to combine
the benefits of both approaches, we have developed size-controlled, scaffold-free RPE microtissues
(RPE-µTs) that are suitable for scalable production and delivery via injection. RPE-µTs retain key RPE
molecular markers, and interestingly, in comparison to conventional monolayer cultures, they show
significant increases in the transcription and secretion of pigment-epithelium-derived factor (PEDF),
which is a key trophic factor known to enhance the survival and function of photoreceptors. Fur-
thermore, these microtissues readily spread in vitro on a substrate analogous to Bruch’s membrane,
suggesting that RPE-µTs may collapse into a sheet upon transplantation. We anticipate that this
approach may provide an alternative cell delivery system to improve the survival and integration of
RPE transplants, while also retaining the benefits of low complexity in production and delivery.

Keywords: RPE; microtissue; retina; tissue engineering; ESC-RPE; ARPE-19; ophthalmology

1. Introduction

Retinal degenerative diseases are the most common cause of blindness in industrial
countries, substantially impacting both quality of life and healthcare costs [1]. Indeed, in
the US alone, age-related visual impairment has a financial burden of over $5.5 billion per
year [2–4]. Age-related macular degeneration (AMD) is the leading cause of blindness in
the developed world, affecting up to 20% of people over 65 years old [5–8]. Dry AMD is
characterized by the irreversible loss of retinal pigment epithelium (RPE) cells, followed by
a gradual loss of photoreceptors in later stages of the disease [1,9]. Unfortunately, there
is currently no curative clinical treatment for AMD patients, and most current clinical
interventions aim only slow progression of the disease [10].
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The RPE monolayer provides a critical trophic niche to house and support photore-
ceptors. Strategically located between the choroid and visual retina, the RPE interacts
with both endothelial and photoreceptor cells and orchestrates the transfer of nutrients
and waste products in and out of the retina. Moreover, the RPE performs a wide range
of additional and essential supportive functions, including recycling vital proteins and
secreting key trophic factors [11–16]. In dry AMD, degeneration of the RPE results in
progressive photoreceptor erosion and consequent vision loss. A promising therapeutic
approach is to replace the diseased/degenerated RPE cells with healthy ones derived from
stem cells [17,18]. Several animal trials established the ability of stem-cell-derived RPE cells
to rescue the visual function of blind rodents with a dysfunctional RPE [19,20], inspiring
subsequent human clinical trials [21–23].

In a groundbreaking study, Schwartz and colleagues transplanted human embryonic
stem cell (hESC)-derived RPE cells subretinally into two patients with AMD and Stargardt
macular dystrophy in a phase I/II clinical trial [22,24]. No signs of tumorigenicity, prolif-
eration, or ectopic tissue formation were reported [24]. Two follow-up clinical trials were
launched by the same group, which enrolled 18 patients and further demonstrated the
safety of transplanting hESC-derived RPE subretinally into patients, with preliminary data
suggesting some enhanced visual function [24,25].

While very encouraging, obstacles remain before RPE cellular therapy moves into
routine clinical use. In particular, concerns have been raised regarding the survival, en-
graftment and function of RPE transplanted as a cellular suspension [6,23,25–28]. While
modest vision improvement may still be possible despite low engraftment, this is far from a
complete solution, especially as integration efficiencies may be further reduced when donor
cells are transplanted into a degenerative “real-world” environment [29]. Furthermore, if
only modest improvement is expected, any potential benefits must be weighed against the
potential to damage or detach the delicate structure of the diseased retina during surgery.

As one alternative, RPE transplanted as a tissue has been shown to be superior in
terms of morphology, physiology and survival [6,26,27,30]. However, transplantation of
RPE tissues represents a greater surgical and technical challenge [26,31–34]. For instance,
concerns have been raised regarding the use of scaffolds to support these delicate structures
during delivery, as they have been associated with inflammation and RPE detachments
from the choroid [26]. Scaffold-free stem cell derived RPE sheets have been generated by
several groups to address the limitations associated with transplanting cell suspension and
scaffolds; following several encouraging animal trials [26], Mandai and colleagues were
able to derive and successfully transplant an RPE sheet from patient iPSCs [35]. Although
scaffold-free RPE sheets show therapeutic potential, they are technically challenging and
labor-intensive to produce, and their transplantation is surgically invasive as they are too
large to be subretinally injected [26,32]. Following the approach of RPE sheets will thus
impose economic and infrastructure-related barriers to widespread accessibility. We thus
propose that combining the simplicity of cell suspension with the superior performance
of engineered sheets, will yield a process that is cost-effective, widely accessible and
easily scalable.

Here, we lay the foundations for an alternative approach to RPE transplantation, using
engineered scaffold-free RPE microtissues (RPE-µTs) with dimensions suited for delivery
via the ultra-fine needles used in subretinal injections. Importantly, our RPE-µT expresses
key RPE molecular markers and deposits physiologically relevant ECM molecules.

