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Simple Summary: The CD137 receptor is expressed by activated antigen-specific T-cells. CD137+

T-cells were identified inside TILs and PBMCs of different tumor types and have proven to be the
naturally occurring antitumor effector cells, capable of expressing a wide variability in terms of TCR
specificity against both shared and neoantigenic tumor-derived peptides. The aim of this review is
thus summarizing and highlighting their role as drivers of patients’ immune responses in anticancer
therapies as well as their potential role in future and current strategies of immunotherapy.

Abstract: The CD137 receptor (4-1BB, TNF RSF9) is an activation induced molecule expressed
by antigen-specific T-cells. The engagement with its ligand, CD137L, is capable of increasing T-
cell survival, proliferation, and cytokine production. This allowed to identify the CD137+ T-cells
as the real tumor-specific activated T-cell population. In fact, these cells express various TCRs
that are specific for a wide range of tumor-derived peptides, both shared and neoantigenic ones.
Moreover, their prevalence in sites close to the tumor and their unicity in killing cancer cells both
in vitro and in vivo, raised particular interest in studying their potential role in different strategies of
immunotherapy. They indeed showed to be a reliable marker able to predict patient’s outcome to
immune-based therapies as well as monitor their response. In addition, the possibility of isolating
and expanding this population, turned promising in order to generate effector antitumor T-cells
in the context of adoptive T-cell therapies. CD137-targeting monoclonal antibodies have already
shown their antitumor efficacy in cancer patients and a number of clinical trials are thus ongoing
to test their possible introduction in different combination approaches of immunotherapy. Finally,
the intracellular domain of the CD137 receptor was introduced in the anti-CD19 CAR-T cells that
were approved by FDA for the treatment of pediatric B-cell leukemia and refractory B-cell lymphoma.

Keywords: CD137; 4-1BB; TILs; CD137+ T-cells; immunotherapy; ACT; CAR-T; monoclonal antibod-
ies; biomarker

1. Introduction

Immunotherapy aims to re-educate the patient’s immune system to recognize and
fight cancer cells. The existence of T-cells with a potential antitumor effect has laid the
foundation for most of the current approaches of immunotherapy. In fact, the use of thera-
pies such as immune checkpoint inhibitors (ICIs), DC vaccines, and adoptive T-cell transfer
(ACT) finally relies on the presence of a population of effector T-cells that is capable of
killing tumor cells. These immune-based drugs thus aim to unleash this population from
different regulatory constraints such as T-cell exhaustion or the impossibility of reaching
cancer cells, to subsequently limit tumor growth and progression. As a confirmation,
the accumulation of tumor-infiltrating lymphocytes (TILs) correlates with a better clinical
outcome and an improved survival in most tumor models [1–11], indicating their impor-
tance in predicting patients response to anticancer therapies. Nevertheless, the composition
of TILs is heterogeneous [12] and it still remains challenging to identify the real population
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of naturally occurring antitumor T-cells [13]. Therefore, this review will discuss the emerg-
ing role of the CD137+ T-cells population as the main effector population activated against
cancer cells with all the possible implications for the future of immunotherapy.

2. CD137: The Receptor

The CD137 receptor (4-1BB, TNFRSF9) is a member of the tumor necrosis factor
receptors (TNFR) family and was characterized as an inducible costimulatory receptor on
T-cells, together with its ligand (CD137L, 4-1BBL), both in human and mice [14]. CD137
was initially described as a surface marker expressed by activated T-cells, with an in vitro
peak expression 48 h after the primary T-cell activation signal and a decline starting from
day 4–5 [14–17]. In vivo, its expression upon activation turned out to happen even earlier,
starting indeed at 12h post-immunization [18,19]. Both CD4+ and CD8+ T-cells are able to
upregulate CD137, even if its expression on CD8+ T-cells is earlier and higher [20–22].

However, CD137 receptor is not a specific marker for T-cells, since it can be expressed,
even if to a smaller extent, also by dendritic cells (DCs), monocytes, natural killer (NK)
cells, eosinophils, and microglia [23]. On the other side, CD137L is expressed by activated
antigen presenting cells (APC) as macrophages, DCs, and B-cells [20,23–26]. Therefore,
it is reliable to suppose that the engagement between CD137 and its ligand is part of the
complex pathways of interactions between APCs and T-cells.

