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ABSTRACT

The awareness of important biological role played
by functional, non coding (nc) RNA has grown tre-
mendously in recent years. To perform their tasks,
ncRNA molecules typically unite with protein
partners, forming ribonucleoprotein complexes.
Structural insight into their architectures can be
greatly supplemented by computational docking
techniques, as they provide means for the integra-
tion and refinement of experimental data that is
often limited to fragments of larger assemblies or
represents multiple levels of spatial resolution.
Here, we present a coarse-grained force field for
protein-RNA docking, implemented within the
framework of the ATTRACT program. Complex
structure prediction is based on energy minimiza-
tion in rotational and translational degrees of
freedom of binding partners, with possible exten-
sion to include structural flexibility. The coarse-
grained representation allows for fast and efficient
systematic docking search without any prior know-
ledge about complex geometry.

INTRODUCTION

In recent years, the known inventory of functional RNAs
that do not belong to protein coding messenger (m) RNA
class has increased dramatically (1–3). These so-called
non-coding (nc) RNAs appear to play important roles in
diverse cellular activities such as RNA processing and
modification, translation, gene expression, protein
trafficking or chromosome maintenance. In doing so,
RNA molecules typically unite with protein partners in
functional ribonucleoprotein complexes (4–6). Structural
insight into such assemblies is essential for our under-
standing of their mechanism of action as well as for the
future ability to design new diagnostic tools or therapeutic
strategies.

The awareness for the importance of ncRNA grows
much faster, however, than the available body of struc-
tural data. In spite of spectacular successes, such as
obtaining high-resolution structures of small and large
ribosomal subunits (7,8), protein–RNA complexes
comprise currently only �4% of records deposited in the
Protein Data Bank (PDB) (9), while at the same time it is
estimated that the portion of genome transcribed into
ncRNA may be even 20 times larger than the protein
coding part (3). X ray crystallography of macromolecular
complexes, particularly containing nucleic acids, is a more
difficult task than the determination of isolated compo-
nents. Thus, computational docking techniques, aiming at
the prediction of the complex structure based on its com-
ponents, are becoming increasingly important. Even
though they still need to tackle many challenges before
becoming a reliable standalone tool (10), they already
play an important role in the integration of structural
data coming from experimental methods that provide dif-
ferent levels of spatial resolution (11,12).

To date, most computational efforts for ribonucleo-
proteins were focused on the characterization of binding
interfaces (13–17) or the localization of RNA binding sites
on proteins (18–23) rather than docking. In contrast to
protein–protein docking that has an established record
(10), to our knowledge, only very few preliminary
attempts have been made for the actual protein–RNA
binding mode prediction (24–26). They are based on
distance-dependent atomic statistical potentials for
protein–RNA interactions (24,25) or statistically derived
propensities for protein–RNA pairing at the residue level
(26). Descriptors developed for quantifying protein–RNA
interactions were demonstrated to distinguish between
native structures and provided decoys (24,25), or to
improve ranking of near-native solutions obtained using
shape complementarity-based scoring (26).

Recently, protein–RNA complexes were included as
targets in the Critical Assessment of PRediction of
Interactions (CAPRI) competition (27). Most of the
participating groups adapted for this occasion methods
developed for protein–protein docking and used
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experimental restraints to facilitate native-like geometry
selection. Out of two ribonucleoprotein targets, one
required homology modeling of both binding partners
and was not solved by any of the competing groups,
while the second, with provided bound RNA geometry,
allowed for a number of successful, medium accuracy pre-
dictions. The presence of protein–RNA targets for the first
time in CAPRI competition indicates the growing interest
in computational prediction of ribonucleoprotein struc-
tures and consequently, the need for new methods,
targeted specifically on protein–RNA docking problems.

In the current study, we design and parametrize a
distance-dependent, coarse-grained forcefield for
protein–RNA interactions. This forcefield is compatible
with an earlier parameter set developed for protein–
protein docking by Zacharias (28,29). It allows for fully
systematic protein–RNA docking by energy minimization
in the rotational and translational degrees of freedom of
the binding partners. Unlike propensity-based descriptors,
the distance-dependent potential function provides all
necessary means for finding realistic bound geometries
and their subsequent scoring by the resulting potential
energy. Structure representation at the sub residual
coarse-grained level allows for efficient calculations, yet
at the same time maintains reasonable details of
physicochemical features.

In the following sections, we describe forcefield devel-
opment and testing based on 110 crystallographic struc-
tures of protein–RNA complexes. We also consider its
application to few protein–RNA complexes with available
structural data for bound state as well as unbound
components.

METHODS

Coarse-grained representation

The presented potential for protein–RNA interactions is
designed to be compatible with the earlier coarse-grained
parametrization developed for proteins by Zacharias
(28,29). In Zacharias model, each amino acid is repre-
sented by up to four pseudoatoms (beads): two corres-
ponding to main chain nitrogen and oxygen, and one or
two describing short and long side chains, respectively. In
total, there are 31 pseudoatom types. To extend this model
for nucleotides, 17 new bead types were introduced. They
include three pseudoatoms for phosphate/ribose part, and
three or four for purine and pyrimidine bases, respectively
(Figure 1).