2. Results

In this study, we utilized two RPE cell sources: ARPE-19 and human embryonic stem
cell (hESC) derived RPE cells. ARPE-19 is a spontaneously arising human cell line that is
widely used in the field as it recapitulates key aspects of human RPE behavior and function
in vitro and in vivo [36,37]. RPE derived from hESC is a new model that is more complex
to generate, but it better mimics endogenous RPE behavior and has significant clinical
potential [38,39].
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2.1. RPE-µTs Form Efficiently and Do Not Require Adhesion to a Culture Surface

Size-controlled 3D RPE-µTs were formed in our centrifugal-forced aggregation plat-
form (Figure 1a) [40]. Based on free-energy minimization models [41,42] and consistent
with our previous observations of microtissue formation that were obtained using other
cell types [43], RPE cells were dispensed into microwells and allowed to coalesce for 8 days
(Figure 1b,c). Using the established ARPE-19 cell line, microtissues formed after only
4–6 days, whereas hESC-derived RPE required more time (6–8 days) to form coherent
RPE-µT. To ensure consistency across experiments, we consequently cultured ESC-derived
RPE and APRE-19 cells in microtissue and adherent cultures for 8 days. We were able to
tightly control the diameter of the formed RPE-µTs by adjusting the seeding density of
the cells (Figure 1d,e). As expected, microtissue volume correlated well with input cell
numbers (R2 = 0.98) (Figure 1f).
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Figure 1. Three-dimensional RPE-µTs show consistent size control. (a) ARPE-19 cell suspensions
were centrifuged into 400 µm microwells and cultured to produce RPE-µT. (b) Cells settled at the
bottom of the microwells and (c) formed robust spherical RPE-µTs by 8 days in culture. The size
of the 3D RPE-µTs correlated with the number of cells seeded per microwell, as evidenced either
visually (d) or via quantitative analysis (e). Each group of seeded cells per RPE-µT was significantly
different from all others based on a one-way ANOVA followed by Tukey’s post hoc test (n = 100,
p < 0.001). (f) Approximating RPE-µTs as spheres with the observed diameters, we observed that
their calculated volume showed a strong linear correlation with the number of cells from which they
were formed (R2 = 0.98).
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2.2. RPE-µT Size Influences mRNA Levels of Key RPE Functional Genes

After confirming that RPE-µTs of various sizes could be produced, we asked which
size had the potential of superior function and transplantation potential based on gene
expression profiles. We used RT-qPCR to measure expression levels of a panel of 20 key RPE
marker genes in RPE-µTs formed from 25 (R25), 100 (R100) and 400 (R400) cells. Strikingly,
R100 and R400 RPE-µTs expressed higher levels of key genes that affect photoreceptor
stability (FGF2, PEDF and BDNF), choroid stability (TGFB, TIMP3 and VEGF) and general
RPE functions (CCL2, CFH, IL8, LHX2, MYRIP and LOXL) compared to R25 (Figure 2a).
However, the difference between R100 and R400 RPE-µTs in terms of mRNA levels of the
investigated genes was not statistically significant for most genes, except for CFH, where
R100 had higher mRNA levels.

2.3. R100 Demonstrates Superior Survival after Passage through a 30-Gauge Needle and
Reestablishes a Monolayer

Having identified a broad gene expression optimum in the R100–R400 range, we then
assessed the feasibility of delivering our 3D RPE-µTs via injection. R100 and R400 survival
was assessed following the passage through a 30-gauge needle (159 µm inner diameter)
at a rate of 50 µL/minute (a rate commonly used for rodent subretinal injections [44,45])
(Figure 2b,c). To measure live:dead cells, RPE-µTs were stained with DAPI to label nuclei;
fluorescein diacetate (FDA) to label live cells; and propidium iodide (PI), which is taken
up by dead cells (Figure 2d). Injected R100 exhibited over an order of magnitude greater
live:dead staining ratio than R400 (Figure 2e). Control samples for R100 could not be
calculated as most pixels in the FDA channel were saturated and circumstances beyond
our control prevented us from repeating this series of experiments. However, we observed
high viability in all RPE-µT and feel this omission does not change our interpretation of
the data. Based on these results, R100 RPE-µTs were used for all subsequent experiments.

