
Academic Editor: Débora Villaño

Valencia

Received: 28 April 2025

Revised: 23 May 2025

Accepted: 24 May 2025

Published: 28 May 2025

Citation: Randeni, N.; Luo, J.; Wu, Y.;

Xu, B. Elucidating the Anti-Diabetic

Mechanisms of Mushroom Chaga

(Inonotus obliquus) by Integrating

LC-MS, Network Pharmacology,

Molecular Docking, and

Bioinformatics. Int. J. Mol. Sci. 2025,

26, 5202. https://doi.org/

10.3390/ijms26115202

Copyright: © 2025 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license

(https://creativecommons.org/

licenses/by/4.0/).

Article

Elucidating the Anti-Diabetic Mechanisms of Mushroom Chaga
(Inonotus obliquus) by Integrating LC-MS, Network
Pharmacology, Molecular Docking, and Bioinformatics
Nidesha Randeni † , Jinhai Luo † , Yingzi Wu and Baojun Xu *

Food Science and Technology Program, Department of Life Sciences, Beijing Normal-Hong Kong Baptist
University, Zhuhai 519087, China; nidesha.randeni96@gmail.com (N.R.); luojinhai@uic.edu.cn (J.L.);
wuyingzi@uic.edu.cn (Y.W.)
* Correspondence: baojunxu@uic.edu.cn; Tel.: +86-756-3620636
† These authors contributed equally to this work.

Abstract: Diabetes mellitus is characterized by insulin resistance, impaired glucose home-
ostasis, and dysregulated glucose metabolism, leading to complications. Inonotus obliquus
(Chaga) has shown potential anti-diabetic effects, but the bioactive compounds and molec-
ular targets remain unclear. This study aimed to identify the bioactive components of
Chaga and elucidate their anti-diabetic mechanisms using LC-MS compound screening,
network pharmacology, molecular docking, and bioinformatics analyses. Chaga extract was
prepared using 95% ethanol, and bioactive compounds were identified through UHPLC-
QE-MS analysis. Target prediction was conducted using Swiss Target Prediction and SEA
databases, while diabetes-related targets were retrieved from GeneCards. A PPI network
was constructed using STRING and analyzed for GO and KEGG enrichment. Molecular
docking was performed using AutoDock Vina, and gene expression was validated using
the GSE7014 dataset and GEPIA database, with immune cell infiltration analyzed through
CIBERSORT. UHPLC-QE-MS identified 30 bioactive compounds from Chaga, including
21 triterpenoids, four flavonoids, and two diterpenoids. Network pharmacology predicted
432 anti-diabetic targets, with 167 core targets enriched in key pathways, primarily the
PI3K/Akt signaling pathway. Molecular docking revealed strong binding affinities of
five key compounds with seven core targets. Bioinformatics analysis validated significant
expression changes in ESR1, IL6, and SRC, while immune cell infiltration analysis showed
correlations between core targets and immune cell subtypes. This study highlights the anti-
diabetic potential of Chaga by identifying key bioactive compounds and their interactions
with central diabetic targets. Further in vitro and in vivo studies are needed to validate
these findings.

Keywords: type 2 diabetes; insulin resistance; hyperglycemia; Chaga; glycolysis; natural
products

1. Introduction
Diabetes mellitus (DM) is a chronic metabolic condition marked by sustained hyper-

glycemia resulting from insulin secretion deficiency, insulin resistance, or a combination
of both. Type 2 diabetes (T2D) constitutes more than 90% of all diabetes cases and is
a primary contributor to morbidity and mortality globally. The International Diabetes
Federation (IDF) estimates that by 2045, 783 million adults (20–79 years old) will be living
with diabetes, up from around 537 million today [1]. DM raises the risk of consequences
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like cardiovascular illnesses, nephropathy, neuropathy, and retinopathy, which present a
significant economic burden, with worldwide healthcare costs surpassing USD 966 billion
in 2021 [1].

The pathophysiology of diabetes is largely influenced by glucose metabolism, which
is modulated by insulin. Under normal conditions, insulin binds to its receptor. It activates
complex signaling pathways, including phosphatidylinositol 3-kinase/protein kinase B
(PI3K/Akt), resulting in the translocation of glucose transporter type 4 (GLUT4) to the
cell membrane. This facilitates glucose uptake into muscle and adipose tissues. However,
in T2D, insulin resistance impairs this signaling cascade, resulting in decreased glucose
uptake and hyperglycemia [2]. In addition to glucose uptake, the PI3K/Akt pathway regu-
lates glycogenesis (glycogen synthesis) and gluconeogenesis (glucose production). Protein
kinase B (Akt) inhibits glycogen synthase kinase-3β (GSK-3β), resulting in glycogen syn-
thase activation and promoting glycogen storage in the liver and muscle [3]. Furthermore,
chronic hyperglycemia leads to the overproduction of reactive oxygen species (ROS) and
advanced glycation end-products (AGEs), which contribute to β-cell dysfunction, insulin
resistance, and inflammation. ROS promotes the non-enzymatic glycation of proteins and
lipids, while AGEs trigger inflammatory responses, endothelial dysfunction, and vascular
damage, contributing to complications such as diabetic nephropathy, neuropathy, and
retinopathy [4]. The dysregulation of these pathways underscores the complexity of dia-
betes and highlights the need for multi-target therapeutic approaches, such as those offered
by bioactive compounds from natural sources.