Similarly to other members of the TNFR family, the CD137 receptor relies on TRAFs
proteins to build its signaling [27]. The binding of both CD137L [28,29] and agonistic
antibodies [30] results in a quick recruitment of TRAF1 and TRAF2 to the receptor. The con-
sequent TRAF-mediated activation of NF-kB and MAPK intracellular signaling, leads to
T-cell division and proliferation, an increased cell survival and enhanced effector functions
in both CD4+ and CD8+ T-cells [15]. As for CD137 expression, also TRAF1 expression is
induced by T-cell activation, confirming that the CD137-induced signalosome is required
for cytotoxic T-cells (CTL) expansion and for the boosting of effector functions [27]. In fact,
a number of mice experiments proved that CD137 stimulation is able to increase T-cell
proliferation and cytokine production [14,23]. Consistently, in absence of the CD28 signal,
T-cells treated with an anti-CD3 and CD137L can proliferate and produce interleukin 2
(IL-2) to a similar extent of those treated with the combination of anti-CD3 and anti-CD28,
but just in the presence of a consistent antigen stimulation [31–34]. This evidence was
one of the starting points to get to the notion that CD137 identifies those T-cells that are
activated against a specific antigen. The CD137L stimulation of human CD8+ T-cells leads
to the expansion of this T-cells subset which is followed by an increase of effector molecules
such as granzyme A, interferon G(IFN-G), perforin, and different cytokines, driving CD8+

memory T-cells toward a differentiated effector phenotype [35,36]. In addition, the CD137
receptor seems to have a strong and prevalent role in increasing T-cell survival by pre-
venting activation-induced T-cell death [37,38] and this appears to be in line with the
physiological timing of the CD137 signal that is subsequent to the TCR and CD28 mediated
signals. The BIM downregulation and the induction of Bcl-XL and Bfl-1 were pointed out as
responsible for the inhibition of the activation-induced cell death, after the CD137 engage-
ment [39]. Further studies also showed that the CD137 engagement is able to stimulate the
mitochondrial metabolism in order to increase T-cell respiratory capacities [40,41] and to
induce DNA demethylation in CD8+ T-cells main genes and chromatin reprogramming [42].
As above mentioned, different studies highlighted a preferential role of CD137 in CD8+

T cells rather than in CD4+ T cells, even if it can be induced on both the T-cell subsets,
including CD4+ regulatory T-cells (Tregs) [43]. However, the effective function of CD137
signaling on CD4+ T-cells is still unclear and may thus not be as physiologically relevant as
for CD8+ T cells [44].As confirmation, mice deficient for CD137 show an impaired antiviral
response mediated by CD8+ T cells [45–47]. Similarly, mice deficient for CD137L that were
adoptively transferred with OT-1 derived CD8+ T-cells, showed a marked reduction of
these OVA-specific T-cells in both the late primary response and the secondary expansion
to OVA/LPS [19]. Moreover, when anti-CD137 monoclonal antibodies or CD137L injec-
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tions were tested in cancer therapy, a significant benefit in terms of antitumor response
was noticed [21,24,38,48–57]. When CD137 was targeted by in vivo treatments with an
agonistic anti-CD137 monoclonal antibody, it resulted in an increased effect on CD8+ T-cells
expansion and activation with just a modest effect on CD4+ T-cells, thus confirming that
in vivo its signal affects predominantly this subset of T-cells [50,58].

Finally, as evidence about the importance of the CD137 receptor in marking those
T-cells that were activated to eliminate a non-self-antigen, it was reported that the CD137 re-
sulted specifically upregulated after an alloantigen stimulation and, upon CD137 depletion,
it was possible to remove alloreactive T-cells during hematopoietic transplantation [59].

An important step forward in the field of tumor immunology, was made when CD137+

T-cells were clearly identified as those cells that were terminally differentiated and antigen-
specific effector cells, regardless of the antigen specificity [60]. This allowed the isolation of
those cells that were considered the real effector cells activated against tumor antigens [61].

3. CD137+ T-Cells: The Natural Tumor-Specific Population

The discovery that CD137 is expressed by most of activated and antigen-specific
(both against viral and tumor antigens) CD8+ T-cells, allowed the isolation of tumor-
specific effector T-cells from blood, without knowing the immunogenic epitopes or the
MHC-restriction complex. These cells, even if present at low frequencies, were able to
kill antigen-expressing cancer cells upon expansion, although this required an ex vivo
restimulation with the defined tumor antigen [60,61].