The assumed, pairwise additive interactions between
protein and RNA beads are described by a distance-
dependent potential that has two different forms, corres-
ponding to attractive and repulsive interactions (Figure 2).
The attractive potential is of Lennard–Jones type, with a
soft repulsive term:

Uattr
ij ðrÞ ¼ �ij

�
�ij
r8
�
�ij
r6

�
: ð1Þ

Pairwise-specific parameters sij and eij govern interaction
range and strength, respectively. The repulsive potential is
defined as:

Urep
ij ðrÞ ¼

Uattr
ij ðrÞ þ 2Um

ij for r � rmij
�Uattr

ij ðrÞ for r4 rmij
;

�
ð2Þ

where rmij and Um
ij correspond to the position and value of

Uattr
ij minimum. Such formula provides a smooth, easily

Figure 1. Coarse-grained representation for nucleotides. Beads (dashed
circles) are either centered on particular atoms or at geometric centers
of a few atoms (dots).

Figure 2. Repulsive and attractive potential form. rm and Um: the
position and value of Uattr minimum.
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implemented potential, albeit with non-physically vanish-
ing force at rm. Unlike in the Zacharias model for proteins,
no separate electrostatic terms were introduced, thus
assuming that the above potentials account for all effect-
ive intermolecular interactions.

Potential parametrization

The interaction of each pair ij of protein and RNA beads
is described by two parameters (sij and eij), hence giving in
total 1054 parameters for protein–RNA force field. They
were derived in a knowledge-based manner, using a set of
protein–RNA crystallographic complexes. At first,
distance-dependent statistical potentials ~GijðdÞ were con-
structed for each bead pair, and the initial values of s
and e parameters were obtained by fitting Equations (1)
and (2) to ~GijðdÞ. The resulting parameter values were sub-
sequently adjusted to optimize docking results in terms of
finding the right (close to native) binding mode and its
proper scoring. The details of parametrization procedure
are given in the following.
‘Protein–RNA complexes’ were selected from crystallo-

graphic structures used recently for the analysis of
protein–RNA binding sites (22,23). The provided lists of
non-redundant complexes, having resolution better than 3
Å, were merged together, and a search for homologous
structures was performed using Smith and Waterman al-
gorithm (30) for proteins, with the similarity threshold of
70% sequence identity, and nucleotide BLAST algorithm
(31) for RNA, with the similarity threshold of 80%
sequence identity. Two complexes were deemed redun-
dant, if similarity thresholds were simultaneously
exceeded by their both binding partners, thus allowing
single binding component to be considered for docking
with different partners. A list of complexes sharing one
similar binding component is given in the Supplementaty
Data.
The non-redundant structures were than subjected to

manual analysis with the following rules:

. complexes in which a DNA molecule was found to
bind protein and RNA molecules were discarded;

. structures with multiple missing side chains or nucleo-
tides were discarded;

. structures with protein–RNA contact involving <5 nt
were discarded;

. structures in which one of the binding partners was
ribosome were excluded from the optimization of e
parameters (see below) and from the test set for
docking; and

. homopolymers were identified and their multiplicity
(n) was taken into account in the derivation of statis-
tical potentials: polymers were analyzed as monomers,
but their contribution to bead pair statistics was
counted with weight 1/n.

All protein chains were processed with pdb2pqr
program (32) in order to standardize atomic names and,
if possible, reconstruct missing chemical groups. Complex
geometry was left as submitted in the crystallographic
structure. Finally, all structures were converted to
coarse-grained representation.

The above procedure resulted in 109 protein–RNA
complexes, including 20 structures with ribosomal RNA.
Out of this group, 84 structures, including all ribosomal
complexes, were used for the statistical potential deriv-
ation and the optimization of s parameters, and 64 of
them (non-ribosomal) were used for the optimization of
e parameters. The remaining 25 non-ribosomal complexes
were assigned to the test set.

‘Statistical potentials’ for protein–RNA interactions
were derived, using the following formula:

~GijðdÞ ¼ �kT ln

�
Nobsði; j; dÞ

Nexpði; j; dÞ

�
: ð3Þ

Here, Nobs and Nexp represent the number of observed and
expected occurrences of a given ij bead pair at a distance
d± d. In the calculations, d spacing of 0.5 Å was used,
with d of 0.25 Å, and a distance range up to 14 Å was
considered. While obtaining Nobs for the known atomic
coordinates of protein–RNA complexes is rather straight-
forward, Nexp requires more attention. It should corres-
pond to the number of observations expected for the
random, interaction-independent placements of protein
with respect to RNA, given their average structural
features and (pseudo)atomic composition.

Nexp was defined based on geometric considerations as :

Nexpði; j; dÞ ¼ �iðdÞ�jðdÞNTotðdÞ: ð4Þ

Here, NTot(d) corresponds to the total number of pairs
found with distance d between beads, while �i(d), and
analogously �j(d), is a probability that any bead can be
placed at a distance d from the bead of type i, given
average structural features of protein (or RNA) molecules.
�i(d) values are obtained as the i-th fraction of the total

accessible surface of radius d, S(d), that can be constructed
for protein (or separately RNA) structures extracted from
the available complexes:

�iðdÞ ¼
SiðdÞ

SðdÞ
;where SðdÞ ¼

X
i

SiðdÞ ð5Þ

Si(d) is the contribution to the total accessible surface area
due to all surfaces of type i beads. Those surfaces are
defined as points accessible to the center of a probe of
radius RP, remaining at a distance d from the bead of
interest (Figure 3).