Chaga, or Inonotus obliquus, is a medicinal mushroom that grows mainly on birch
trees in cold climates like China, Korea, Russia, and Northern Europe. It is widely used
for its anti-cancer [5], antioxidant [6], anti-inflammatory [7], anti-viral, anti-fatigue [8],
anti-diabetic [9], hepatoprotective, and immunomodulatory qualities [10]. Chaga possesses
many bioactive compounds, such as triterpenoids, phenolics, and sterols, which support
its broad variety of pharmacological effects [11]. Triterpenoids and polysaccharides are
major phytochemicals in I. obliquus that play a significant role in its anti-diabetic properties.
They boost insulin signaling through the PI3K/Akt pathway, increase GLUT4 translocation,
activate AMP-activated protein kinase (AMPK) to enhance glucose absorption, and decrease
inflammation and oxidative stress, among other ways [12–14].

Despite the promising therapeutic potential of Chaga, the specific bioactive com-
pounds responsible for its anti-diabetic effects remain largely unexplored. Modern ana-
lytical techniques such as liquid chromatography–mass spectrometry (LC-MS) provide a
powerful tool for identifying and characterizing bioactive compounds in Chaga. Moreover,
two system-based approaches, network pharmacology and molecular docking, enable
the prediction of molecular targets and pathways associated with these compounds. It
facilitates a comprehensive understanding of their multi-target mechanisms. A combined
approach of LC-MS, network pharmacology, molecular docking, and bioinformatics allows
for a systematic investigation of Chaga’s phytochemicals in diabetes management.

This study aims to determine the anti-diabetic mechanisms of Chaga by integrating
LC-MS for compound identification, network pharmacology for target prediction and
pathway analysis, molecular docking to explore their binding affinity, and bioinformatics
to validate the results. The graphical abstract provides an overview of the study design
and methodology, illustrating the integrative workflow from compound identification to
target-pathway analysis. Specifically, we seek to characterize the phytochemicals present in
Chaga, analyze their interactions with key signaling pathways, and evaluate their potential
to regulate glucose metabolism. By uncovering the molecular interactions and pharma-
cological mechanisms, this research will provide valuable insights into the therapeutic
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applications of Chaga-derived phytochemicals for diabetes management, paving the way
for future clinical applications.

2. Results
2.1. Phytochemicals Derived from Chaga

The constituents of Chaga were examined using the UHPLC-QE-MS technique.
Based on the sample’s mass spectrum and the commercial MS database (BIOTREE TCM
database), which included the acquisition mode, retention time, MS spectra, adduct
ions of [M+H]+, [M-H]−, M+HCOO, M+CH3COO, and [M+FA-H]−, isotope informa-
tion, and secondary fragment information, the identification was completed. A total of
twenty-one triterpenoid compounds, two diterpenoids, and four flavonoids were identi-
fied (Table 1). These triterpenoid compounds include the following: alisol A, asiatic acid,
arjungenin, dehydrotumulosic acid, euscaphic acid, colosolic acid, laetiposide G, 2-[6-(2-
carboxyethyl)-7-ethenyl-3a,6,9b-trimethyl-1,2,3,4,7,8-hexahydro cyclopenta[a]naphthalen-
3-yl]-6-methyl-5-methylideneheptanoic acid, betulinic acid, oleanonic acid, mimusopsic
acid, neokadsuranic acid B, smilagenone, lupenone, 18 beta-glycyrrhetintic acid, 3beta-
hydroxy-21-oxo-11,13(18)-oleanadien-28-oic acid methyl ester, wilforlide A, dehydrotrame-
tenolic acid, betulin, 2-methyl-6-(4,4,10,13,14-pentamethyl-3,11-dioxo-2,5,6,7,12,15,16,17-
octahydro-1H-cyclopenta[a]phenanthren-17-yl)hept-2-enal, and methyl 4-(12-hydroxy-
4,4,10,13,14-pentamethyl-3,7,11,15-tetraoxo-2,5,6,12,16,17-hexahydro-1H-cyclopenta[a]phen
anthre-17-yl)pentanoate. Isosteviol and forskolin are the two diterpenoids. The compounds
belonging to the flavonoid group, tamarixetin (isoflavone), tectorigenin (flavone), epicate-
chin (flavanol), and glabrol (flavanone) were identified. Apart from them, one triterpenoid
glucoside (terminolic acid) and one triterpenoid sapogenin (panaxatriol) were also identi-
fied. 2-[6-(2-carboxyethyl)-7-Ethenyl-2-hydroxy-3a,6,9b-trimethyl-1,2,3,4,7, 8-hexahydro
cyclopenta[a]naphthalen-3-yl]-6-hydroxy-6-methyl-5-methylideneheptanoic acid can be
considered Polycyclic Aromatic Hydrocarbons (PAHs).
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Table 1. Compounds identified in Chaga mushroom by UHPLC-QE-MS.

