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A recent research demonstrates that the inhibition of mammalian target of rapamycin (mTOR) improves survival and health
for patients with Leigh syndrome. mTOR proteins can be treated as drug target proteins against Leigh syndrome and other
mitochondrial disorders. In this study, we aim to identify potent TCM compounds from the TCM Database@Taiwan as lead
compounds of mTOR inhibitors. PONDR-Fit protocol was employed to predict the disordered disposition inmTOR protein before
virtual screening. After virtual screening, the MD simulation was employed to validate the stability of interactions between each
ligand and mTOR protein in the docking poses from docking simulation. The top TCM compounds, picrasidine M and acerosin,
have higher binding affinities with target protein in docking simulation than control. There have H-bonds with residues Val2240
and 𝜋 interactions with common residue Trp2239. After MD simulation, the top TCM compounds maintain similar docking poses
under dynamic conditions. The top two TCM compounds, picrasidine M and acerosin, were extracted from Picrasma quassioides
(D. Don) Benn. andVitex negundo L. Hence, we propose the TCM compounds, picrasidineM and acerosin, as potential candidates
as lead compounds for further study in drug development process with the mTOR protein against Leigh syndrome and other
mitochondrial disorders.

1. Introduction

Leigh syndrome is a rare fatal prototypical mitochondrial
disorder for children [1, 2]. It is a serious disorder for children
as it can lead to death within the first few years of life
[3, 4]. Recently, increasing numbers of pathogeneses for
diseases have been identified [5, 6] to identify the potential
target proteins for drug design [7–10]. A recent research
demonstrates that the inhibition of mammalian target of
rapamycin (mTOR) improves survival and health for patients
with Leigh syndrome [11]. The mTOR proteins can be treated
as drug target proteins against Leigh syndrome and other
mitochondrial disorders [12–14].

Nowadays, compounds extracted from traditional Chi-
nese medicine (TCM) have shown their potential to be lead
compounds against cancers [15–17], diabetes [18], inflam-
mation [19], metabolic syndrome [20], stroke [21, 22], viral
infection [23, 24], andmany different diseases [25, 26]. In this
study, we aim to identify potent TCM compounds from the
TCM Database@Taiwan [27] as lead compounds of mTOR
inhibitors, in order to improve the development of TCMcom-
pounds. As structural disordered disposition in the protein
may be the cause of side effect and decrease of occupancy for
ligand to bind with target protein [28], PONDR-Fit protocol
was employed to predict the disordered disposition in mTOR
protein before virtual screening. After virtual screening, the
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Table 1: Scoring functions of top candidates and Torin2 from TCM database screening.

Name Resource -PLP1 -PLP2 Dock Score
Picrasidine M Picrasma quassioides (D. Don) Benn. 118.22 104.11 88.913
Acerosin Vitex negundo L. 104.12 108.76 78.088
Psychotrine Alangium lamarckii 107.12 97.2 75.322
3,5,6-Trihydroxy-3󸀠,4󸀠,7-trimethoxyflavone Citrus medica L. var. sarcodactylis (Noot.) Swingie 106.07 105.45 73.906
Torin2∗ 115.23 107.26 55.507
∗Control.
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Figure 1: Disordered disposition predicted by PONDR-Fit.
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Figure 2: Binding site of mTOR protein defined as the volume of
Torin2 and root-mean-square deviation value between crystallized
structure (orange) and docking pose (violet) of Torin2.

Table 2: H-bond occupancy for key residues of mTOR protein
with Torin2 and top TCM compounds over 5000 ps of molecular
dynamics simulation.

Name H-bond interaction Occupancy

Torin2

Lys2187:HZ3 /N31 2%
Lys2187:HZ3 /N32 35%
Glu2190:OE1 /H48 35%
Glu2190:OE2 /H48 4%
Val2240:HN /N18 100%
Thr2245:HG1 /O1 7%
Asp2357:OD1 /H48 27%
Asp2357:OD2 /H48 4%

Picrasidine M

Ser2165:HG1 /O36 2%
Lys2187:HZ3 /O36 4%
Trp2239:HE1 /O17 6%
Val2240:HN /O17 29%
Val2240:HN /O18 30%
Thr2245:HG1 /O34 1%
His2340:HE2 /O36 2%
Ser2342:HG1 /O34 2%
Asn2343:HD22 /N26 16%
Asn2343:HD22 /O36 2%

Acerosin

Asp2195:OD2 /H42 38%
Tyr2225:HH /O26 96%
Trp2239:HE1 /O13 4%
Trp2239:NE1 /H28 3%
Val2240:HN /O12 10%
Val2240:HN /O18 96%
Asp2357:HN /O26 86%

H-bond occupancy cutoff: 0.3 nm.