Figure 3. The accessible surface of radius d for a bead of type i located
at ~r. Rp is a probe radius. SiðdÞ ¼

P
~r sið~r; dÞ.
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The beads radii were estimated using the acquired
Nobs(i, j, d), as an average of half distance of closest
approach for all considered interaction partners for a
given bead. The probe radius, in turn, was defined as an
average of all bead radii, yielding Rp=1.78 Å. The nu-
merical results for �(d) appeared to be insensitive for
small (�0.1 Å) variations in the applied radii.

Parameters optimization. The initial parameter set was
obtained by fitting Equations (1) and (2) to the derived
statistical potentials and choosing the (s, e) pair providing
the lowest root mean square deviation (RMSD) from
~GijðdÞ. In order to optimize the performance of the
obtained parameter set for protein–RNA docking, the
parameters were further adjusted using a two-stage
procedure.

In the first stage, only s parameters were optimized to
provide possibly best stability of native structures. Due to
large dimensionality of parameter space, a random,
Monte Carlo-like optimization scheme was introduced.
The following optimization block was iterated until no
further improvement was observed (In practical applica-
tion, steps (3) and (4) were modified for better efficacy: the
search started from a given s value, proceeded in positive
and than negative direction, but each search direction was
interrupted before checking all k values as only the score
started to decrease.):

(1) start with the current parameter set;
(2) randomly select one s parameter from those that

were not yet selected;
(3) for each of 2k+1 values: s� k�s,k,s,k,s+k�s

perform potential energy minimizations for the set of
native complexes, and score the results;

(4) keep the s value that provides the best score;
(5) if some s parameters remain to be scanned, go to

point 2

The energy minimization was done in protein (ligand)
translational and rotational degrees of freedom, with
both binding partners kept rigid. The scoring performed
in point (3) was based on the following criteria applied to
each minimized complex:

. if alpha carbon RMSD of minimized versus native
protein position was greater than >5 Å, a ‘large
penalty’ (LP) was applied; and

. if RMSD was between 1.0 and 5.0 Å, its square was
accumulated in �RMSD variable.

The best score was considered to have the lowest number
of LP or smallest �RMSD value among the scores with the
same number of LP. Such scoring scheme was tuned for
finding solutions close to native (with RMSD <5 Å) with
possibly low RMSD, but deeming unimportant RMSD
variations below 1.0 Å. In practical application, k=6
was chosen for each optimization round, and �s value
was set as 0.1/N Å, where N corresponded to the optimiza-
tion round number.

The second optimization stage involved the adjustments
of e parameters to enhance scoring of native-like
complexes. In order to evaluate the scoring efficiency, a

set of 200 decoys was introduced for each considered
protein–RNA complex. They were obtained as low
energy solutions of systematic docking run whose
RMSD from native structure was >5 Å. Such systematic
docking was performed from starting points evenly
distributed over the receptor surface, hence the loca-
tions of the decoys were not limited to the area of
binding interface (see ‘Docking protocols’ section
below).
A following optimization scheme was repeated until no

further improvement in the number of correctly ranked
complexes was observed:

(1) start with the current parameter set and perform
energy minimization for native complexes and all
decoys;

(2) randomly select one e parameter from those that
were not yet selected;

(3) for each of 2k+1 values: e� k�e,k, e,k, e+k�e

perform a single point energy evaluation for all
structures;

(4) keep the e value that provides the best ranking of
native complexes;

(5) if some e parameters remain to be scanned, go to
point (2).

The criterion for the best overall ranking was based on
the ability to provide the lowest energy for native-like
(energy minimized) complexes with respect to their corres-
ponding decoys. The best e value was regarded as having
the highest number of properly ranked (i.e. with rank 1)
native-like complexes. If a few e values resulted in identical
ranking, the one with lowest penalty score was then
chosen. The penalty score was calculated for complexes
that did not rank properly. It depended on the RMSD
of native-like complex (native complexes with high
RMSD after energy minimization were not expected to
be ranked as precisely as complexes with low RMSD),
the actual rank of native-like complex among its decoys
(the higher the rank the smaller penalty) and the difference
in energy between the native-like complex and the best
ranked decoy. For the e optimization procedure, k=2
and �e=0.1 kcal/mol were chosen. For further details,
see the Supplementary Data.

Parameter set evaluation. The random optimization
scheme does not guarantee reaching single, globally best
parameter set, even if (unlikely) such set exists. In order to
obtain insight into the validity of the adopted optimiza-
tion procedure, three independent parameters optimiza-
tions were carried out. The three resulting interaction
potentials for each bead pair were compared with the
analysis of standard deviations of their minima or saddle
point positions with respect to their mean location.
Minimum or saddle point position is a simple function
of s parameter (on the distance scale) and e parameter
(on the energy scale). In order to combine the deviations
in s and e components, they were normalized by the re-
spective average s or e deviations over all bead pairs. Such
normalized deviations, Ss and Se, were then combined,
yielding a single value S�� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2
� þ S2

�

p
, measuring the
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variability of a given bead pair interaction across the three
sets.
Finally, an average, consensus parameter set was con-

structed, and docking efficacy of all four potentials was
compared.