No. Compound
Name

Compound
Structure Group Target

Number
PubChem

CID MZ Value Adduct
Ions Type Formula Retention

Time (s) MS2 (M/Z) Peak Value ppm

1 Tamarixetin Flavone 109 5,281,699 315.0508719 [M-H]− Neg C16H12O7 101.188

315.049869;
271.026506;
227.070704;
209.060198;
92.679913

423,008,185.4 0.406456701

2 Tectorigenin Isoflavone 73 5,281,811 299.0562603 [M-H]− Neg C16H12O6 155.009

299.055325;
255.066879;
211.0409;

237.054751;
227.035073

191,098,601.4 0.870455461

3

2-[6-(2-Carboxyethyl)-7-ethenyl-2-
hydroxy-3a,6,9b-trimethyl-

1,2,3,4,7,8-hexahydro
cyclopenta[a]naphthalen-3-yl]-6-

hydroxy-6-methyl-5-
methylideneheptanoic acid

Polycyclic
Aromatic Hy-
drocarbons,

(PAHs)

54 163,043,082 499.3063976 [M-H]− Neg C30H44O6 467.32

499.30433;
187.097384;
92.680764;

125.096957;
500.31087

176,318,574 1.206423975

4 Alisol A Triterpenoids 95 15,558,616 535.3637525 [M+FA]− Neg C30H50O5 489.307

535.37193;
489.361334;
536.364022;
386.850678;
109.065859

65,494,393.38 2.330227473

5 Asiatic acid Triterpenoids 65 119,034 487.3445628 [M-H]− Neg C30H48O5 491.309

487.345071;
488.345858;
73.029652;
54.151807;
109.065719

114,915,667.3 1.154737219

6 Isosteviol Diterpenoid 68 99,514 363.2182348 M+HCOO Neg C20H30O3 496.82

363.220266;
301.219918;
319.226219;
231.211763;

72.99321

26,364,667.26 0.646322331

7 Terminolic acid Triterpenoids
glucoside 54 12,314,613 563.3608362 M+CH3COO Neg C30H48O6 520.801

563.351955;
485.331287;
517.353289;
582.091972;
103.881389

21,190,641.49 3.259305253
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Table 1. Cont.

No. Compound
Name

Compound
Structure Group Target

Number
PubChem

CID MZ Value Adduct
Ions Type Formula Retention

Time (s) MS2 (M/Z) Peak Value ppm

8 Arjungenin Triterpenoids 51 12,444,386 503.338039 [M-H]− Neg C30H48O6 526.846

503.338521;
92.68161;

425.302602;
457.29446;
485.260314

39,637,808.49 0.077564917

9

Methyl 4-(12-hydroxy-4,4,10,13,14-
pentamethyl-3,7,11,15-tetraoxo-

2,5,6,12,16,17-hexahydro-1H-
cyclopenta[a]phenanthre-17-

yl)pentanoate

Triterpenoids - 162,984,414 485.2549275 [M-H]− Neg C28H38O7 560.168

485.331281;
427.282211;
379.264977;
467.246817;
423.255523

34,371,858.3 0.149345426

10 Dehydrotumulosic acid Triterpenoids 66 15,225,964 483.3487451 [M-H]− Neg C31H48O4 605.497

483.350109;
484.348208;
53.70788;
57.034681;
162.838479

13,338,969.54 1.54152815

11 Euscaphic acid Triterpenoids 77 471,426 487.3420462 [M-H]− Neg C30H48O5 622.893

487.345165;
165.020038;
425.344197;
411.325271;
381.276225

439,249,992.8 1.957243167

12 Colosolic acid Triterpenoids 68 15,917,996 517.352961 [M+FA]− Neg C30H48O4 623.896

471.344563;
441.338464;
472.355581;
52.374559;
517.386766

19,924,369.48 2.008218219

13 Laetiposide G Triterpenoids 25 85,286,315 647.4166805 [M-H]− Neg C37H60O9 664.321

647.426051;
92.677381;

187.096644;
125.096959;
89.024806

6,672,290.148 0.493481417

14

2-[6-(2-Carboxyethyl)-7-ethenyl-
3a,6,9b-trimethyl-1,2,3,4,7,8-

hexahydro
cyclopenta[a]naphthalen-3-yl]-6-
methyl-5-methylideneheptanoic

acid

Triterpenoids 52 162,953,199 467.3161948 [M-H]− Neg C30H44O4 693.617

467.314009;
371.261375;
83.050558;
92.681611;
468.321422

20,388,189.76 1.722931034
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Table 1. Cont.

No. Compound
Name

Compound
Structure Group Target

Number
PubChem

CID MZ Value Adduct
Ions Type Formula Retention

Time (s) MS2 (M/Z) Peak Value ppm

15 Betulinic acid Triterpenoids 53 64,971 455.3526274 [M-H]− Neg C30H48O3 703.636

455.353083;
456.359141;
50.597266;
92.676531;
411.293613

581,078,510.3 3.01445483

16 Oleanonic acid Triterpenoids 85 12,313,704 499.3432828 M+HCOO Neg C30H46O3 760.737

453.341453;
61.988561;
92.680765;
454.341248;
50.373094

9,760,177.404 0.566249293

17 Epicatechin Flavanol 20 72,276 291.0861046 [M+H]+ Pos C15H14O6 46.5308

139.038665;
123.044504;
165.054501;
147.043675;
291.087129

373,945,509.4 0.359428699

18 Glabrol Flavanones 20 480,768 393.2089956 [M+H]+ Pos C25H28O4 58.8721

393.205584;
394.213319;
92.657626;