In vivo, RPE functions as a columnar epithelium that is one cell in thickness. We
hypothesized that given the opportunity (for example, via seeding into an RPE niche
left unoccupied due to loss of the endogenous RPE), our RPE-µTs would self-organize
to re-constitute the natural tissue configuration. The composition of Matrigel, although
not a perfect substitute for Bruch’s membrane, is largely comparable: both are primarily
composed of laminin, collagen type IV and fibronectin [46,47]. It is unlikely that small
differences in composition would affect binding and adhesion of RPE to Matrigel since the
primary mechanism of adhesion requires laminin to bind to RPE’s integrin [48]. We there-
fore plated RPE-µTs on coverslips coated with Matrigel. Time-lapse confocal microscopy
revealed RPE cells migrating out of the microtissues within 24 h of their deposition and
aggregate height decreasing by approximately half. The most dramatic effect was observed
between 24 and 48 h (Figure 2f). Integrated pixel density significantly increased when
comparing images of RPE-µTs at 0 and 48 h, further validating that the RPE cells are
occupying more space in the field of view, likely due to spreading from the initial aggregate
(Figure 2g).
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Figure 2. R100 RPE-µTs exhibit the desired gene-expression profile and tolerance for delivery through
a 30-gauge needle. (a) RT-qPCR was conducted to compare the mRNA expression profiles of R25,
R100 and R400 RPE-µTs (n ≥ 4) for genes previously reported as photoreceptor stability factors,
choroid stability factors and general functional markers. Results are presented as ∆Ct values to
facilitate direct comparisons among R25, R100 and R400 RPE-µT sizes, shown in blue, green and red,
respectively. Kruskal–Wallis ANOVA followed by Dunn’s test for multiple comparisons was conducted to
compare ∆Ct values within each gene (* p < 0.05 for groups that were statistically significant). Statistically
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distinct groups were labeled with different letters (i.e., “a” and “b” are statistically different). In
order to assess potential for minimally invasive delivery via subretinal injection, (b) R100 and
(c) R400 RPE-µTs were injected through a 30-gauge needle (inner diameter of 159 µm, dotted circle) at
50 µL/minute. Subsequent staining for fluorescein diacetate (FDA-green) and propidium iodide (PI-
red) cells revealed that R100 survive the injection while R400 showed inferior survival. Quantification
of FDA and PI further demonstrated the superiority of R100 RPE-µT. (d) Scatter plot of log FDA
vs. log PI with each data point representing injected R100 (blue dot; n = 28 aggregates), control
R400 (empty black circles; n = 9 aggregates) and injected R400 (orange dots; n = 68 aggregates).
The mean fluorescence for the green and red channel of each RPE-µT was quantified by using a
custom-made Image J plugin that automated fluorescence measurement for each aggregate (details
available in the materials and methods section). (e) The ratio of FDA (green) to PI (red) fluorescence
for each measured aggregate was calculated and Mann–Whitney U test was conducted to evaluate the
statistical significance (**** p < 0.0001; error bars represent standard deviation). R100 control samples
could not be quantified due to a high percentage of saturated pixels in the FDA channel (see text for
more details). (f) Engineered RPE-µTs expressing nuclear mCherry spreading on Matrigel-covered
slip imaged over a 48-hour period. (g) Integrated density of multiple pictures (n = 7) for both time
points were calculated. Statistical significance determined by Mann–Whitney U test.

2.4. RPE-µTs Express Key RPE Markers

To extend molecular characterization beyond the transcriptional level, we immuno-
stained ARPE-19 RPE-µTs for key RPE functional markers. Cellular retinaldehyde-binding
protein (CRALBP—Figure 3a) and lecithin retinol acyltransferase (LRAT—Figure 3b) were
both detected within microtissues, two key proteins that play a vital role in the visual
recycling function of RPE [11,49–51]. Bestrophin-1 (Best1) was also detected (Figure 3d),
typically found in the basolateral side of the RPE monolayer where it plays a role in calcium
ion regulation [52,53]. The presence of zonula occludens-1 (ZO-1) in the classical “chicken-
wire” pattern (Figure 3e) suggests the formation of tight junctions within RPE-µTs [11,54].
Moreover, we were able to detect the expression of melanocyte inducing transcription
factor (MITF—Figure 3c), an RPE specific transcription factor that is crucial for RPE devel-
opment and function [55]. The extracellular matrix components laminin, collagen IV and
fibronectin (Figure 3f–h) are known to be secreted by RPE and to contribute to both Bruch’s
membrane on the basal side and the interphotoreceptor matrix on the apical side [56,57].
However, retinal-pigment-epithelium-specific 65 kDa protein (RPE65) was not detected in
our ARPE-19 RPE-µT. This finding is consistent with literature reports that the ARPE-19
cell line expresses low and sometimes undetectable levels of RPE65 [37].