Docking protocols

All docking simulations performed in the current study
were carried out with the ATTRACT program (28).
They involved two rigid partners in coarse-grained repre-
sentation: an RNA structure treated as an immobile
receptor and a protein structure treated as a movable
ligand. No additional information such as distance con-
straints or binding region location was submitted. Prior to
docking, a set of starting ligand positions evenly
distributed with spacing of �12 Å around the receptor at
distances precluding receptor-ligand overlaps was
generated. For each such position, 208 initial ligand orien-
tations were considered. A single docking attempt con-
sisted of five stages of potential energy minimization in
ligand translational and rotational degrees of freedom,
with decreasing distance cutoff for pairwise interactions.
The initial cutoff was set to 50 Å and final cutoff was set to
be 8 Å.
The solutions with converged potential energy were

then clustered according to their pairwise RMSD dis-
tances in order to remove redundant ligand poses.
Scoring of the results was done according to their poten-
tial energy.

RESULTS AND DISCUSSION

Potential parameters

The obtained statistical potentials provide a valuable char-
acterization of the assumed interaction model (see
Supplementary Data for the corresponding plots): they
reasonably indicate attractive and repulsive pseudoatom
pairs, define the distances of closest approach and give the
estimate of interaction strength.
Their use as a definite and only basis for deriving inter-

action potentials in the form of Equations (1) or (2) is,
however, limited. First, due to a relatively small number of
available, high-quality protein–RNA complexes, for some
particularly infrequent bead pairs, considerable unphysic-
al oscillations in the statistical potential are observed, ren-
dering the fitting procedure inaccurate. Second, in some
cases the statistical potential does not reach the zero
baseline for distances as large as 14 Å, requiring an arbi-
trary decision whether the potential should be shifted
before fitting, and if yes, what offset value should be
used. Finally, the assumption that a statistical potential
between two beads describes their pairwise interaction in
the context of specific macromolecular environment is not
physically justified (33).
Due to these reasons, the statistical potentials were used

to generate only an initial guess for the parameter set
(called ‘set 0’ in the following), with its subsequent opti-
mization, specifically for docking and scoring application,
in mind. Given the large dimensionality of parameter
space and relatively limited size of the training set, it is

reasonable to expect that the result of parameter optimiza-
tion would be sensitive to the order of pairwise potentials
adjustments. As no indisputably superior adjustment
sequence was determined, a random scheme was
adopted and three independent optimization procedures
were carried out. In addition, a consensus parameter set
was constructed, obtained by averaging of respective s
and e parameters of all three sets.

Pairwise interactions amplitudes—well depths (negative
values) for attractive potentials or saddle point heights
(positive values) for repulsive potentials—for the consen-
sus set (Figure 4), agree, in general, with the expected
protein–RNA interaction characteristics. If the percentage
of strong interactions (defined as having an amplitude
higher than average repulsive or attractive interaction
plus their respective one standard deviation) offered by a
given bead is a measure of its importance for the specifi-
city of protein–RNA recognition, the aromatic protein
side chains (Tyr, Trp, Phe, His) appear to be the most
contributing group, in line with the traditional view (34).
They preferentially interact with nucleic bases rather than
RNA backbone, which reflects stacking interactions they
are supposed to make.

Strong, mostly attractive interactions are observed for
positively charged arginine. They are directed predomin-
antly toward nucleic bases, at least if its distal, ARGS,
bead is concerned. Interestingly, a similarly charged
lysine appears to favor the RNA backbone instead,
while the rest of its interactions is only moderate, with
the exception of strong attraction to GG4 guanine
pseudoatom. As expected, strong attraction is also
observed between protein backbone nitrogen and
pseudoatoms representing hydrogen bonds acceptors on
nucleic bases.

The repulsive interactions, while not driving the
complex formation, are also important for binding speci-
ficity. A significant repulsion is observed between nega-
tively charged RNA phosphate groups and ionized side
chains of Glu and Asp, and also for Gln, Asn and
protein backbone oxygen. Interestingly, Cys appears to
be in general the most RNA-repelling amino acid,
both when phosphate backbone and nucleic bases
are concerned, even though it does not carry a net
charge.

The weakest interacting beads, in turn, belong to hydro-
phobic residues (Ile, Leu, Val, Ala, Gly) on the protein
side, and sugar moiety on the RNA side.

As expected, the exact values of parameters for the
optimized interaction potentials vary across all three par-
ameter sets. An average deviation for pairwise interaction
with respect to mean location of its potential minimum or
saddle point is 0.07 Å on distance scale (Ss) and 0.18 kcal/
mol on energy scale (Se). The observed combined devi-
ations (see ‘Methods’ section) differ considerably among
all pairwise potentials (Figure 5). To some extent, they
reflect a statistical uncertainty due to an absolute
number of bead pairs used to derive a given potential:
rarely observed pseudoatoms like those in Trp or Met
tend to have greater variability in their interaction poten-
tials, whereas frequent beads like those in RNA or protein
backbone tend to contribute to more repetitive potentials.
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Such trend is also visible for nucleic bases with most often
encountered guanine having on average lower deviations
than less frequent uracil and adenine. For some ubiqui-
tous pseudoatoms, however, like those in Arg, Lys or
protein backbone oxygen, average deviations, though
still below the mean for all protein beads, remain relatively
high. Interestingly, those pseudoatoms are among the
group that seems to particularly contribute to protein–
RNA recognition. Perhaps, having high impact on
docking performance, they are also exceptionally sensitive
to the order of parameter optimization, and each time
their interactions are being optimized, the adjustment
depends on the actual state of all other pairwise potentials.
It indicates that there are many local optima in the inter-
action parameters space, resulting in similar docking effi-
ciency for the limited training set. In order to mitigate the
effect of such random parameters overfitting toward the
training set structures, a consensus parameter set was

constructed by averaging all respective s and e values of
the three optimized sets.