153.054649;
375.102135

324,258,064.6 0.011256345

19 Forskolin Diterpenoid 3 47,936 411.2381929 [M+H]+ Pos C22H34O7 244.05

393.227554;
375.21174;

167.106581;
125.095873;
411.24093

775,007,987.6 0.469105286

20 Mimusopsic acid Triterpenoids 20 162,981,968 485.3253743 [M+H]+ Pos C30H44O5 463.121

485.323255;
467.314296;
449.303379;
421.309481;
95.085504

1,676,895,247 1.289307824

21 Neokadsuranic acid B Triterpenoids 92 78,385,354 453.3374578 [M+H]+ Pos C30H44O3 481.408

453.340042;
435.329506;
417.317354;
107.085173;
311.236845

302,123,599.7 3.215767303

22 Smilagenone Triterpenoids 22 313,275 415.320709 [M+H]+ Pos C27H42O3 485.857

415.063669;
397.313404;
109.100875;
95.085575;
119.085774

25,172,111.45 0.700548339



Int. J. Mol. Sci. 2025, 26, 5202 7 of 24

Table 1. Cont.

No. Compound
Name

Compound
Structure Group Target

Number
PubChem

CID MZ Value Adduct
Ions Type Formula Retention

Time (s) MS2 (M/Z) Peak Value ppm

23 18 beta-Glycyrrhetintic Acid Triterpenoids 81 10,114 471.3468656 [M+H]+ Pos C30H46O4 513.041

471.344968;
453.343313;
107.085123;
95.085453;
435.329815

917,819,007.6 0.285164639

24 3beta-hydroxy-21-oxo-11,13(18)-
oleanadien-28-oic acid methyl ester Triterpenoids 43 163,035,166 483.3465734 [M+H]+ Pos C31H46O4 521.46

483.311442;
465.288031;
429.277318;
405.318836;
447.283351

69,113,720.32 0.882538726

25 Wilforlide A Triterpenoids 48 158,477 455.3517334 [M+H]+ Pos C30H46O3 528.872

455.357056;
81.069528;
437.352349;
109.100779;
69.069803

513,163,312.1 0.585490831

26 Ganoderic aldehyde A Triterpenoids 84 163,036,286 453.3356962 [M+H]+ Pos C30H44O3 642.652

453.331046;
435.322148;
69.069814;

109.100811;
81.069578

167,072,813.4 2.876074492

27 Dehydrotrametenolic acid Triterpenoids 56 15,391,340 455.3514154 [M+H]+ Pos C30H46O3 647.617

455.351776;
107.08527;
109.100787;
121.101364;

95.08478

250,319,010.4 1.283864243

28 Betulin Triterpenoids 31 72,326 443.3792757 [M+H]+ Pos C30H50O2 672.397

443.311471;
69.0698;

425.306414;
109.100714;
81.069471

71,825,700.8 21.93225228

29 Lupenone Triterpenoids 22 92,158 425.3770963 [M+H]+ Pos C30H48O 714.536

95.084839;
81.069561;
69.069828;

137.132042;
425.372928

1,002,461,661 2.124550292
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Table 1. Cont.

No. Compound
Name

Compound
Structure Group Target

Number
PubChem

CID MZ Value Adduct
Ions Type Formula Retention

Time (s) MS2 (M/Z) Peak Value ppm

30 Panaxatriol Triterpene
sapogenin 89 73,599 459.3823159 M+H-H2O Pos C30H52O4 743.23

459.377958;
441.371333;
423.359272;
135.116679;
69.069876

42,410,492.67 1.489083716
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2.2. Diabetes and Compound-Related Targets

The Swiss Target Prediction [15] and SEA databases [16] were used to search for targets
based on the structures of the 30 bioactive chemicals found in Chaga. After removing
duplicates, 541 targets were discovered. Targets associated with the disease were gathered
from the GeneCards database [17]. A total of 8321 disease-related targets were retrieved
for additional study after duplicates were eliminated. Additionally, 5614 targets related to
glucose metabolism were gathered from the GeneCards database.

2.3. Anti-Diabetes Targets of Chaga and PPI Analysis

Including the 432 interacting targets, Figure 1a displays the Venn diagram between
the drug target, diabetes, and glucose metabolism [18]. These are the possible anti-diabetic
targets of Chaga, which enhance the metabolism of glucose.

Figure 1. (a) The Venny figure between the targets of Chaga and diabetic-related targets that enhance
glucose metabolism. (b) PPI network of 431 overlapping genes drawn by String database. (c) The top
20 anti-diabetic targets of Chaga ranked by the degree values of the PPI network.

To analyze protein–protein interactions, these genes were loaded into the String
database (Figure 1b) [19]. With 431 nodes and 8021 edges, the PPI network illustrates
the network’s complexity. The average node degree and local clustering coefficient for
every node in the PPI network were 37.22 and 0.47, respectively. The PPI network had
an enrichment p-value of less than 1.0 × 10−16. The findings demonstrated a significant
association between the PPI network’s nodes. Figure 1c shows the proteins in this network
with the highest 20-degree value.

