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MSCs provide a promising method for cell therapy through their wound healing and tissue regenerative properties. Originally,
MSCs’ role in wound healing was thought to be tied to their multipotency, but it is now accepted that MSCs mediate the healing
process through their strong paracrine capability. EGF was shown to facilitate in vitro expansion of MSCs without altering multi-
potency. Our previous data suggest that the molecular machinery underlying MSCs’ strong paracrine capability lies downstream
of EGFR signaling, and we focus on transcription factors EGR1 and EGR2. Evidence suggests that EGR1 regulates angiogenic and
fibrogenic factor production in MSCs, and an EGFR-EGR1-EGFR ligands autocrine loop is one of the underlying mechanisms
supporting their strong paracrine machinery through EGR1. EGR2 appears to regulate the expression of immunomodulatory
molecules. Chronic nonhealing wounds are ischemic, inflammatory, and often fibrotic, and the hypoxic micro-environment of
these wounds may compromise MSCs’ wound healing properties in vivo by upregulating the EGR1’s fibrogenic effects and down-
regulating the EGR2’s immuno-modulatory effects. Thus, these transcription factors can be potential targets in the optimization
of cell-based therapies. Further study in vitro is required to understand MSCs’ paracrine machinery and to optimize it as a tool for
effective cell-based therapies.

1. Overview of MSCs

Adult bone marrow multipotential stromal cells or mes-
enchymal stem cells (MSCs) are multipotent cells capable of
differentiating into multiple cell lineages, such as osteocytes,
adipocytes, and chondrocytes [1–7]. Because of their strong
tissue regenerative, wound repair, and immunomodulatory
effects, cell therapy with MSCs is highly promising against
various diseases in the fields of regenerative medicine and
immunology [8–15].

MSC-based therapeutics was shown to accelerate the
wound repair process in various animal models and pilot
clinical studies including limb ischemia and coronary arterial
diseases [8–14, 16–19]. However, beneficial results of stem/
progenitor cell therapeutics in initial small-scale clinical
studies have not been reproduced by subsequent randomized
controlled trials, strongly indicating the urgent needs of fur-
ther optimization of cell-based therapy [20].

Initially, these cells were simply viewed as cellular blocks
to resupply the regenerating and repairing tissues through

their multidifferentiation potential; however, it is now widely
accepted that MSCs’ strong paracrine capability of various
bioactive molecules such as vascular endothelial growth
factor (VEGF) or indoleamine dioxygenase-1 (IDO1) plays
a key role in MSC-based therapeutics actions [8, 15, 21–23].
In effect, MSCs, which reside within the perivascular space
[24], can be viewed as paracrine delivery vehicles. Under-
standing of the molecular mechanism of the strong paracrine
machinery of MSCs could lead to the identification of novel
therapeutic targets and maximization of immuno-modulat-
ing, wound healing, and tissue regenerating effects of MSC-
based therapeutics [25].

2. Roles of Epidermal Growth Factor Receptor
Signaling in MSCs

In vitro, MSC expansion with animal component-free artifi-
cially-defined culture media is ideal for MSC preparation
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for clinical use to maximize the safety of MSC-based thera-
peutics [26–29]. Identification of key molecular factors for
in vitro MSC expansion and understanding the molecular
mechanism of MSCs’ strong paracrine capability should
provide key knowledge for in vitro MSC expansion without
using any animal components while maintaining MSCs’
paracrine capability. Moreover, advanced knowledge of
molecular regulation of the angiogenic, mitogenic, fibro-
genic, and immunomodulatory properties would allow for
the MSC preparation of personalized properties to best fit
the clinical needs of individual patients.

We previously showed that epidermal growth factor
(EGF) could be used for in vitro MSC expansion without
compromising their multidifferentiation potential [6, 30].
Moreover, EGF stimulation enhances the production of
multiple growth factors and cytokines including VEGF, hep-
atocyte growth factor (HGF), Heparin-binding epidermal
growth factor-like growth factor (HBEGF), and interleukin-
6 (IL6) [25, 26]. These data strongly suggest that EGF can be
used for in vitro MSC expansion and enhancement of their
paracrine capability.