MD simulation was employed to validate the stability of
interactions between each ligand and mTOR protein in the
docking poses from docking simulation.

2. Materials and Methods

2.1. Data Collection. The X-ray crystallography structure of
the mammalian target of rapamycin (mTOR) was obtained
from RCSB Protein Data Bank with PDB ID 4JSX [29]. To
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Figure 3: Chemical scaffold of controls and top two TCM candidates.

predict the disordered residues in mTOR protein, PONDR-
Fit [30] protocol was employedwith the sequence fromSwiss-
Prot (UniProtKB: P42345). The X-ray crystallography struc-
ture of mTOR protein was prepared by Prepare ProteinMod-
ule in Discovery Studio 2.5 (DS2.5) to remove crystal water
and protonate the final structure with Chemistry at HARvard
MacromolecularMechanics (CHARMM) force field [31].The
TCM compounds from TCM Database@Taiwan [27] were
prepared by Prepare Ligand Module in DS2.5 to protonate
their final structures and filter by Lipinski’s rule of five [32].
The binding site for virtual screening was defined by the
volume of the cocrystallized mTOR inhibitor, Torin2.

2.2. Docking Simulation. LigandFit protocol [33] in DS 2.5
was employed to redock cocrystallized mTOR inhibitor,
Torin2, and dock the TCM compounds into the binding
site defined above. The LigandFit protocol was performed
using a shape filter and Monte-Carlo ligand conformation
generation and then optionally minimized the docking poses
with CHARMM force field [31]. Similar poses were filtered by
the clustering algorithm. Each docking pose was evaluated by
three scoring functions, -PLP1, -PLP2, and Dock Score.

2.3. Molecular Dynamics (MD) Simulation. Gromacs 4.5.5
[34] is a program used to perform the molecular dynam-
ics (MD) simulation using classical molecular dynamics
theory. In preparation section, the pdb2gmx protocol of

Gromacs and the SwissParam program [35] were performed
to provide topology and parameters of mTOR proteins with
CHARMM27 force field and each ligand with CHARMM,
respectively. For solvation, a cubic box was defined based
upon the edge approximately 12 Å from the protein com-
plexes periphery and solvated with TIP3P water model and
0.145M NaCl model. For minimization, a maximum of
5,000 steps using steepest descents [36] minimization was
employed to remove bad van der Waals contacts. Gromacs
program utilizing position-restrained molecular dynamics
with the Linear Constraint algorithm for the equilibration
was performed with NVT equilibration, Berendsen weak
thermal coupling method, and particle mesh Ewald method.
For production, a total of 5000 ps production simulation
with time step in unit of 2 fs was performed with NPT
ensembles and particle mesh Ewald (PME) option. A series
of protocols in Gromacs program was employed to analyze
the MD trajectories.

3. Results and Discussion

3.1. Disordered Protein Prediction. The disordered disposi-
tion of residues in mTOR protein was predicted by PONDR-
Fit protocol with the sequence of mTOR protein from Swiss-
Prot (UniProtKB: P42345). As illustrated in Figure 1, the key
residues in the binding site of mTOR protein were not laid in
the disordered area (>0.5). It indicates that themTOR protein
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Figure 4: Docking pose of mTOR protein complexes with (a) Torin2, (b) picrasidine M, and (c) acerosin.
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Figure 5: Root-mean-square deviations in units of nm for protein and ligand over 5000 ps of MD simulation for mTOR protein complexes
with Torin2, picrasidine M, and acerosin.

expresses a stable binding domain in protein folding and is
suitable for docking simulation.