2.4. Core Targets for Enrichment Analysis

According to the PPI network, the medians of DC, CC, and BC were 27, 0.4638, and
146.54, respectively. A total of 167 core targets were identified, each meeting or exceeding the
median values for betweenness, closeness, and degree. The results are illustrated in the Venn
diagram (Figure 2a). After importing core targets into the Cytoscape software (version 3.10.1),
an interaction network was constructed (Figure 2b). The nodes’ edges were shown by the
DC, where a higher degree indicated a greater association with other nodes. The CC of a
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node measured its distance from others, with nodes positioned more centrally in the network
when their CC value approached 1. BC demonstrated a node’s significance and convenience.
More association with others was indicated by a higher degree of betweenness. Nodes in the
internal cycle had a higher degree of centrality than those in the exterior cycle. Each node’s
color changed from red to yellow as its degree decreased.

Figure 2. (a) The Venny figure between the BC, CC, and DC. (b) The PPI network of the
167 core targets.

2.5. Construction of Central Targets of Chaga for Component–Target Docking

The network of targets, each ranking in the top 10 for DC, CC, MCC, and MNC, was
selected for molecular docking. In order to obtain the overlapping targets of four networks
as central targets, including AKT1, ESR1, CASP3, EGFR, JUN, SRC, and TNF, the Venny
online tool was used (Figure 3e). STRING 12.0 was used to visualize these central nodes [11]
(Figure 3f). The network comprised 21 edges, with an average node degree of six and an
average local clustering coefficient of one, suggesting full interconnectivity among the nodes.

Figure 3. (a) The network of targets with the top 10 CC. (b) The network of targets with the top
10 DCs. (c) The network of targets with the top 10 MCCs. (d) The network of targets with the top
10 MNCs. (e) The Venny figure between degree, closeness, MCC, and MNC. (f) The network of
central targets.
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2.6. GO Enrichment Analysis of Core Targets

The GO analysis of BPs, CCs, and MFs was carried out by Metascape [20]. A total
of 167 core targets were associated with 1983 BP terms, 131 CC terms, 204 MF terms, and
206 KEGG pathway terms. For pathways and all enrichment analysis terms, the p-value
was less than 0.01. At least three genes were enriched in each enrichment analysis term,
and the p-value for each term was less than 0.01. A GO-enriched dot bubble, including the
top 10 BPs, CCs, and MFs, is displayed in Figure 4a. In this enrichment analysis, the gene
target involves multiple BPs, including response to hormones, positive regulation of the
phosphorus metabolic process, behavior, positive regulation of programmed cell death,
response to xenobiotic stimulus, regulation of hormone levels, cellular response to lipids,
response to nutrient levels, etc. The top CCs included dendrite, receptor complex, mem-
brane raft, postsynapse, lytic vacuole, transcription regulator complex, perinuclear region
of cytoplasm, etc. Furthermore, the MFs included kinase binding, protein kinase activity,
protein domain-specific binding, transcription factor binding, protein homodimerization
activity, endopeptidase activity, etc.

Figure 4. (a) The GO analysis of 167 anti-diabetic core targets, including the top 10 items of BPs,
CCs, and MFs. (b) The KEGG pathway analysis of 167 anti-diabetic core targets. (c) PI3K/Akt
signaling pathway.
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2.7. KEGG Enrichment Analysis of Core Targets

The Metaspace database was used to perform the KEGG enrichment analysis [20].
Figure 4b displays the top 30 signaling pathways that were enriched out of 167 KEGG
pathway keywords that met p < 0.05. The results of the KEGG pathway enrichment
analysis indicated that the molecular mechanism of Chaga in treating diabetes may in-
volve the PI3K/Akt signaling pathway, Ras signaling pathway, RAP1 signaling pathway,
MAPK signaling pathway, etc. The main signaling pathway directly involved in glucose
metabolism-induced diabetes is the PI3K/Akt signaling pathway (Figure 4c). Chaga’s
beneficial effects on diabetes may be mediated through this signaling system.

2.8. Construction of Chaga-Components-Targets-Diabetes-Signaling Pathway Network

Using 167 main targets and 30 plant components from Chaga, a network of
phytochemicals-diabetes was built (Figure 5a). The network had 197 nodes and 915 edges,
according to the results. The relationship between anti-diabetic core targets and active phy-
tochemicals is represented by each edge. Each phytochemical’s degree value determines
the size of its nodes, which grow in size from small to large as the nodes’ degrees rise. The
degree of a node in a network is a representation of its core level and the number of edges
connecting it to other nodes [21]. The degree values of all 30 phytochemicals from Chaga
in this network are presented in Figure 5b.

Figure 5. (a) The network of drug-compound–target-disease. The pink node represents the Chaga.
The red-yellow nodes represent the phytochemicals derived from Chaga. The green nodes represent
the anti-diabetic targets of bioactive phytochemicals. The orange node represents diabetes. (b) The
degree value of the bioactive phytochemicals derived from Chaga.

2.9. Molecular Docking

Molecular docking analysis was performed on five phytochemicals from Chaga with
the highest degree values, targeting seven key anti-diabetic proteins. All selected com-
pounds exhibited negative binding energies, suggesting their potential for interaction with
the target proteins. To facilitate visual interpretation, a hit map was generated (Figure 6).
The binding affinity (kcal/mol) reflects the strength of molecular interactions, where lower
values indicate stronger binding. According to Wong et al. [22], a binding affinity be-
low −7.0 kcal/mol signifies strong binding, while values below −5.0 kcal/mol indicate
moderate binding. Out of the 35 docking results, eight exhibited binding affinities below
−5.0 kcal/mol. While the rest were less than −7 kcal/mol. The docking results demon-
strated that all selected phytochemicals in Chaga effectively bind to key target proteins,
including CASP3 (PDB ID: 1RE1) [23], IL6 (PDB ID: 1ALU) [24], JUN (PDB ID: 5T01) [23],
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AKT1 (PDB ID: 4EJN) [25], SRC (PDB ID: 1Y57) [26], ESR1 (PDB ID: 7UJO) [24], and TNF
(PDB ID: 2AZ5) [27] indicating a strong interaction potential.