Docking performance

Upon completion of parameters derivation, a systematic
docking search was carried out for all non-ribosomal
complexes from the training set (64 in total) and the test
set (25 in total). Docking performance was evaluated
based on interface RMSD (iRMSD) relative to the
native interface composed of protein–RNA bead pairs
found within the cutoff distance of 8 Å in the crystallo-
graphic structure, and the fraction of established native
contacts (fNC) within such interface. A docked ligand
pose was considered as a ‘hit’, with iRMSD �2 Å and
fNC �0.3, or iRMSD �1 Å with fNC �0.5. Such criteria
are equivalent to ‘hit’ being ‘high’ or ‘medium’ quality
solution according to the CAPRI challenge (35)

Figure 5. Deviations of minimum or saddle point locations for three
sets of pairwise potentials with respect to consensus set. Side plots:
average deviations for each pseudoatom type (points), relative
frequencies of pseudoatoms found in interacting pairs (histograms).
All data normalized such that average values equal one.

Figure 4. Color map: average amplitudes—well depths (negative
values) or saddle point heights (positive values)—of interaction poten-
tials for all bead pairs. Side plots: the percentage of strong interactions
for each bead; strong interactions are defined as having an amplitude
higher than average plus 1 SD.
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guidelines. Separately, the statistics for hits of only ‘high’
quality (i.e. with iRMSD �1.0 Å and fNC �0.5) was
determined.
Before performing a systematic docking search, in order

to evaluate forcefield ability to provide stable complexes
consistent with experimental binding modes, potential
energy minimization of crystallographic structures was
carried out. For each parameter set, except the
non-optimized set 0, all complexes, both in the training
and test set (Table 1), were found to be stable in the sense
that the converged energy minimum met the adopted
criteria for ‘hit’. Most of the the optimized geometries
(�85%) corresponded to high-quality solutions.
Interestingly, in some cases when crystallographic
complex distortion exceeded the assumed tolerance for
high-quality model, such solution was found during sys-
tematic docking search, though not necessarily scored as
the best. It is worth stressing that crystallographic struc-
tures are usually computationally optimized with the use
of atomic forcefields, and some residual strains are likely
to be encountered when switching to a different set of
interaction potentials. Hence, the imbalance of particular
receptor-ligand geometry during rigid body energy mini-
mization does not preclude the forcefield ability to provide
energy minimum that corresponds to physically equivalent
binding mode.
The performance of parameter set obtained solely upon

fitting to statistical potentials (set 0) in terms of providing
stable native-like geometries, was surprisingly good, given
that its parameters were not tuned in any way to achieve
this task. Around 90% of complexes remained stable, and
majority of the ‘optimized’ geometries corresponded to
high-quality solutions, with no significant difference
between the training and test set.
The results of systematic docking searches are presented

in Table 1. For optimized and consensus potentials,
native-like solutions in training set complexes are found
to have the highest rank (lowest potential energy) in
50–62% cases, depending on parameter set used. The
success rate increases significantly when native-like solu-
tions are allowed to have up to 10th rank, and further
increase in rank threshold brings only moderate improve-
ment (Figure 6). For the test set, optimal ranking is
achieved for 36–48% of structures, and the success rate
tends to saturate at higher rank threshold (Figure 6).
Interestingly, portions of generally found native-like

solutions are similar for both training and test sets,
indicating that the force field ability to score the results
is more prone to overfitting than its ability to provide
proper geometries. This can be understood, as binding
geometries depend mostly on effective pseudoatomic
radii, while energy values are additionally sensitive to
amplitudes of interaction potentials.

As expected, the performance of parameters from set 0
is much worse compared with optimized and consensus
potentials. While the fraction of generally found solutions
is moderately good, in accordance with the number of
stable structures found during crystallographic complex
energy minimization, the ability of non-optimized poten-
tials to score the results is rather poor. Indeed, the position
of minimum (or the range of hard core bead-bead inter-
action) in statistical potentials seems to be relatively
reliable and error-resistant physical descriptor in
contrast to interaction strength. As a result, set 0 poten-
tials approximate shape complementarity but fail in
providing a meaningful estimate of the binding free
energy.