EGF receptor (EGFR) is a prototypal receptor tyrosine
kinase widely expressed in many types of cells including
MSCs [25, 26]. Upon binding of EGFR ligands such as
EGF, HBEGF, or amphiregulin (AREG), EGFR undergoes
dimerization and autophosphorylation through its intrinsic
tyrosine kinase activity and activates numerous signaling
pathways including the protein kinase C (PKC) pathway and
the p42/44 mitogen-activated protein kinase (MAPK) path-
way [6, 25, 26, 31].

Based on our previous studies [6, 26], we speculated that
the molecular machinery supporting MSCs’ strong paracrine
capability should be located downstream of EGFR signaling,
and we analyzed the publicly available microarray database
(GSE9451) to see whether transcription factors regulating
the expression of growth factors and cytokines downstream
of EGFR signaling are differentially expressed in human iliac
bone marrow MSCs and human skin fibroblasts, another
type of mesenchymal cells akin to MSCs but with reduced
differentiation and paracrine capability. Our analysis showed
that early growth response genes-1, -2, and -3 (EGR1-3) are
expressed in MSCs at much higher levels than in fibroblasts
(Table 1) [25]. High baseline expression of EGR1-3 in MSCs
might reflect the activated state of MSCs in culture, as sug-
gested by Caplan [32]. EGRs encode a zinc finger transcrip-
tion factor (TF) whose activity is mainly regulated at the gene
transcription level, and gene expression is upregulated in
response to various growth factors and cytokines such as epi-
dermal growth factor (EGF). Once induced, EGRs regulate
the gene expression of various growth factors, cytokines,
their cognate receptors, and other bioactive molecules [25,
33, 34].

3. Possible Roles of EGR1-3 in MSCs

Although EGR1-3 has a highly conserved DNA-binding
domain and share conserved zinc finger DNA-binding
sequences [35], each EGR is regulated by distinct signaling

Table 1: EGR1-3 gene expression in human primary fibroblasts
(FBs) and human primary mesenchymal stem cells (MSCs) from
GEO database (GSE9451). EGR1 data was published previously
[25]. Gene expression was given in arbitrary units.

FBs MSCs P value

EGR1 325.5 1223.8 0.002

EGR2 4.1 50.1 0.024

EGR3 5.7 64.7 <0.001

pathways; for instance, PKC inhibitor bisindolylmaleimide
I (BIM) weakly inhibits EGR1 induction [25], but it mod-
erately inhibits EGR2 induction and totally abolishes EGR3
induction in MSCs (unpublished data). Moreover, each EGR
confers functions that are largely distinctive from each other
[36–39]. Among EGR1-3, EGR1 is the most studied, and its
multiple roles have been proposed. For example, EGR1 is
identified as one of the key molecules contributing to the
development of atherosclerosis, intimal thickening after
acute vascular injury, ischemic pathology, angiogenesis,
allograft rejection, and cardiac hypertrophy [33, 40]. EGR1
could promote tumor progression, but at the same time, it
could serve as a tumor suppressive or proapoptotic regulator
[34, 41]. EGR2 is a key regulator of myelination in the
nervous system and of hindbrain development [37, 42, 43]. It
was also identified as a positive regulator of fibrosis develop-
ment [36] and a negative regulator of T cell activation [44].
EGR3 was also identified to be critical in muscle spindle for-
mation [45] and is a key regulator of endothelial cell activa-
tion by VEGF [39].