Figure 6. The heat map of the molecular docking result between the central targets and the active
phytochemicals from Chaga.

Part of the 3D and 2D results of some docking complexes with strong binding affinity are
shown in Figure 7, including the TNF-Foskolin complex (−9.98 kcal/mol), ESR1-Epicatechin
complex (−8.307 kcal/mol), JUN-Laetiposide G complex (−7.852 kcal/mol), AKT1-Lupenone
complex (−8.429 kcal/mol), and SRC-Smilagenone complex (−9.746 kcal/mol). The TNF-
Foskolin complex had five hydrophobic interactions (alkyl and Pi-Alkyl interactions) with
TYR(A:119), TYR(B:119), TYR(B:59), LEU(A:57), and LEU(B:57), one carbon–hydrogen
bond with GLY(B:121), and some van der Waals forces. The ESR1-Epicatechin complex was
stabilized by conventional hydrogen bonds with GLY(B:521) and GLU(B:353), one Pi-Pi
T-shaped interaction with PHE(B:404), and two Pi-Alkyl interactions with ALA(B:350) and
LEU(B:346). MET(B:421) interacts with the aromatic ring of epicatechin via a Pi-Sulfur
interaction. JUN-Laetiposide G complex presented two carbon–hydrogen bonds with
DA(D:35) and DA(C:6), two conventional hydrogen bonds with DA(D:37) and DT(C:7),
and some van der Waals forces. The stability of the AKT1-Lupenone complex was based on
alkyl and Pi-Alkyl interactions with LEU(A:264), LYS(A:268), TRP(A:80), and VAL(A:270).
SRC-Smilagenone complex interacts with LYS(A:295), ILE(A:336), ALA(A:403), LEU(A:393),
VAL(A:281), and LEU(A:273) through alkyl interactions.
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Figure 7. The 2D and 3D diagrams of the docking result between the central targets and the active
phytochemicals from Chaga (a) TNF-Foskolin complex. (b) ESR1-Epicatechin complex (c), JUN-
Laetiposide G complex (d), AKT1-Lupenone complex (e), SRC-Smilagenone complex.

2.10. Bioinformatics

In the GSE7014 dataset, the expression of ESR1 was significantly increased, and the
expression of IL6 was significantly reduced in diabetes patients (Figure 8a). When exploring
the core genes’ expression in the GEPIA database (Figure 8b–h), we found that ESR1 gene
expression was significantly reduced in liver cancer patients, while SRC gene expression
was significantly increased in liver cancer compared to healthy people.

CIBERSORT is a proper algorithm for exploring the correlations between characteristic
genes and immune cells. Using CIBERSORT, the mechanisms linking the feature genes to
immune cell infiltration in diabetes were explored. The network diagram of the correlation
between different types of immune cells and specific genes is shown in Figure 9a. The abso-
lute values of the correlation between the CASP3 gene and T cell CD4 memory activated
and T cell follicular helper are between 0.4 and 0.6. The absolute value of the correlation
between the IL6 gene and T cell follicular helper is between 0.4 and 0.6, making it the
gene with the highest correlation in the Mantel test. The relative abundance of 22 types of
immune cells is shown in Figure 9b. The content of T cell regulatory (Tregs) cells in DM was
higher than that in the normal group, with statistical differences. Figure 9c is the correlation
heatmap between immune cells, and Figure 9e is the correlation heatmap between immune
cells and gene expression levels, with numerical values representing correlation coefficients.
The correlation between the two images was calculated using the Pearson method. The
correlation between SRC and naïve B cells is the highest, with a correlation coefficient of 0.5.
ATK1 has the highest correlation with plasma cells, with a correlation coefficient of −0.42.
The correlation between TNF and B-cell naïve is the highest, with a correlation coefficient
of 0.41. ESR1 has the highest correlation with T cell regulators (Tregs), with a correlation
coefficient of 0.37. The correlation between IL6 and T cell follicular helper is the highest,
with a correlation coefficient of 0.6. CASP3 has the highest correlation with T cell CD4
memory activated, with a correlation coefficient of 0.66. JUN and NK cell activation have
the highest correlation, with a correlation coefficient of 0.57.
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Figure 8. Core gene expression analysis. (a) Core genes (AKT1, CASP3, ESR1, IL6, JUN, SRC, and
TNF) expression in the training dataset (GSE7014), green color indicates healthy people and red
color represents diabetes people. (b–h) Core genes (AKT1, CASP3, ESR1, IL6, JUN, SRC, and TNF)
expression in liver hepatocellular carcinoma dataset of GEPIA database, red color indicates liver
cancer people while gray color represents healthy people. “*” indicates p-value < 0.05, “**” indicates
p-value < 0.01, “****” indicates p-value < 0.0001.