2.5. RPE-µTs Upregulate Transcription of Desirable Secreted Factors

We next sought to characterize RPE-µTs’ signaling potential in more depth by com-
parisons with conventional monolayer cultures. A group of 21 RPE-specific genes was
selected to evaluate the function of our microtissue, and the genes were categorized into
secreted factors for choroid stability (FASL, TIMP3, TGFB, VEGFA and PDGF-AA), secreted
factors for photoreceptor stability (PEDF, IGF1, BDNF, GAS6 and FGF2) and general RPE
functional markers (RPE65, CFH, TRMP1, BEST1, FGF2R, MYRIP, CCL2, IL8, LHX2, LOXL
and KDR) [58] (Figure 4a). When comparing ARPE-19 microtissue to adherent culture,
RT-qPCR data indicated upregulation of mRNA levels of PEDF and IGF-1 and downreg-
ulation of VEGF and TGF-β (Figure 4a). Interestingly, RT-qPCR data also indicated the
upregulation of RPE65 transcript, and downregulation of FGF-2, GAS6, PDGF-AA, CCL2,
IL-8, LHX2, LOXL and KDR transcripts in RPE-µTs compared with 2D controls.
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Figure 4. ARPE-19 RPE-µTs upregulate the expression of desirable photoreceptor trophic factors. (a) RT-qPCR was
conducted to compare the expression profile of key genes between our 3D RPE-µTs and standard adherent culture of
ARPE-19 (n = 8–13). The results are presented as “fold expression” values to showcase the extent of expression enhancement
of certain genes in our RPE-µTs (bar graphs) compared to adherent culture (dotted line), with gene expression normalized
to an endogenous reference gene (CNTF). A Wilcoxon matched-pairs signed-ranks test was used to compare ∆Ct values
between RPE-µTs and adherent culture for each gene. (b) Conditioned media was analyzed for levels of secreted PEDF,
IGF-1 and VEGF and statistical significance determined by using a Mann–Whitney U test (n = 5); * p < 0.05, ** p < 0.01,
*** p < 0.001. Error bars represent standard deviation.

We next collected conditioned media (CM) to assess secreted protein levels from
RPE monolayer cultures versus microtissues, using Multiplexing Laser Bead Technology.
Strikingly, the ARPE-19 microtissue secreted significantly more PEDF and IGF-1 proteins
and less VEGF than the standard adherent culture (Figure 4b).

While the ARPE-19 cell line is widely used to recapitulate RPE behavior and many
of its key functions [36,37], significant limitations have been identified including low
expression of important functional genes such as PEDF, RPE65 and VEGF, as well as a
lack of pigmentation [36–39,59]. We correspondingly sought to validate our findings using
more therapeutically relevant RPE cells, such as hESC-derived RPE [6,22,23,26,27]. We
thus derived RPE from hESCs as per the protocol published by Maruotti et al., with some
modifications (see Materials and Methods for details) [60]. We validated the successful
derivation of RPE cells, using RT-qPCR analysis of key RPE genes (Figure 5a), such as
BEST1, RPE65, VEGF, PEDF, LHX2, CCL2 and DUPS4, as well as immunostaining and
examining their morphology and pigmentation. As expected, our differentiated RPE cells
showed dramatic increases in expression for these genes and a downregulation of the
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pluripotency gene OCT4 (Figure 5b). In addition to adopting a hexagonal morphology, our
differentiated RPE had increased pigmentation [58], as RPE-µT compared to monolayer
cultures (Figure 5c). Our differentiated RPE cells stained positively and specifically for key
RPE markers, including RPE65, LRAT, CRALBP, Melanopsin, Sox9 and Best1, as well as
ZO-1, thus suggesting the formation of tight junction (Figure 5d).
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(a) Timeline outlining culture conditions and media components at various stages of differentiation.
Scale bar = 400 µm. (b) Relative mRNA expression levels of key RPE genes and the pluripotency
marker OCT4, quantified by RT-qPCR, compared to undifferentiated HES-2 stem cells. Bars represent
mean expression and error bars the maximum and minimum quantities based on three technical
replicates. (c) ES-derived RPE-µTs appear to be more pigmented than ES-derived RPE cultured
on plastic. (d) Moreover, newly differentiated RPE cells were immunostained for hallmark RPE
markers including RPE65, CRALBP, BEST1, SOX9, Melanopsin, Zo-1 and b-CAT; cell nuclei were
counterstained with DAPI. Scale bar = 25 µm. (e) RT-qPCR was conducted to compare the expression
profile of key RPE genes between our 3D microtissue and standard adherent culture of ES-derived
RPE (n = 10–11). Results were normalized to an endogenous reference gene (CNTF). The results
are presented as “relative expression” values to showcase the extent of expression enhancement of
certain genes in our microtissue (bar graphs) compared to adherent culture (dotted line). Genes were
divided into three categories based on their function including: secreted factors for choroid stability
(blue), secreted factors for photoreceptor stability (green) and other RPE functional markers (red). A
Wilcoxon matched-pairs signed-ranks test was used to compare ∆Ct values between RPE-µTs and
adherent culture for each gene; * p < 0.05, ** p < 0.01, *** p < 0.001. (f) The amount of secreted protein
in the CM, specifically PEDF, IGF-1, and VEGF, was measured by Luminex arrays (n = 5), normalized
and is presented as attograms per cell. Error bars represent standard deviation. Statistical significance
was determined by using a Mann–Whitney U test; ** p < 0.01. (g) Enriched mouse photoreceptors
were cultured in CM from adherent RPE culture and RPE-µT. Live/dead staining was performed on
cultures at 48 and 72 h after plating; mean survival ± standard deviation is shown (n = 9). Statistical
significance was determined by using a Kruskal–Wallis one-way ANOVA with Dunn’s correction
for multiple comparisons, groups labeled with different letters have statistically different means
(p < 0.05).