This evidence raised a strong interest in investigating this cell repertoire also inside
the tumor. In fact, the tumor microenvironment (TME) is enriched for T-cells specific for
defined antigens with cytolytic ability against cancer cells [62]. In addition, even if defined
antigens are known for different tumor models, exomic sequencing data in different solid
tumors proved that cancer cells express a various and heterogeneous set of mutated neo-
antigens that are characteristic for every single patient and thus can be recognized by
TILs that are able to exert an antitumor response [63]. As confirmation, T-cell receptors
(TCRs) isolated from CD137+ TILs, showed a reactivity against various mutations of tumor-
derived antigens [64]. Given this evidence, the possibility of identifying a tumor-specific T
effector population inside the TME without the knowledge of the antigen epitopes seemed
very promising.

Initial evidence proved that CD137 is strongly expressed by TILs if compared to
spleen- or lymph nodes-derived T-cells and its expression is induced by hypoxia through
hypoxia-inducible factor 1α [65].

Recently, Ye et al. decided to investigate the CD137+ T-cells population in ovarian
cancer patients, comparing three different locations in which this subset of cells could be
found: TME, ascites, and peripheral blood [66]. They demonstrated that CD137+ T-cells are
present in small percentages in the peripheral blood and, to a larger extent, in ascites and
even more inside the tumor, showing a progressive hierarchy with the T-cells in a closer
proximity to cancer cells expressing the higher percentages of CD137 and then decreasing
gradually toward the periphery. Overnight incubation with autologous cancer cells largely
increased the percentage of CD137+ T-cells and their ability of producing a consistent
amount of IFN-γ. Additionally, CD137 expression was further increased when T-cell lines
with a known antigen specificity were used. Most importantly, when human TILs and
tumor cells where transferred into immunodeficient mice, only CD137+ T-cells (but not
CD137− T-cells) were able to inhibit tumor growth [66]. Thus, they demonstrated that
CD137+ T-cells are those cells that naturally show the real antitumor reactivity, confirm-
ing also that they represent a subset of newly recruited antitumor T-effector cells, being
CD137 expression a rapid and transient event upon specific activation. Overall, this study
proposed a novel method to isolate and expand tumor reactive TILs that can be used for
adoptive T-cell transfer approaches; the vast heterogeneity of TCRs is indeed conserved
with this strategy thus helping to prevent the escape of those tumor cells that do not express
a determined antigen or those that express mutated antigens.
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These findings suggested the potential role of CD137+ T-cells as key contributors
of the antitumor immune responses and thus as potential determiners of the success of
immunotherapies as well as novel protagonists of immune-based approaches (Figure 1).
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Figure 1. Schematic representation of CD137+ T-cell activation as a result of priming by TAA-carrying activated APC.
The consequence of the CD137/CD137-L engagement is a marked increase in cell survival, followed by an increased
proliferation, cytokine production, and effector molecules release. Then, possible roles of CD137+ T-cells population in
the present and future of immunotherapy. APC, antigen presenting cell; TAA, tumor-associated antigens; MHC, major
histocompatibility complex; ACT, adoptive cell therapy; moAb, monoclonal antibodies; ICIs, immune checkpoint inhibitors;
CAR, chimeric antigen receptor.4. CD137+ T-cells can predict cancer patients’ response to immune-based therapies.

Despite these clear results showing the importance of the CD137+ T-cell population
in eliciting an antitumor response, evidence about the role of these T-cells in oncologic
patients have only recently emerged (Table 1).

In 2020, for the first time we provided evidence about the importance of CD137+ T-cells
in determining the outcome of metastatic non-small cells lung cancer (NSCLC) patients
undergoing immunotherapies [67,68]. Patients that were positive for the autoantibody
IgM-Rheumatoid Factor (IgM-RF) showed indeed a reduced frequency of CD137+ T-cells
in peripheral blood and an increased tendency to develop an early progression, in addition
to a markedly reduced progression-free survival (PFS) and overall survival (OS) after the
anti-PD-1 treatment [68]. In addition, to confirm the importance of this population as an
independent prognostic factor, it was reported how a higher percentage of CD137+ T-cells
in peripheral blood mononuclear cells (PBMC) at baseline, was alone associated with a
prolonged OS as well as PFS of patients in treatment with an anti-PD-1 ICI [68].