Biological roles of EGRs in MSCs have been addressed in
only few studies including ours [25]. In this study, we showed
that EGF receptor (EGFR) ligand is one of the strongest
inducers of EGR1 expression among the various growth
factors and cytokines we evaluated. Upon EGF stimulation
of MSCs, EGR1 is strongly and transiently induced in a
MAPK extracellular signal-regulated kinase (MEK) inhibitor
sensitive manner. EGR1 signaling in turn upregulates growth
factors and cytokines including EGFR ligands HBEGF and
AREG in MSCs. Those data suggest the presence of an auto-
crine loop with an EGFR-EGR1-HBEGF/AREG axis. More-
over, HBEGF inhibitor CRM197 decreases the expression of
AREG, VEGF, leukemia inhibitory factor (LIF), and inter-
leukin 11 (IL11) induced by a PKC activator phorbol ester,
presumably by inhibiting HBEGF in the autocrine loop.
Thus, even though binding of EGFR ligands to EGFR will
eventually cause downregulation of EGFR and shutoff of the
EGFR signaling [31], EGR1 still functions as a convergence
point for multiple signaling pathways, and the EGFR-EGR1
axis could serve as a molecular machinery supporting the
strong paracrine capability of MSCs, at least for select growth
factors and cytokines described above (Figure 1).

Another possible autocrine loop exists involving platelet
derived growth factor (PDGF), as both PDGF-AA and
PDGF-BB upregulate EGR1, and gene expression of PDGFA
and PDGFB is dependent on EGR1 (Figure 1) [25]. But both
PDGF-AA and PDGF-BB do not induce EGR1 as strongly as
EGF, and PDGFA and PDGFB expressions are not as high as
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Figure 1: The roles of EGR1 and EGR2 signaling and autocrine
loops with EGFR and PDGFR ligands in the production of select
bioactive molecules in MSCs. (Abbreviations: CTGF, connective
tissue growth factor; EGF, epidermal growth factor; EGFR, epi-
dermal growth factor receptor; EGR, early growth response gene;
HBEGF, heparin-binding epidermal growth factor-like growth
factor; IDO1, indoleamine dioxygenase-1; IL1B, interleukin-1beta;
IL6, interleukin-6; LIF, leukemia inhibitory factor; PDGFA, platelet-
derived growth factor-A; PDGFB, platelet-derived growth factor-
B; PTGS2/cox2, prostaglandin-endoperoxide synthase 2/cyclooxy-
genase-2; TGFB1, transforming growth factor-beta1; VEGFA, vas-
cular endothelial growth factor-A).

HBEGF. Thus, we speculate that the PDGF-EGR1 autocrine
loop is not as strong a contributor to MSCs’ paracrine
machinery as the EGFR-EGR1 autocrine loop.

Besides HBEGF, AREG, PDGFA, and PDGFB, our pub-
lished and unpublished data also showed that EGR1 regulates
gene expression of connective tissue growth factor (CTGF) and
transforming growth factor-beta 1 (TGFB1) in MSCs [25].
Although HBEGF, AREG, PDGFA, PDGFB, and CTGF could
promote angiogenesis and mitogenesis, these factors could
enhance fibrogenesis in the presence of TGFB1 [46, 47], and
thus, this group of molecules can be categorized as fibrogenic
as well [48–51]. This is in agreement with a recent study
showing that EGR1 was also identified as a key factor of fibro-
genesis in dermal fibroblasts of patients with scleroderma
and systemic sclerosis [52]. In other cell types, EGR1 has
been reported to regulate various growth factors and cyto-
kines other than the ones covered in this study [25]; and
therefore, we speculate that the EGFR-EGR1 axis probably
regulates expression of these factors in MSCs as well.

We are accumulating data about the roles of EGR2 in
MSCs. Our unpublished data showed that EGR2 signaling
appears to regulate expression of the molecules including

interleukin-6 (IL6), IDO1, LIF, and prostaglandin endoper-
oxide synthase 2/cyclooxygenase-2 (PTGS2/cox2), all of which
mediate immunomodulatory properties of MSCs (Figure 1)
[15]. The role of EGR3 signaling in MSCs is unclear at that
moment.