Just as with the ARPE-19 cell line, R100 RPE-µTs were produced from these hESC-
derived RPE cells and they were compared to adherent culture in terms of mRNA levels
and secreted proteins for key RPE functional markers. We observed consistent results
at both the transcript and protein levels between ARPE-19 and hESC-derived RPE cells.
When comparing the RT-qPCR data from Figures 4 and 5, we observed consistent trends
by RPE-µTs produced from both cell types; namely, 17 out of the 21 investigated genes
demonstrated the same mRNA expression trend. Moreover, hESC-derived RPE microtis-
sues also upregulated PEDF and IGF-1, and downregulated VEGF mRNA levels (Figure 5e).
Additionally, hESC-derived RPE microtissue also appeared to upregulate mRNA levels for
RPE65 and MYRIP, while downregulating TGF-β, BDNF, FGF2, GAS6, KDR, LOXL, CFH,
IL-8 and LHX2 (Figure 5e).

Similar to the ARPE-19 microtissue, cells in the hESC-derived RPE-µTs secrete 3X
more PEDF (p < 0.01) and less than 1% of VEGF (p < 0.01) than standard adherent culture
(Figure 5f). Based on these secreted factor profiles, we predicted that CM from RPE-µT
cultures would increase photoreceptor survival, using a dissociated mouse retina assay [61].
After 48 hours, photoreceptor-enriched in vitro cultures demonstrated superior survival
with RPE-µT CM compared to CM collected from monolayer cultures (1.41 ± 0.11-fold
increase, p < 0.05) and this effect was exaggerated by 72 h with a nearly two-fold increase
in cell survival, using RPE-µT CM (p < 0.01; Figure 5g).

3. Discussion

In this work, we were able to produce size-controlled and scaffold-free RPE-µTs ef-
ficiently and reproducibly from both the patient-derived ARPE-19 cell line, and RPEs
derived de novo from hESCs. While multiple groups have demonstrated the utility of
RPE transplantation in animal and human trials, transplanting a single-cell suspension
exhibits relatively poor survival, engraftment and function [6,19–21,25,26]. This outcome
is not surprising as enzymatically-dissociated cells are stripped of their ECM and in-
tercellular connections with neighboring cells [62], potentially reducing both viability
and function [28,63]. Transplant of engineered RPE sheets has shown promise in recent
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clinical trials, with encouraging initial reports demonstrating high survival and integra-
tion [6,27,35], reinforcing the importance of intercellular connections and endogenous
ECM. However, this approach is comparatively expensive, surgically invasive, technically
challenging and time consuming in comparison to traditional subretinal injections [26],
which raises concerns around accessibility, scalability and economic viability [64]. We
hypothesized that a practical solution could be achieved by using engineered injectable
RPE-µTs that combine the simplicity of production and handling of single cell suspensions,
with the intercellular connections and endogenous ECM production of RPE sheets.

The production of RPE-µT is efficient and is linearly scalable with microwell surface
area [43]. For instance, the 24-well plate format of the microwell system can produce
up to 28,800 RPE-µTs per plate. Keeping in mind that Schwartz and colleagues injected
between 50,000 and 150,000 RPE cells into each eye in their clinical trial [23], a 24-well plate
format of the microwell system can theoretically produce sufficient RPE-µTs for 19–57 eyes.
However, future work is needed to assess the function, stability and storage of large batches
of RPE-µTs that would be necessary to develop scalable clinical therapies.

R100 RPE-µTs exhibited both a near-optimal transcriptional profile and the ability to
survive delivery through a 30-gauge (159 µm inner diameter) needle (Figure 2), which is
commonly used in subretinal transplantation in mice [44,45]. While larger bore needles
may be utilized in larger organisms [22], there are advantages to maintaining a consistent
delivery approach across model organisms and into the clinic, and in the absence of
enhanced transcriptional profiles, bigger RPE-µTs are not necessarily better as they may
experience limited distribution in the subretinal space [65]. We suspect the increased cell
death in larger aggregates is due to their proximity to the needle walls where fluid shear
stress is maximal [66].