The performance of the three optimized parameter sets
is generally similar within training or, separately, test set
structures. The consensus parameter set does not bring
much difference with respect to training set, but clearly
outperforms the three optimized potentials when test set

Table 1. Docking results for the initial parameter set (0), three optimized parameter sets (1, 2, 3) and the consensus set (C)

Parameter set Training set Test set

Ns N1 N10 Nall Ns N1 N10 Nall

0 88 (72) 19 (19) 23 (23) 67 (50) 92 (60) 4 (4) 8 (8) 72 (48)
1 100 (86) 50 (41) 75 (59) 86 (66) 100 (84) 36 (36) 56 (56) 92 (76)
2 100 (89) 52 (42) 81 (62) 92 (70) 100 (80) 40 (40) 64 (56) 88 (76)
3 100 (84) 62 (53) 73 (58) 86 (66) 100 (84) 40 (40) 52 (52) 88 (80)
C 100 (83) 61 (53) 80 (66) 88 (70) 100 (84) 48 (44) 76 (72) 100 (84)

Numbers correspond to the percentage of hits for crystallographic structure energy minimization (Ns), and for systematic search within best rank
solutions (N1), within 10 best solutions (N10), and within all docked poses (Nall). Numbers in brackets correspond to solutions of ‘high’ quality (see
text for definition).

Figure 6. The percentage of hits at given rank threshold obtained for
three optimized parameter sets and the consensus set. Lower set of
dashed lines: the numbers of hits with rank 1, upper set of dashed
lines: the numbers of generally found native-like solutions.
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structures are considered. It suggests, that parameter
averaging might indeed have contributed to the the reduc-
tion of inter parameter correlations arising from
overfitting.

If obtaining a native-like solution, as the one with the
lowest potential energy, is considered as an ultimate goal
of docking study, the most common reason for the lack of
success is improper scoring (error of type 1, E1). It
accounts for �70% of failures for the training set struc-
tures and >80% for the test set structures (Table 2). The
inability of systematic search procedure to find native-like
binding geometry (error of type 2, E2), corresponds to
16–38% of failures for the training set and up to 20%
for the test set. As noted above, the actual percentage of
structures for which systematic search fails to find a
native-like geometry is similar for training and test sets
(�10%), and differences in relative frequencies of E1
versus E2 errors for those sets result from generally
worse scoring for the test set structures. Error distribution
obtained with non-optimized parameter set 0, shows a
greater proportion of E2 errors when compared with
optimized and consensus parameter sets. Again, it indi-
cates that the optimization of shape complementarity
encoded in the potentials is more efficient than the opti-
mization of their scoring capabilities.

From the structural point of view on docking efficiency,
the considered protein–RNA complexes tend to be either
easy (docked and scored within top 10 for all four param-
eter sets) or difficult (with rank worse than 10 for all four
parameter sets). The fractions of complexes belonging to
those two classes (Figure 7) are much higher than esti-
mates based on the supposition that the success (or
failure) in docking for one parameter set is independent
from the results for other parameter sets, i.e. can be
expected with probability being a product of success (or
failure) probabilities in each case. Clearly, to some degree
it is the effect of correlations between parameter sets, as
they are derived from a common predecessor, but more
importantly it is a consequence of structural properties of
the investigated complexes.

In most cases, complexes regarded as difficult have
small interface region (see Figure 9 for examples: 2F8S,
2DLC, 1YYW). The number of interfacial beads on both
receptor and ligand side for �80% of difficult structures is
within the lowest 20% of interfacial bead numbers for all
complexes (Figure 7). Typically in such cases, a native-like

geometry is found but scores badly, as alternative solu-
tions provide more, albeit usually worse, contacts. On
the contrary, in 2 of 11 difficult cases (1F7U, 1FFY) the
interface size is exceedingly large (close to the maximum of
the observed interfacial bead number range). For those
complexes, native-like solutions are not found at all
during systematic search, as tightly packed, large
binding region precludes successful docking of rigid
partners, even though crystallographic structures corres-
pond to stable energy minima. In general, the size of
protein interface appears to be slightly more important
for docking efficiency. Perhaps, it is due to greater contri-
bution of protein partners to specific recognition (22),
which is a consequence of greater variability among
protein polymer building blocks in comparison with just
four types of standard RNA nucleotides.
The absolute size (accessible surface area) of binding

partners seems to have little influence on docking effi-
ciency. Structures of different sizes are in general evenly
distributed among difficult and non-difficult complexes
(Figure 7), with the exception of three largest ligands.
Two of them, however, (2F8S, 1SER) appear to have
rather small interface regions, while the third one
(1FFY) was already mentioned as having extremely
large and tight interface.

Improving docking performance

As noted above, proper scoring of docked geometries
appears to be the major factor that affects docking per-
formance. A possible way to increase scoring efficiency is
to use information about the expected interface location in
order to amplify ligand–receptor interactions originating
from this area. To date, a number of methods have been
developed for the prediction of RNA binding sites on
proteins (18–23). Unfortunately, predicting protein
binding sites on RNA is much more difficult task and,
apart from general characterization of protein binding
interface on RNA (13–17), to our knowledge no predictive
methods exist to tackle this problem. Due to this reason,

Table 2. Relative fractions (in %) for two types of docking errors

Parameter set Training set Test set

E1 E2 E1 E2

0 60 40 71 29
1 72 28 88 12
2 84 16 80 20
3 62 38 80 20
C 68 32 100 0

E1: the hit is found but scores improperly; E2: the hit is not found at
all during systematic search.