In our TRANSFAC database study, EGR1-3 have multiple
consensus EGR-binding elements in their promoters (data
not shown) and regulate expression of each other positively
as well as negatively in a cell-type specific manner [53].
Indeed, direct EGR1 binding was observed in the putative
promoters of EGR1-3 in the ENCODE database [54–56]
available in the UCSC Genome Browser [57], and our
preliminary results show direct EGR1 binding to the putative
promoters of EGR1-3 by chromatin immunoprecipitation
quantitative PCR (ChIP-qPCR) assays (data not shown).
Moreover, EGR3 inhibition by siRNA increases the EGR1
induction (data not shown). These data indicate the possible
presence of the interaction among EGR1-3 in human MSCs.

These findings are, overall, distinct from the results
obtained in other types of cells or organs outlined above.
Based on our recent data, we speculate that EGRs are key
molecular switches regulating the fibrogenic, angiogenic,
and immunomodulatory properties of MSCs, and we could
target EGR1 and EGR2 to maximize the beneficial effects of
MSC-based therapeutics for therapies against various dis-
eases including, but not limited to, chronic nonhealing
wounds, ischemic diseases, and immune-mediated diseases
[32].

Various other stimuli could induce EGR1-3 and alter
EGR signaling. For example, hepatocyte growth factor
(HGF) and interleukin-1beta (IL1B) are strong inducers of
EGR1-3 in MSCs [25]. Since these signaling molecules are
also involved in wound repair and tissue regeneration [58,
59], they might function to augment EGR signaling in MSCs
in wound microenvironments (Figure 1).

4. Hypoxic Microenvironments and
EGR Signaling

Wound repair and tissue regeneration play an indispensable
role for humans to maintain life. It is also regarded as one of
the most complicated biological processes involving various
types of cells and bioactive molecules acting in a sophis-
ticated fashion. The normal wound healing process occurs
in three distinct, but overlapping stages: inflammation, new
tissue formation, and remodeling [58], and any arrests in
these processes lead to the formation of chronic nonhealing
wounds.

Vascular complications can be the cause of wounds such
as ischemic coronary diseases, as well as the direct result of
injury or tissue destruction itself. The resultant ischemia is
one of the main contributing factors to the arrest of the
wound repair and tissue regeneration processes, since the
limited supply of oxygen and other nutrients compromises
cellular functions in the injured sites and impairs these
processes [60]. Therapeutic angiogenesis restores the blood
supply to these ischemic lesions and promotes wound repair
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and tissue regeneration. Local administrations of single
angiogenic factors such as VEGF showed only limited benefit
[61], suggesting that an administration of multiple growth
factors and cytokines, rather than a single-specific growth
factor, is required to attain functional vasculatures through
neoangiogenesis [62]. MSCs produce multiple growth fac-
tors and cytokines in a coordinated manner in response to
environmental cues; thus, MSC-based therapeutics could be
one promising solution.

The microenvironments in nonhealing wounds, which
require therapeutic interventions such as MSC-based ther-
apeutics for healing, are largely hypoxic due to the com-
promised blood supply and inadequate angiogenesis [60].
Hypoxia itself activates various intracellular signaling in
hypoxia inducible factor (HIF)-dependent and HIF-inde-
pendent manners [63]. HIF is a master transcription factor
regulating the expression of hundreds of genes through
binding to HIF response element (HRE) in response to
hypoxia. HIF consists of the constitutively expressed β-sub-
unit (HIF-1β) and the regulatory α-subunit (HIF-1α and
HIF-2α), which is stabilized in response to hypoxia. In con-
trast to ubiquitously expressed HIF-1α, the expression of
HIF-2α is restricted to certain cell types such as vascular
endothelial cells and is less characterized than HIF-1α [64,
65]. MSCs express HIF-2α in addition to HIF-1α [66, 67].

We and others previously published the effects of hypoxia
or hypoxic priming in MSC survival, the angiogenic factor
production by MSCs, and in vitro MSC expansion [66, 68–
75], but the molecular mechanisms of hypoxia-mediated
altered EGR signaling have not been studied except for EGR1,
which was reported to be upregulated by hypoxia in glio-
blastoma cells, monocytes, and hepatoma cells in a HIF-1-
independent manner [76, 77]. Consistently, EGR1 is upreg-
ulated by hypoxia in MSCs (unpublished data), and thus,
EGR1 signaling in MSCs might be further enhanced in
hypoxic microenvironments. Persistent and excessive inflam-
mation is another pathophysiological feature of chronic non-
healing wounds [78, 79], and excessive inflammation also
causes fibrosis and scar [80]. EGR1-mediated ECM forma-
tion should be a pivotal step in wound healing [81], but
hypoxia could cause excessive activation of EGR1 signaling,
which might further promote fibrosis formation in chronic
wounds.