The upregulation of PEDF and IGF-1 we identified in RPE-µTs has important ther-
apeutic implications, as both molecules provide potent photoreceptor pro-survival sig-
nals [67–75] and have been shown to rescue photoreceptors in retinal degeneration animal
models [12,70,74]. Enriched photoreceptors have been reported to rapidly degenerate
in vitro, partially due to the lack of support from RPE [76,77]. While our survival assay
largely simplifies the degenerative retinal environment where RPE loss may also be oc-
curring, our results from this experiment suggest that the trophic factors measured in CM
are indeed biologically active. The secretome of our RPE-µTs thus appears to provide
greater support for photoreceptors when compared to RPE cells grown as a monolayer.
We hypothesize that PEDF and IGF-1 are likely at least partially responsible, although
this prediction would require further experimentation in a more sophisticated model of
retinal degeneration. Increased secretion of PEDF in RPE-µTs is of particular interest, as
this neurotrophic factor has been shown to have clear therapeutic potential in the treatment
of retinal degeneration by preventing photoreceptor apoptosis [67,68,78,79].

Similarly, the downregulation of VEGF and TGF-β also represent desirable phenotypes,
as overproduction of both angiogenic factors is linked to choroidal neovascularization,
wet AMD and photoreceptor death [9,80–84]. In addition to the downregulation of TGF-β
and VEGF, our hESC-derived RPE-µTs downregulated the transcription of IL-8 and CFH,
two genes expressed by RPE to modulate the immune response [11,85]. Interestingly, the
upregulation of both genes has been linked to AMD [86–88]. Decreased expression of
LOXL and LHX2 in RPE-µTs suggests that the cells in our microtissues are healthy and
mature [89–91].

The findings of the RPE-µT spreading experiments (Figure 2f) are consistent with a
study by Beaune and colleagues that revealed cancer cell aggregates are able to spread on a
two-dimensional surface [92]. We are not aware of any previous studies that analyzed the
spreading of RPE aggregates on a 2D structure. This finding is important as it demonstrates
the potential of using RPE-µTs in future clinical trials as a potential therapy for disorders
such as age-related macular degeneration. In comparison to Bruch’s membrane, Matrigel
lacks collagen type V and perhaps more importantly, may significantly differ from aged
or diseased Bruch’s membrane, especially in patients with AMD. However, Matrigel
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remains one of the most common in vitro substances used to mimic authentic basement
membranes [93] and given the robust production of Bruch’s membrane components by
RPE-µTs (Figure 3), it seems likely that ECM deposition and remodeling will also take
place as aggregates reorganize into a monolayer within the retina.

These data presented here support the potential for efficient delivery of RPE in the form
of injectable RPE-µT, which would then re-organize to colonize RPE niches left unoccupied
by injury and disease. Further testing in animal models of retinal degeneration will be
necessary to confirm the potential of our RPE microtissues, to characterize to what extent
injected RPE-µTs re-establish a monolayer and support the retina after transplantation.
Based on the gene expression changes we observed (Figures 4 and 5) in RPE-µTs relative
to monolayer-on-plastic cultures, we anticipate that in the context of endogenous RPE
degeneration, transplantation of our RPE-µTs will enhance photoreceptor protection over
that yielded by delivery of RPE as a single-cell suspension, while remaining significantly
less technically challenging than delivery of RPE in sheet form. Importantly, R100 RPE-µT
size (diameter approximately 57 ± 7.3 µm) is significantly less than the range over which
the focal length of the eye adjusts during normal accommodation [94], and represents
only a small fraction of the lens-retina distance of 1.7 cm. While the reorganization of RPE
from RPE-µT to monolayer we observed is highly promising for their ability to re-occupy
vacant RPE niches, even a complete failure of RPE-µT to remodel into a natural epithelium
would still result in net benefits to the recipient if they are able to rescue loss of endogenous
photoreceptors via secreted signals.

4. Materials and Methods
4.1. Adherent and 3D Microtissue RPE Cultures

ARPE-19 cells were seeded in a 24-well plate (VWR, Mississauga, ON, Canada. cat
#82050-892) at 120,000 cells/well (60,000 cells/cm2), reached confluency at ~120,000 cells/cm2,
and cultured for 8 days in 1 mL of ARPE-19 culture media that consisted of: DMEM/F-12
with HEPES (Gibco, Mississauga, ON, Canada. cat # 11330057); 10% FBS VWR, Mississauga,
ON, Canada. cat # 97068-085; and 1% penicillin/streptomycin (Gibco, Mississauga, ON,
Canada. cat # 15140). Media change was performed every 48 hours replacing the old media
with 1 mL of fresh media.

The hESC-derived RPE cells were differentiated from hESCs, as previously described
by Maruotti and colleagues [60], with the following modifications: the HES-2 cell line [95]
was grown to confluence under 5% CO2 and 5% O2 in mTeSR1; during induced differen-
tiation; and a concentration of 50 nM chetomin (CTM) was used. Cells were grown to a
low passage number (3 or 5) before being cryogenically stored. For all experiments, hESC-
derived RPE cells were cultured in an identical manner to ARPE-19 cells, using RPE media
that consisted of 70% DMEM (Gibco, Mississauga, ON, Canada. cat # 11965), 30% F12
(Gibco, Mississauga, ON, Canada. cat # 11765), 2% B-27 supplement (Gibco, Mississauga,
ON, Canada. Cat # 17504) and 1% antibiotic (Gibco, Mississauga, ON, Canada. cat # 15140).