In addition, in 2018 it was proven that, in metastatic renal clear cell carcinoma (mR-
CCC) patients undergoing the anti-PD-1 treatment, the percentage of CD137+ T-cells de-
creased during tumor progression [69]. Moreover, patients pretreated with Tyrosin-kinase
inhibitor Pazopanib, showed a robust increase in DC activation profile and a subsequent in-
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crease of the frequency of CD137+ T-cells when compared to Sunitinib [69]. Still in mRCCC,
Zizzari et al. demonstrated that CD137+ T-cells were positively associated with patients
response to TKI [70]. In fact, responder patients showed a markedly higher percentage of
this T-cell subset when compared to non-responders. These results highlight the impor-
tance of this T-cell subset in oncologic patients response to therapies that require, even if
in an indirect way, the immune system’s ability of killing tumor cells. In this scenario,
the percentage of this population in peripheral blood (and most likely also in other districts
as draining lymph nodes and TME) could serve as a possible biomarker able to identify
those patients that would benefit the most from a determinate treatment that relies on
T-cells as final effectors.

Table 1. Summary of the results showing the power of CD137+ T-cells population as a biomarker able to predict and monitor
patients’ response to different immune-based therapies in various tumor models.

Cancer Type Treatment Results References

Metastatic NSCLC Anti-PD-1 ICIs
Higher percentages of CD137+

T-cells in PBMC predicted a
prolonged patients’ OS and PFS.

[67,68] Ugolini et al., 2020

Metastatic RCCC Anti-VEGF-R TKIs and
anti-PD-1 ICIS

Percentage of CD137+ T-cells in
PBMC decreased during patients’

progression.
[69] Zizzari et al., 2018

Metastatic RCCC TKIs
Higher percentages of CD137+

T-cells in PBMC were associated
with responder patients.

[70] Zizzari et al., 2020

Metastatic Melanoma Anti-PD-1 ICIS

CD137 mRNA levels at the tumor
site were positively associated

with a prolonged OS, PFS, and a
better response to the therapy.

[71] Fröhlich et al., 2020

Finally, in 2020, indirect evidence of the CD137+ T-cells power in determining a
prolonged survival for cancer patients came from a study on melanoma patients where it
was shown that TNFRSF9 low methylation levels and the subsequent increased mRNA
expression at the tumor site, that was prevalently identified inside T-cells, correlated with
a better OS of patients as well as a better PFS and response to the anti-PD-1 treatment [71].
TNFRSF9 mRNA expression positively correlated also with the frequency of effector
and memory tumor infiltrating lymphocytes, while it was inversely correlated with the
frequency of naïve tumor infiltrating lymphocytes [71]. As a confirmation of its power as
biomarker for the identification of activated effector T-cells, TNFRSF9 mRNA expression
levels positively correlated with an increased IFN-γ signature [71].

These results indicate the potential role of this population as the driver of a successful
immunotherapy, thus suggesting the possibility of investigating its presence in patients
before undergoing immune-based treatments. In fact, a reduction in its frequency could
account for the impossibility of getting a complete or even partial response at least in part
of the oncologic patients. In this scenario, strategies aimed at increasing their numbers
could be considered at an initial stage, in order to make the patient more prone to efficiently
receive an immunotherapeutic treatment.

4. CD137+ T-Cell-Based Therapies as Possible Protagonists for Future
Immunotherapies

As previously mentioned, TILs represent the ideal candidates for adoptive cell transfer
immunotherapies since they are enriched for T-cells specific for tumor-derived antigens,
showing a vast antigen specificity. Moreover, upon ex vivo restimulation, they show potent
antitumor activity and they can be largely expanded in order to get a consistent amount of
cells to be administered to the patient [72,73]. Specifically, they raise a particular interest
in those tumors that are poorly immunogenic and thus cannot benefit from the usage
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of immune checkpoint inhibitors as single agents [74]. In fact, it was initially tested in
refractory metastatic melanoma patients, in which the use of TILs that were extracted and
then rapidly expanded with feeder cells and high doses of IL-2 [75], revealed capable of
generating enough cells for reinfusion. It thus resulted also effective in terms of disease
control in particular when accompanied by non-myeloablative lymphodepletion and then
followed by a treatment with high-dose IL-2 [76]. The efficacy of TILs-based adoptive
cell therapy (ACT) was confirmed by different independent trials showing response rates
of 40–50% in metastatic melanoma patients, reaching even a complete tumor regression
in 10–25% of patients [76–81]. It is important to highlight that the results of all these
independent studies demonstrate that a consistent part of the responses observed are
durable, in particular in those patients showing a complete tumor regression that remained
free from disease for many years after the treatment [82–85].