Our data also showed that hypoxic exposure decreases
EGR2 and EGR3 induction and expression of their target
molecules in MSCs. Interestingly, HIF-2α appears to mediate
the decrease of EGR2 induction, at least partly; however, the
role of HIF in the decrease of EGR3 induction appears mini-
mal if any. Based on these data, we speculate that hypoxia
alters EGR2 and EGR3 signaling in MSCs and possibly
reduces immunomodulatory properties of MSCs in the
hypoxic microenvironments such as nonhealing wounds.
MSCs’ immunomodulatory properties might be possibly
suboptimal through compromised EGR2 induction in those
microenvironments, which could lessen the overall wound
repair and tissue regeneration properties of MSCs in the
hypoxic microenvironments such as chronic nonhealing
wounds because the reversal of persistent inflammation
could promote their repair process [80].

5. Exosomes

Recently, exosomes or microvesicles have been recognized
as an alternative mechanism of intercellular communication
[82]. Exosomes are membranous microvesicles (40–100 nm
diameter) released into the extracellular space through exo-
cytic fusion of multivesicular endosomes with the cell mem-
brane [82]. In addition to protein and lipid components,
RNAs are responsible for the exosome-mediated intercellular
communication [83].

Do exosomes mediate some of the MSCs’ paracrine
effects? MSCs were shown to be strong producers of exo-
somes [84]; and indeed, 10% of the total protein present in
MSC-conditioned media was estimated to be derived from
exosomes [85]. MSCs were shown to exert organ-protective
effects via exosome [84, 86–89]. Moreover, MSC-derived
exosomes seem to mediate some of MSCs’ immunomodula-
tory effects [84]. However, some reports showed that it is the
RNA components, not protein components, that mediate the
action of MSC-derived exosomes [86, 89]. Thus, exosomes
would mediate some of the MSCs’ paracrine effects, but the
precise roles of exosomes remain largely unknown at this
point.

6. Conclusion

Understanding of MSCs’ strong paracrine mechanism
should provide molecular targets to optimally personalize
the MSC preparations for individual patients. Our previous
data suggested that EGR1 and EGR2 play key roles in the pro-
duction of mitogenic, angiogenic, and immunomodulatory
factors in MSCs.

EGR1 functions as a molecular switch of angiogenic,
mitogenic, and fibrogenic factor production in MSCs. The
EGFR-EGR1-HBEGF/AREG autocrine loop is one of the
underlying mechanisms supporting their strong paracrine
machinery through EGR1 signaling [25]. EGR2 appears to
function as a molecular switch of immunomodulatory mole-
cules in MSCs. Although stimulation with various growth
factors and cytokines induces EGR1-3 in vitro, it might not
necessarily reflect the MSCs’ EGR response in harsh micro-
environments in vivo such as ischemic lesions. Our data
showed that hypoxic exposure lessens the induction of EGR2
in cultured MSCs, suggesting that hypoxic microenviron-
ments in vivo might compromise MSCs’ immunomodula-
tory actions by reducing EGR2 signaling.

Through an understanding of their distinct roles in the
regulation of various growth factors and cytokines, EGRs
may provide a mechanism for altering the wound healing and
tissue regenerative capabilities of MSCs through in vitro
priming prior to patient treatment and/or molecular target-
ing in vivo, and thus, we propose that EGR1 and EGR2 can
be potential molecular targets to maximize the paracrine
capability of MSCs. Further in vitro studies to elucidate the
molecular machinery underlying EGRs’ paracrine capability
are still needed to maximize the benefits of MSC-based cell
therapies.
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