To estimate oxygen delivered to cultured cells under the aforementioned experimental
conditions, we utilized our previously published method [58,96]. For the purpose of the
calculation, we used 42 amol·cell−1·s−1 as the RPE oxygen consumption rate [97]. These
calculations yielded that RPE cultured under the outlined conditions receive sufficient
amount of oxygen, with a local oxygen concentration of 7.03 × 10−5 mol/L at the cells and
a maximum oxygen delivery rate of 75.5 amol·cell−1·s−1.

To generate RPE microtissues, adherent RPE cells were dissociated by adding 1 mL
of warm TrypLE Express Enzyme (Gibco, Mississauga, ON, Canada. cat # 12604013) per
well and incubating for 5–10 min at 37 ◦C. This single cell suspension was seeded into
24-well AggreWell plates (STEMCELL Technologies, Vancouver, BC, Canada. cat # 34411),
as previously described [40,43]. Cells were cultured in 1 mL of medium at 37 ◦C for
8 days. The medium was completely changed every two days. Microtissue size was
controlled by modulating the number of cells seeded per microwell, and is reflected in
the “Rxx” designation (e.g., R25 RPE-µTs are formed by seeding 25 cells per microwell,



Int. J. Mol. Sci. 2021, 22, 11317 13 of 19

R400 represents RPE-µTs formed from 400 cells apiece, etc.). Total cell number per well
was calculated by multiplying the desired number of cells per microtissue by the number
of microwells per well (1200).

After allowing 8 days for the cells to consolidate, we washed the RPE-µTs out of
the wells, using a wide-bore 1000 µL pipette and repeated pipetting up and down. The
resuspended RPE-µTs were transferred into a 1.5 mL Eppendorf tube to allow the RPE-µTs
to gravity settle. The resulting RPE-µTs were then dispersed over a glass slide and imaged
to measure their size, using a 10X objective on an Olympus CKX41 microscope. RPE-µT
size was assessed from calibrated photomicrographs using ImageJ software [40,43]. Finally,
the volume of produced RPE-µTs was modeled by using the measured diameter and
correlating it to the number of RPE cells seeded.

4.2. RNA Extraction and cDNA Synthesis

To harvest the RPE-µTs and adherent cultures, cells were dissociated by adding 0.4 mL
of warm TrypLE Express Enzyme (Gibco, Mississauga, ON, Canada. cat # 12604013) to
each well and incubating for 5 minutes at 37 ◦C. Recovered cells were then centrifuged at
200× g and the resultant cellular pellets were then stored at −80 ◦C to be used for mRNA
extraction. The mRNA was isolated by using a Total RNA Purification Kit (Norgen Biotek,
Thorold, ON, Canada. cat # 37500) and quantified on a NanoDrop 2000 spectrophotometer
(Thermo Fisher Scientific). The isolated RNA was reverse-transcribed by using iScript
Reverse Transcription Supermix for RT-qPCR (Bio-Rad, Mississauga, ON, Canada. cat
# 1708840). The resultant cDNA was then used to carry out real-time quantitative reverse
transcription PCR (RT-qPCR) to compare gene-expression profiles between an RPE-µT
and adherent culture (Sections 2.4 and 2.5). SYBR Green RT-qPCR was carried out with
technical triplicates using 7500 Fast Real-Time PCR System (see Reference [58] for primer
sequences), and analyzed with the 2−∆∆CT method [98], and with stable internal reference
gene (CNTF).

4.3. Immunohistochemistry

RPE-µTs were fixed by incubating in 4% paraformaldehyde (PFA) for 10 min at room
temperatures. RPE-µTs were then washed in PBS for 5 min at room temperature three
times. RPE-µTs were then incubated in 0.5% Triton X-100 detergent for 5 min at room
temperature, followed by three washes with PBS. Primary antibodies were then added to
the RPE-µTs at the proper concentration in PBT (0.1% TritonX-100 in PBS) and 1% BSA
solution (primary antibody details including concentration and cat # can be found in
Supplementary Materials Table S1). The microtissues were then incubated in the primary
antibody solution overnight at 4 ◦C, after which they were washed three times in PBS,
followed by blocking in 1% BSA for 10 min at room temperature. The RPE-µTs were then
incubated in the secondary antibody solution (secondary antibody and 1% BSA in PBS)
for one hour at room temperature, before again being washed three times with PBS. The
nuclei of the RPE-µTs were stained, using DAPI stain, before being mounted on slides for
imaging. Stained RPE-µTs were imaged by using a Leica SP8 spectral confocal microscope.