Additionally, in ovarian cancer, it is possible to isolate and expand a sufficient number
of TILs for ACT, with encouraging clinical results in terms of patients outcome [86–91].
In addition, a large-scale expansion of TILs was reported for other different solid cancer
types, including breast, cervical, colon renal and sarcoma, even if the results in terms of
clinical outcome for TIL-based ACT in these subsets of patients were modest [92–95].

These findings prove the potential clinical efficacy of ACT that involves TILs for these
and other cancer types, even if the identification and expansion of specific antitumor TILs is
the actual challenge for the next future of this treatment. ACT involving the entire repertoire
of TILs is indeed limited by the time and the difficulties in isolating and expanding tumor-
reactive functional cells [96]. Certainly, a prerequisite for ACT to be effective is isolating and
thus obtaining, upon expansion, an adequate number of tumor-specific effector T-cells from
the patient. The problem of isolating the entire population of TILs is that this population is
composed by a heterogeneous group of different subpopulations. Memory T-cells, anergic
T-cells, exhausted T-cells, and even a consistent amount of immunosuppressive Foxp3+

and Foxp3− T-cells are present in the reservoir of total TILs in different cancer types,
thus limiting the frequency of antitumor effector cells [97,98]. Furthermore, a long term
ex vivo stimulation in order to expand the tumor-reactive subpopulation of TILs and thus
getting a sufficient number of effector cells, drives cells toward exhaustion and a loss of the
wide range of antigen-specific TCRs [81,97]. Notably, cases of recurrences in cancer patients
due to antigen loss and neoantigen mutations were widely documented, supporting the
limitation of using T-cell clones with a limited epitope recognition, as in the case of CAR-T
cells. Moreover, tumor-associated antigens for different solid cancers are still not fully
characterized [81,97].

Thus, the rational for an effective TILs-based ACT would be identifying and isolating
the ideal T-cell subset capable of maximizing the tumor cells killing, while eliminating
anergic and suppressive T-cells from the TILs repertoire. Therefore, it would be beneficial to
look at possible biomarkers in order to identify tumor-specific T-cells without the necessity
of identifying tumor-derived antigens epitopes.

Of note, many efforts were made in order to recognize tumor-reactive T-cells. The iden-
tification of rare T-cells carrying neoantigen-specific TCRs relies on the detection of specific
somatic mutations of cancer cells. The problem is that these mutations show a wide
variability among different patients even when considering tumors with similar features.
The process would indeed require advanced and expensive technologies that are not only
labor intensive, but also time consuming. Thus, it would require additional weeks besides
those covered by the routine TILs separation and expansion. Consequently, more efficient
methods in terms of labor and time consumption for the identification and isolation of
antitumor TILs are required to give this ACT approach a clinical feasibility and validity.

Following antigen-induced activation and stimulation, human effector T-cells undergo
phenotypic and functional changes, including the upregulation of surface markers. As pre-
viously discussed, the overexpression of CD137 receptor on antigen-specific activated
T-cells provides the opportunity to clearly identify and isolate tumor-reactive effector cells
by magnetic separation or fluorescence-activated cell sorting (FACS), thus removing the
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need of an ex vivo restimulation with defined antigen in order to reveal this subset of
T-cells. A short term coculture with tumor cells in this case would be needed just in order
to further stimulate the upregulation of CD137, since it was previously described that
this receptor is strongly upregulated upon T-cells culturing together with tumor cells that
express shared and neoantigenic peptides [64,66]. In addition, CD137+ isolation would
not require samples rich of TILs, which may be difficult to obtain from surgical resections,
in order to be sure to get the adequate number of effector cells. In fact, their isolation, that is
possible not only at the tumor site but also from lymph nodes and even from peripheral
blood, would be a precise isolation of tumor-reactive cells that need just to be expanded.