Figure 9. Immune cell infiltration analysis. (a) Core genes and 22 types of immune cell correlation
heatmap. The correlation was calculated using the Pearson method, and the correlation between core
genes and different immune cells was represented by connecting lines. The orange line represents
p-values < 0.01, and the thickness of the line represents the absolute value of the correlation. (b) The
relative abundance of 22 types of immune cells, with the X-axis representing different sample names.
(c) The heatmap shows the correlation between 22 types of immune cells, calculated using the Pearson
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method, with darker colors indicating a higher correlation. (d) Differential expression of 22 types
of immune cells in diabetes and normal groups. (e) The heatmap showing the correlation between
the expression levels of 22 types of immune cells and core genes was calculated using the Pearson
method. The darker the color, the higher the correlation. “*” indicates p-value < 0.05, “**” indicates
p-value < 0.01, “***” indicates p-value < 0.001.

3. Discussion
Inonotus obliquus (Chaga) is an herbal medicinal fungus with a wide range of thera-

peutic potential [28]. The present study provides a comprehensive study into the possible
anti-diabetic potential of I. obliquus (Chaga) through the combination of LC-MS, network
pharmacology, molecular docking, and bioinformatics. The bioactive ingredients in fruits,
cereals, nuts, and herbal medicines were frequently identified using LC-MS [8,29–31].
Network pharmacology and molecular docking are often integrated to uncover the molec-
ular mechanisms underlying disease treatment and to elucidate compound–target inter-
actions [32,33]. The LC-MS analysis identified various bioactive compounds, including
triterpenoids, diterpenoids, flavonoids, and triterpenoid derivatives; among them, triter-
penoids were the majority. In total, they possessed 432 anti-diabetic targets. A total of
5 out of the 30 bioactive compounds were chosen for molecular docking because their
anti-diabetic targets surpassed the average mean value.

Among the 432 anti-diabetic targets, 431 were identified by the String database, al-
lowing for the construction of a PPI network. A total of 167 targets had BC, CC, and DC
values above the median and were identified as core targets for GO and KEGG enrichment
analysis. Among these, seven key targets (JUN, AKT1, ESR1, CASP33, TNF, SRC, and IL6)
were found to have the highest network connectivity, indicating their central role in treating
diabetes with Chaga. These targets were identified as key targets for molecular docking
analysis, indicating their central role in diabetes-related pathways.

The GO enrichment analysis revealed that the identified gene targets are involved
in multiple BPs, suggesting their broad functional relevance in glucose metabolism and
diabetes regulation. Key processes such as hormone response, regulation of hormone
levels [34], phosphorus metabolic regulation [35], and programmed cell death [36] indicate
the potential role of Inonotus obliquus-derived bioactive compounds in modulating insulin
signaling, glucose metabolism, and energy homeostasis. The CCs’ analysis highlighted the
localization of these targets in structures such as dendrites, receptor complexes, membrane
rafts, and transcription regulator complexes, further emphasizing their role in signal
transduction and metabolic regulation at various cellular sites. In terms of MFs, significant
enrichment in kinase binding, protein kinase activity, transcription factor binding, and
protein domain-specific binding highlights the involvement of these targets in key insulin
signaling pathways. Given that kinases and transcription factors play critical roles in
glucose uptake, insulin sensitivity, and inflammatory responses [37,38]. These findings
suggest that bioactive compounds from Inonotus obliquus may exert anti-diabetic effects by
modulating these molecular functions.

The KEGG pathway enrichment analysis revealed that the anti-diabetic effects of
Chaga may be mediated through multiple signaling pathways, including PI3K/Akt, Ras,
RAP1, and MAPK signaling pathways. Among these, the PI3K/Akt signaling pathway
plays a direct and crucial role in regulating glucose metabolism and is a key target for
diabetes treatment. This pathway is essential for insulin signaling and facilitating glucose
uptake, glycogen synthesis, and lipid metabolism. Dysregulation of PI3K/Akt signaling
contributes to insulin resistance and impaired glucose homeostasis, which are hallmarks
of T2D [39,40]. The PI3K/Akt pathway is primarily activated by insulin binding to its
receptor, leading to a cascade of phosphorylation events that enhance GLUT4 translocation
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to the cell membrane, allowing glucose uptake into cells. When this pathway is disrupted,
glucose uptake is significantly impaired, leading to hyperglycemia [39,41]. Additionally,
PI3K/Akt signaling influences glycogenesis [42] and gluconeogenesis [43] by modulating
key enzymes, helping maintain normal blood glucose levels. Overall, the GO and KEGG
enrichment analysis provides strong evidence that the bioactive components of Chaga
target multiple pathways and molecular mechanisms associated with diabetes, reinforcing
its potential as a natural therapeutic agent. Future experimental validation through in vitro
and in vivo studies is essential to further substantiate these computational findings and
establish specific molecular mechanisms.

The degree value analysis indicated that certain compounds exhibited a higher inter-
action with core targets, suggesting their pivotal role in modulating glucose metabolism
and insulin signaling. Among them, forskolin, epicatechin, lupenone, laetiposide G, and
smilagenone had the highest degree values, implying their strong bioactivity in the anti-
diabetic mechanism of Chaga. Forskolin has been previously linked to glucose homeostasis
and insulin sensitivity [44,45], while epicatechin is well documented for its role in reducing
oxidative stress and enhancing insulin function [46,47]. Lupenone, a triterpenoid, has
shown potential effects on insulin resistance and glucose metabolism, though studies in this
area remain limited [48]. Similarly, smilagenone and laetiposide G have been identified as
bioactive compounds, but their precise role in diabetes management remains largely unex-
plored, highlighting the need for further experimental validation and mechanistic studies.