Figure 7. Left: the distribution of easy, medium and difficult docking
structures, and an estimate of their relative frequencies assuming no
correlation between docking efficiency and structural properties.
Right: the distribution of structural features among difficult complexes;
R IB, L IB—the number of interfacial beads in receptor and ligand,
R S, L S—receptor and ligand accessible surface area. Features ranges
are normalized with 0 and 100 corresponding to the lowest and highest
observed values, respectively.
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only the influence of protein interface predictions will be
considered.
Instead of evaluating the usefulness of particular

approaches for the prediction of RNA binding region in
proteins, a generic estimate of the predictive power
required to improve scoring was carried out. The true
protein interface was assumed to consist of beads
involved in the formation of native contacts with RNA
(see above for definition). Its status was perturbed to the
desired level of specificity and selectivity by randomly
introducing some false positive and false negative inter-
facial beads to protein structure. Finally, for each such
‘prediction’, two hundred lowest energy solutions of sys-
tematic docking search for each complex were rescored
with the interactions for ligand ‘interfacial’ beads scaled
up by some weight factor (W). An alternative scheme, in
which only attractive interactions were scaled, was also
considered but the results were qualitatively the same
and, hence, are not shown. Due to random character of
beads reassignment, interface perturbation and rescoring
of docking results were repeated five times for each pre-
diction quality and weight factor combination, and
average numbers of best ranked native-like geometries
were recorded.
Moderate scaling (W=1.25) of the predicted native

interactions appears to have in general a small beneficial
effect on scoring efficiency (Figure 8). Even with relatively
low prediction quality, it provides up to �10% increase in
top ranked hits. Greater weighting factors allow reaching
better results, up to �30% increase in optimal scores. This
effect tends to saturate, however, and interaction scaling
aboveW=5 does not improve the results, even for ideally

‘predicted’ interface (with sensitivity and selectivity of 1).
This is understandable, as predictions affect only the
protein binding partner and thus, false solutions, in
which a correct protein region binds to an incorrect
RNA region, can also benefit from interaction scaling.

Interestingly, higher W values require better prediction
quality in order to improve scoring efficiency. In fact, poor
predictions tend to even worsen the original (W=1)
results, and this effect becomes increasingly evident with
growing W. At the same time, high sensitivity appears to
be somewhat more beneficial than specificity, suggesting
that finding as many interfacial pseudoatoms as
possible, even at the expense of false positive predic-
tions, is favorable to capturing only few, but truly inter-
facial beads. Indeed, in the latter case, some false
solutions that partially overlap with the correct
binding region may easily benefit from high W values,
if only they involve contact through singular promoted
interfacial beads.

Confronting the above considerations with the expected
effectiveness of currently available methods for RNA
binding site prediction (Fig. 8), indicates that making
use of their results would improve scoring efficiency by
10–20% with moderate interaction scaling (W< 5). For
W=5 and above, most methods seem to give prediction
quality that may not be sufficient for such improvement,
or may even deteriorate scoring.

The inability of systematic search procedure to find
native-like binding geometry (E2 error type) was the
second reason for the lack of docking success. In some
cases, like those with large and tight interface, relatively
little can be done to avoid this type of failure within the
framework of rigid structures docking. In other cases, with
just narrow ‘binding funnel’ leading from starting points
for energy minimization to a bound complex, an increase
in the density of initial ligand placements should be of
help. Indeed, a 2-fold increase of starting points density
limits the fraction of complexes with no native-like
solution from 12% to 5% for the training set (results for
the consensus parameter set). Furthermore, three out of
all five newly found hits score with top rank (and represent
‘high’-quality solutions), indicating that E2 errors occur
indeed due to geometrical constraints rather than
forcefield inability to provide a proper energy landscape.
In the case of test set, there were no structures with E2
error for the consensus parameter set, hence no improve-
ment in this respect was observed, but one additional
high-quality solution was found when the number of
starting points was doubled. Certainly, an increase in the
number of initial ligand placements results in a propor-
tional increase in the time needed for systematic search,
but such computational burden can be reduced by the in-
clusion of information about the putative binding site
location on RNA and appropriate starting point density
modulation.

Docking of unbound structures

The docking of protein to RNA in their unbound con-
formations represents scenario encountered in real-life ap-
plications. On top of difficulties related to obtaining

Figure 8. Rescoring of 200 lowest energy solutions with protein inter-
facial interactions scaled by weight W. NW/N1—the ratio of best ranked
hits for weight W to original result with W=1. Sensitivity and speci-
ficity refer to the prediction quality of protein interface region. Black
dots indicate prediction quality of some available methods taken from
Ref. (23).
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proper ligand placement and its scoring, a significant
obstacle arises due to local and global conformational
changes that likely occur upon binding and need to be
predicted for successful docking. Addressing this issue is
beyond the scope of the present report, focused on the
development of an intermolecular interaction potential.
Nonetheless, the performance of rigid docking with the
use of consensus parameter set was checked on few avail-
able unbound structures of both binding partners in order
to give an estimate for the level of structural deformation
that still does not preclude successful docking.