Based on these observations, Seliktar-Ofir et al. have reported for the first time a
simple, robust, and fast method that allows the tumor-reactive enrichment for a therapeutic
purpose [99]. They demonstrated that only 30.1± 25.9% of the TILs expressed CD137
after cocultures, but almost all cells expressed the receptor after the selection. In addition,
they showed that CD137+ selected T-cells had an increased antitumor reactivity and con-
tained a higher frequency of both shared and neoantigen reactive T-cells [99]. In this way,
the CD137+ selection enables the isolation of antitumor effector T-cells without the need of
knowing the epitopes of tumor-derived antigenic peptides.

These promising findings open novel prospective for the optimization of ACT in the
near future.

5. CD137 in Current Clinical Practice: CD137-Targeting Antibodies and CD137
CAR-T Cells

In conclusion, it is important to mention the CD137-based approaches that are cur-
rently available for the clinical practice. Nowadays we have two different strategies
involving the CD137 receptor [44]. First, the CD137 domain was included in the chimeric
antigen receptors (CAR) T-cells. Second, monoclonal antibodies (MoAb) as well as bispe-
cific antibodies targeting the CD137 receptor were proposed in the clinic as a strategy of
cancer immunotherapy in different cancer types.

The only approach involving the CD137 receptor that has so far been approved by
the FDA is the CAR-T cells therapy targeting the CD19 for the treatment of pediatric
B-cell leukemia and refractory B-cell lymphoma [100]. In this approach, the introduction
of the CD137 intracellular domain, that is able to keep the survival signaling in these
engineered T-cells, led to an increased persistence of therapeutical CAR-T cells when
compared to those including the CD28 domain [101]. Additionally, CAR-T cells containing
the CD137 signaling domain showed an advantage for both a metabolic point of view and
also an advantageous epigenetic switch that increased a memory development by CAR-T
cells [102].

Regarding the use of anti-CD137 MoAb in a clinical setting has raised particular
interest, since it appeared capable of having a beneficial effect on tumor regression and on-
cological patient response, both when used as single agent and even more when combined
to other drugs or anticancer treatments [44,54,55,65,103–132]. This clinically relevant effect
is due to the ability of the antibody of stimulating an anticancer response that relies on
effector T-cells [44,111]. After the stimulation with this MoAb, are not only the antitumor
effector T-cells to be expanded, but importantly increased is also the frequency and the
activity of tumor-specific memory T-cells that are able to confer a prolonged protection
against cancer cells and thus a prolonged antitumor response [54].

Interestingly, the use of the anti-CD137 MoAb turned capable of reducing the ac-
tivation and proliferation of both regulatory T-cells and myeloid-derived suppressor
cells [55,103,110,133,134], that recently emerged as not only able to impair T-cell func-
tion but also of compromising the ICI efficacy through the impairment of DC function
in cancer [135]. In addition, it was shown that the treatment with an anti-CD137 is able
to increase the recruitment of effector T-cells inside the TME by targeting the receptor
expressed by tumor-associated endothelial cells [104].
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The mechanisms that can suppress antitumor immune responses in the context of can-
cer are various and this gives the rationale to the use of CD137 targeting in combination with
other strategies aimed at removing these regulatory constraints [44,109,111–113,117,136,137].

So far, two different CD137-targeting agonistic MoAb have been introduced in the
clinic: utolimumab (PF-05082566), a humanized IgG1 MoAb and urelumab (BMS-663513),
a fully human IgG4 MoAb [44]. Being agonistic antibodies, both utolimumab and urelumab
activate the CD137 signaling, promoting T-cell survival, proliferation, and cytokine pro-
duction; while utolimumab blocks the CD137-CD137L interaction, urelumab, that appears
to be a weaker agonist, does not prevent this engagement [44]. Phase I and II trials that
tested the efficacy of urelumab in oncologic patients with advanced cancer demonstrated a
notable effect of the MoAb as single agent, even if the trials were suspended due to the
adverse liver inflammation that was noticed in treated patients [56]. The same adverse
effects on liver inflammation induced by urelumab at doses of ≥1 mg/kg were spotted in a
safety analysis that showed how a safe usage of the drug needed a marked decrease of the
dose to 0.1 mg/kg [138]. Unfortunately, this dose decrease reduced the efficacy of urelumab
as single agent, but permitted its use in combination with the anti-PD-1 targeting that gave
promising clinical results in patients with advanced melanoma [57]. The ongoing trial that
are testing Urelumab in combination with other agents are reported by Etxeberria et al.
in Table 1 of their review [44].