4.4. Microtissue Injection Modeling

To verify the feasibility and practicality of RPE-µT delivery via subretinal injection,
we assessed survival after delivery through the bore of a 30-gauge needle. Microtissue of
various sizes (R100 and R400) were harvested from the AggreWell plate 8 days post-seeding
and approximately 200 microtissue were resuspended in 10 µL of PBS. The microtissue
in PBS were loaded to 100 µL syringe and injected manually through a 30-guage needle
(BD, Holdrege, NE, USA. cate # 305128) at a rate of 10 µL/minute. RPE-µT survival was
evaluated by using the live/dead cell assay described below (Figure 2b,c).

Image quantification for the live/dead assay employed a custom ImageJ macro (see
Supplementary Materials for code and representative example images; analysis was car-
ried out with default settings unless otherwise specified). Signal in the Hoechst (nuclear
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staining) channel was blurred prior to thresholding, followed by hole-filling and dilation–
erosion cycles to give a smooth outline capturing the entire structure. Watershed segmenta-
tion was then employed to separate structures in contact with one another, followed by
particle analysis that calculated a mean signal intensity for each particle in the green (live
cell) and red (dead cell) channels.

4.5. Secreted Protein Quantification

CM was collected from generated RPE-µTs and standard RPE adherent cultures
during standard media change (48 h after introducing the media). The CM was then stored
at −80 ◦C until analysis. Multiplexing Laser Bead Technology (Eve Technologies) was
performed on CM to estimate the concentration of proteins present.

4.6. Viability Assay

Live/dead staining solution contained: Hoechst (Thermo, Mississauga, ON, Canada.
cat # 62249) as a nuclear stain, fluorescein diacetate (FDA) (Thermo, Mississauga, ON,
Canada. cat # F1303) to indicate live cells, and propidium iodide (PI) (Thermo, Mississauga,
ON, Canada. cat # P3566) to indicate dead cells. All three regents were combined in a
staining solution (1/50 of each stain in PBS). Cells and RPE-µTs were incubated in 50 µL of
staining solution for 5 min at room temperature. Cells or microtissue were washed three
times with PBS and imaged by using an Olympus IX83 Microscope at 200× magnification,
using MicroManager software [99].

Photoreceptors were isolated, enriched and cultured as previously described [61].
Briefly, mouse retinas were dissected from the eyes of postnatal day 4 CD1 mice obtained
through a secondary-use protocol approved by the Animal Care Committee at the Uni-
versity of Calgary according to IACUCC standards. Retinas were isolated from multiple
pups in one litter, polled together and enzymatically dissociated. Photoreceptors were
magnetically enriched by using 3 µg/mL of PE-conjugated anti-CD73 antibody (BD cat.
# 550741) on an EasySep cell-separation system (StemCell Technologies cat. # 18554). Pho-
toreceptors were cultured in 96-well plates coated with poly-D-lysine at 3.1 × 105 cells/cm2.
Images for photoreceptor viability assay were processed by using a Cell Profiler pipeline
that quantified the nuclei that are co-localized with either live or dead stains to determine
the percentage of live cells [100] and results were confirmed manually by an evaluator who
was blinded to the experimental conditions.

4.7. Attachment Assay

To observe how RPE-µTs interacted with a matrix resembling Bruch’s membrane, we
imaged eight-day-old APRE-19 RPE-µTs after seeding on Matrigel-coated glass coverslips.
A stable ARPE-19 cell line expressing nuclear mCherry was generated and used to form
RPE-µTs. Glass coverslips were coated with Matrigel by placing them individually in a
24-well plate followed by 2 mL of a solution of growth factor-reduced Matrigel (Corning,
Bedford, MA, USA. cat #354230) diluted 1:100 in DMEM-F12 and incubated at 37 ◦C for
1 h. Coating solution was removed and 2 mL RPE media was added to each well. After
8 days, RPE-µTs were gently removed from microwells with a P1000 pipette and placed
in the wells containing fresh media. RPE-µTs were imaged by using Leica SP8 spectral
confocal microscopy.

4.8. Statistical Analysis

Data were reported as mean ± SD. Data in this study were analyzed with GraphPad
Prism (v.7, San Diego, CA, USA) and R statistical software (v.3.5.1, Vienna, Austria [101]).
Calculations of Ct values were carried out by using Microsoft Excel (v. 16.53, Redmond,
WA, USA). Information about the specific statistical methods can be found in the text and
figure legends. Results presented as “fold expression” comparing RPE-µTs and monolayers
were analyzed with a Wilcoxon matched-pairs signed-ranks test to determine whether the
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mean ∆Ct differed (Supplementary Materials Tables S2 and S3). For this study, p < 0.05
was considered statistically significant.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/ijms222111317/s1.
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