Unbound structures were required to have at least 95%
sequence identity of the overlapping region with bound
version, both in the case of RNA and proteins. As there
are very few such instances, in the case of bound RNA in
the form of straight double helix, for which exists an
unbound protein partner, a modeling of 3D structure
was performed using secondary structure as an input.
The program Assemble (36) was used for this task. The
criteria applied so far for the detection of ‘hit’ were
extended to incorporate solutions of ‘acceptable’ quality
according to CAPRI classification, that is having iRMSD

Figure 9. Examples of crystallographic structures (marked by PDB-id) for ‘difficult’ cases (upper row), successful unbound docking (middle row) and
unsuccessful unbound docking (lower row). Green: bound receptor; blue: unbound receptor; gray: native ligand geometry; red: best docked solution.
Below PDB-id is the rank of the presented solution and its iRMSD/fNC.
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�4.0 Å and 0.1 �fNC <0.3, or iRMSD >2.0 Å and fNC

�0.3.
Though the statistics based on just few presented cases

is not particularly meaningful, it allows to divide the
results in two classes.
In cases when the protein partner binds on the surface

of double RNA helix (Figure 9, 1DFU, 1JBR, 2AZ2,
2RKJ), docking results appear to be more sensitive to
the distortion on protein rather than RNA side
(Table 3). RMSD up to 2.8 Å on the RNA side did not
preclude finding a hit or acceptable solution within the top
20 solutions, when docking of protein in its bound con-
formation was considered. At the same time, for bound
RNA–unbound protein pair, there was no correspond-
ingly high ranked solutions, even for relatively low
protein RMSD. Such result may be expected, as in those
cases specific binding occurs due to, generally movable,
protein side chains, while the topology of RNA minor
and major groves remains relatively unchanged. The sta-
bility of helical RNA and rather loose binding geometries
account also for quite successful docking of two partners
in their unbound conformations: in all three cases, solu-
tions were found within 100 top geometries.
The situation is more difficult in the case of protein

binding to single-stranded termini of RNA chains
(Figure 9, 1TTT, 2E9T). Here, the distortion of
unbound RNA allows for finding only poorly scored so-
lutions of ‘acceptable’ quality. Also, as binding is gener-
ally tighter than in previous cases, even small change in
protein structure (RMSD of 0.8 Å for 2E9T) gives un-
favorable score for the hit found. In both cases, docking
of two unbound partners was unsuccessful.
The remaining complex (Figure 9, 1K8W) does not

belong to the above classification. Here, binding involves
a long RNA loop with most bases in flipped out geometry.
The docking of unbound protein to bound RNA is sur-
prisingly successful, but solutions for unbound RNA con-
formation are not found. This, however, does not need to
result from the changes in the geometry of binding site on
RNA, but from the fact that unbound RNA represents a
complete molecule (tRNA) whose fold outside the region
overlapping with bound structure causes significant
sterical clashes with bound protein, thus precluding any
successful binding. Whether tRNA needs to refold upon
binding, or the crystallographic structure of complex

involving incomplete RNA does not represent real
geometry, remains an open question.

CONCLUDING REMARKS

A new coarse-grained force field for protein–RNA inter-
actions targeted on docking applications was presented. It
is compatible with earlier representation developed for
protein complexes and suitable to use within the
ATTRACT docking protocol (28), based on intermolecu-
lar potential energy minimization. The force field was
parametrized and tested with the use of 110 crystallo-
graphic structures of protein–RNA complexes. It
showed a good performance in systematic docking
search for protein–RNA binding geometries when two
partners were considered in their bound conformations.
The presented results were obtained without any addition-
al constraints based on information regarding the putative
binding site location; however, the possible role of such
information in augmenting docking efficiency was
demonstrated.

The application to unbound structures showed
promising results in the cases with loose binding inter-
faces, for which moderate deformations of global struc-
ture do not affect much the topology of native contacts. In
the cases where complex formation involves local con-
formational changes and the creation of sterically tight
interpenetrating binding interfaces, rigid body docking
was obviously unsuccessful, however, due to reasons not
related to forcefield performance.

Addressing the issue of global and local conformational
changes in protein and RNA binding partners is a signifi-
cant challenge, remaining within the scope of not only
docking, but also folding community. An important
problem, particularly affecting the development of
docking methodologies, is the small amount of available
structural data representing both the geometry of a
complex and its components in free forms. The currently
presented forcefield, providing a reasonable estimate of
intermolecular interaction energy at low computational
expense, is a good basis to be coupled with existing and
future methods accounting for molecular deformability at
different structural levels. Such combination, leading to
flexible protein–RNA docking, is in the center of our
ongoing efforts.

Table 3. Results for docking with unbound structures

Complex Receptor Ligand br:bl ur:bl br:ul ur:ul

1DFUmn:p 364Dabc (2.8) 1B75�a (3.8) 3 1 �[18] �[4]
1JBRd:b 430Da (2.8) 1AQZa (0.6) 14 18 30[2] 100
1K8Wb:a 2K4C�a (2.8) 1R3Fa (1.5) 1 – 2[1] –
1TTTd:a 6TNAa (2.6) 1TUIa (10.1) 1 �[480] 291 –
2RKJc:a,b 1Y0Qa (2.6) 1Y42aa (1.1) 2 �[13] �[>1k] �[>1k]
2AZ2cd:ab model (1.4) 2B9Z�ab (1.5) 3 3[1] >1k[349] >1k[43]
2E9Tbc:a model (3.3) 1U09a(0.8) 2 �[712] >1k �[-]

Subscripts at PDB id denote involved chains, numbers in brackets correspond to RMSD (P atoms for receptor and Ca for ligand) versus bound
structure (in case of multiple NMR models an average value is provided); br, bl, ur, ul—bound/unbound receptor/ligand; numbers correspond to the
ranks of ‘hits’ or ‘acceptable’ solutions (in square brackets).
Asterisk denote NMR structure.
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