Differently from urelumab, utolimumab showed no dose-related toxicity [44]. As sin-
gle agent, it showed just little benefit in terms of clinical outcome for advanced cancer
patients in phase I trials and this should probably be referred to its weakness as CD137
agonist [44,139,140]. On the contrary, Phase I trials testing utolimumab in combination with
pembrolizumab [141,142] or with mogamulizumab in advanced solid tumor patients [143]
and with rituximab in patients affected by relapsed or refractory non-Hodgkin’s lym-
phoma [144] showed no toxicity and thus safety and tolerability. In addition, promising
antitumor effects and clinical responses were shown in all these studies. Other combination
strategies that are currently ongoing in different trials are reported by Etxeberria et al.
in Table 1 of their review [44].

Regarding bispecific antibodies, various approaches were recently hypothesized and
are now under evaluation. In particular, the first and most advanced on those introduced
the possibility of targeting the CD137 receptor on one side, and a tumor antigen (HER2) on
the other side, in order to target this activation receptor specifically in the context of the
TME [145]. This treatment has already shown clinical benefits in a Phase I trial in patients
with HER2+ malignancies [146]. In line with that, other bispecific antibodies targeting
the CD137 receptor together with other tumor antigens or the cancer associated fibroblast
marker FAP (fibroblast activation protein), were tested in preclinical settings, showing
promising results [147–149]. Since activated CD137+ T-cells can still be ineffective due to
the exhaustion induced by the tumor, bispecific antibodies targeting the CD137 receptor
together with PD-L1 are actually under evaluation (NCT03809624).

The weakness of using CD137-targeting in vivo should refer to the fact that the effec-
tiveness of this targeting largely relies on the baseline presence of a sufficient number of
naturally occurring antitumor CD137+ T-cells that are available to be unleashed and that are
not suppressed by other mechanisms. Unfortunately, as previously reported, this scenario
does not often reflect what really happens in cancer patients and thus requires combination
of this approach with other strategies.

6. Conclusions

With these emerging findings it is becoming clear that CD137+ T-cells play a pivotal
role in exerting a specific antitumor activity as the final effectors of the complex immune
response. Since most of the drugs that are available today for the treatment of oncological
patients have the immune system as their target or, at least, rely on the patient’s immune
system fitness in order to eliminate cancer cells, this population starts raising particular
interest as a possible predictor of the responses to anticancer treatments. Moreover, their
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ability to predict the outcome and to monitor the responses to immune-based drugs, could
be useful to aid clinicians in better stratifying patients and consequently selecting the best
therapeutic approach. However, more efforts will be required in the future to validate their
role as a possible biomarker in various cancer types

In addition, it will also be critical for the success of immunotherapies to optimize novel
strategies of immunotherapy that have CD137+ T-cells as their protagonist. In fact, even if
protocols for their isolation, expansion, and targeting have already been standardized and
proven to be effective, other trials involving CD137+ T-cells based ACT and anti-CD137
agonistic moAb, will be required in the near future to probe their potential in different
clinical settings.

In conclusion, in light of the evidence reported in this review, it is important to state
that trying to directly expand in vivo the antitumor effector T-cell population thanks to
single agent strategies is not efficient in terms of patients’ clinical outcome. This is probably
due to the fact that these cells need to reach the tumor area and then proliferate and exert
their effector functions in order to observe a clinical response. An altered vascularization,
T-cell exhaustion, and an immune suppressive tumor microenvironment, that are able
to impair immune responses, are just some of the reasons why single agent strategies
have recently proven to be ineffective [135,150–154]. In this scenario, the possibility of
uncovering a receptor that characterizes the real antitumor T-cells population, will allow
to target more precisely these cells with a combination of different strategies aimed to
facilitate cancer cells’ elimination and preventing immune suppression.

Of note, it is important to highlight that other second line costimulatory receptors,
as in the case of OX40 (CD134, TNFRSF4), showed to be regulated in a similar way if
compared to CD137 receptor, having thus a similar therapeutic potential [155–158] and
questioning the uniqueness of the CD137 receptor in pointing out the natural occurring
antitumor T-cells. However, the aim of this review was to present the latest findings on
how the CD137 receptor is alone able to identify a population capable of recognizing and
eliminating cancer cells, thus discussing the potential use of this population as a biomarker
to evaluate the patients’ capability to respond to immune-based therapies as well as the
potential benefit of introducing CD137+ T-cells as protagonists of novel strategies for the
treatment of oncologic patients.
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