3.2. Docking Simulation. To validate the accuracy of Ligand-
Fit protocol, the cocrystallized mTOR inhibitor, Torin2, was
redocked into the binding site of mTOR protein. As root-
mean-square deviation (RMSD) value between crystallized
structure and docking pose of Torin2 is 0.5834 (Figure 2),
LigandFit protocol is suitable for virtual screening with
mTOR protein. After virtual screening, the chemical scaffold
top TCM compounds ranked byDock Score [33] and control,
Torin2, are shown in Table 1. The top two TCM compounds,
picrasidine M and acerosin, were extracted from Picrasma
quassioides (D. Don) Benn. and Vitex negundo L. The chem-
ical scaffold top TCM compounds and control are illustrated
in Figure 3. According to the docking poses in Figure 4, the
candidate compounds and Torin2 have hydrogen bonds (H-
bonds) and 𝜋 interactions with common residues Val2240
andTrp2239, respectively. In addition, they have hydrophobic
contacts with residues Glu2190, Asp2195, Leu2185, Tyr2225,
Ile2237, Gly2238, Trp2239, Val2240, Cys2243, Met2345, and
Ile2356.

3.3. Molecular Dynamics Simulation. LigandFit protocol
performed a docking simulation with a rigid body of
mTOR proteins, so the conformation of the mTOR protein
may modify under dynamic conditions. For this reason,
MD simulation was performed to validate the stability of
interactions between mTOR proteins and each ligand. The
atomic fluctuations of mTOR proteins and ligands in protein
complexes with picrasidine M, acerosin, and control were
displayed in Figure 5. It shows that mTOR proteins tend
to be stable after MD simulation. They indicate that the
atoms of picrasidine M have a sharp fluctuation before the
system tends to be stable. The variation of radii of gyration
for protein and ligand over 5000 ps MD simulation was
displayed in Figure 6. They show that the radii of gyration
for mTOR protein complexes with ligand except picrasidine
M have decreased after MD simulation. For the total energy
of each protein complex, there is no significant variation

during MD simulation (Figure 7). The variation of solvent
accessible surface area over 5000 psMD simulation shown in
Figure 8 indicates that docking with picrasidine M, acerosin,
and Torin2 would not affect the solvent accessible surface of
mTOR protein under dynamic conditions.

To compare the variation of docking poses in dock-
ing simulation and after MD simulation, we identify the
representative structures of mTOR protein complexes using
the RMSD values and graphical depiction of the clusters
analysis with a RMSD cutoff of 0.12 nm and illustrated the
docking poses of the representative structures in Figure 9.
The H-bond occupancy for key residues of mTOR protein
with each ligand is listed in Table 2. For Torin2, it has
stable H-bonds with residues Glu2190 and Val2240 and 𝜋
interactions with residue Trp2239. For the TCM candidates,
they also have stable H-bonds with residues Val2240 and 𝜋
interactions with residue Trp2239 as Torin2, which indicate
that they have similar docking pose and effects in mTOR
protein.

4. Conclusion

This study aims to investigate the potent leadTCMcandidates
for mTOR protein inhibitors against Leigh syndrome and
other mitochondrial disorders. The top TCM compounds,
picrasidine M and acerosin, have higher binding affinities
with target protein in docking simulation than control.
There have H-bonds with residues Val2240, 𝜋 interactions
with common residue Trp2239, and hydrophobic contacts
with residues Glu2190, Asp2195, Leu2185, Tyr2225, Ile2237,
Gly2238, Trp2239, Val2240, Cys2243, Met2345, and Ile2356.
After MD simulation, the top TCM compounds maintain
similar docking poses under dynamic conditions as control.
In addition, the top two TCM compounds, picrasidine M
and acerosin, were extracted from Picrasma quassioides (D.
Don) Benn. and Vitex negundo L. Hence, we propose the
TCM compounds, picrasidine M and acerosin, as potential
candidates as lead compounds for further study in drug
development process with the mTOR protein against Leigh
syndrome and other mitochondrial disorders.
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Figure 6: Variation of radii of gyration for (a) protein and (b) ligands for mTOR protein complexes with Torin2, picrasidine M, and acerosin
over 5000 ps of MD simulation.
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Figure 7: (a) Distribution and (b) variation of total energy for mTOR protein complexes with Torin2, picrasidine M, and acerosin over 5000
ps of MD simulation.
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Figure 8: Variation of (a) total solvent accessible surface area, (b) hydrophobic surface area, and (c) hydrophilic surface area for mTOR
protein complexes with Torin2, picrasidine M, and acerosin over 5000 ps of MD simulation.
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Figure 9: Left: root-mean-square deviation value (upper left half) and graphical depiction of the clusters with cutoff 0.12 nm (lower right
half) and right: docking poses of middle RMSD structure in the major cluster for mTOR protein complexes with (a) Torin2, (b) picrasidine
M, and (c) acerosin.
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