The Chaga-derived phytochemicals with the highest degree values (forskolin, epicate-
chin, lupenone, laetiposide G, and smilagenone) demonstrated strong interactions with
the seven key targets (CASP3, IL6, JUN, AKT1, SRC, ESR1, and TNF), most compounds
exhibiting binding affinities below −7 kcal/mol, indicating high binding stability. The
molecular docking analysis revealed significant interactions between selected bioactive
compounds and key protein targets involved in metabolic pathways. C-Jun can influence
the expression of genes involved in the metabolic regulation of insulin resistance [49].
The JUN-Laetiposide G complex exhibited strong hydrogen bonding and van der Waals
interactions, suggesting its potential to modulate JUN-related signaling in diabetes. The
AKT1-Lupenone complex demonstrated pi-alkyl and alkyl interactions, indicating its possi-
ble role in regulating the PI3K/AKT pathway, a crucial target in glucose metabolism [50].
The SRC-Smilagenone complex showed strong hydrophobic interactions with SRC, imply-
ing its potential in glucose metabolism.

The GSE7014 dataset analysis revealed a significant increase in ESR1 expression and a
decrease in IL6 expression in diabetes patients, suggesting their potential roles in metabolic
dysregulation and inflammation. However, the GEPIA database showed downregula-
tion of ESR1 in liver cancer, indicating tissue-specific differences in its regulation. This
reflects the diverse role of ESR1 on tissue context, which acts as a metabolic regulator
in diabetes, potentially improving insulin sensitivity and glucose homeostasis through
estrogen signaling effects on pancreatic beta-cells and adipose tissue [51] but can function
as a tumor promoter in cancers like hepatocellular carcinoma [52]. These findings highlight
the complex involvement of ESR1 and IL6 in diabetes, warranting further investigation into
their functional implications in metabolic disorders. Immune infiltration analysis using
CIBERSORT demonstrated significant correlations between key diabetic genes and immune
cells. Notably, CASP3 correlated strongly with activated CD4 memory T cells (r = 0.66)
and IL6 with T follicular helper cells (r = 0.6), suggesting their role in immune modulation.
SRC showed the highest correlation with naïve B cells (r = 0.5), while AKT1 was nega-
tively correlated with plasma cells (r = −0.42), indicating potential immune dysregulation.
These findings suggest that Chaga-derived compounds may exert anti-diabetic effects by
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targeting key genes involved in immune regulation and inflammation, providing further
justification for experimental validation.

This study combines network pharmacology, molecular docking, and bioinformatic
analysis to establish a theoretical basis for Chaga’s anti-diabetic mechanisms. However, the
lack of experimental validation and data on bioavailability, pharmacokinetics, and toxicity
remains a key limitation. Therefore, in vitro and in vivo investigations are necessary to
validate these findings and confirm the biological significance of the identified phenolics.
These studies will be crucial in assessing their real physiological effects and potential as
therapeutic agents for obesity management.

4. Methodology
4.1. Preparation of Chaga Extracts

The Chaga sample was purchased from an e-commerce platform (Tmall Global)
in China. It was collected in Siberia, Russia, then stored in Beijing Normal Hong
Kong Baptist University, Food Science Laboratories, T8-508, where a voucher specimen
(ID: UIC-FS-2024-06-01) was kept. Extraction of Chaga was carried out according to the
methods described by Luo et al. [29], Liu et al. [24], and Zhang et al. [53], with some
modifications. A total of 250.0 g of dried and powdered Chaga was extracted twice with
95% ethanol in a 1:10 solid–liquid ratio for 8 h. The resultant mixture was combined and fil-
tered. The mixture was combined and filtered, and the filtrate was then concentrated using a
rotary evaporator (Shanghai Yarong Biochemistry Instrument Factory, RE-52AA, Shanghai,
China) to remove the ethanol content. The obtained aqueous solution was passed through
an AB-8 resin column (Shanghai Yuanye Bio-Technology Co., Ltd., Shanghai, China). The
elution of Chaga extract was performed using ethanol and was collected until no visible
color was observed, indicating complete elution. The eluent was freeze-dried at −80 ◦C
(Shanghai Yarong Biochemistry Instrument Factory, RE-52AA, Shanghai, China).

4.2. Ultra-High-Performance Liquid Chromatography–Q-Exactive HF Mass Spectrometry
(UHPLC-QE-MS) Analysis

The application of UHPLC-QE-MS facilitated the analysis and identification of the
Chaga compounds. After combining the Chaga with an 80% methanol (CNW Technolo-
gies, Dusseldorf, Germany) solution in water, it was centrifuged for 15 min at 4 ◦C at
a velocity of 10,614× g. A microporous membrane with a pore size of 0.22 µm was
used to filter the supernatant. LC-MS/MS analysis was conducted using an ultra-high-
performance liquid chromatography (UHPLC) system (Vanquish, Thermo Fisher Scientific,
Waltham, MA, USA.) equipped with a Waters UPLC BEH C18 column (1.7 µm (particle
size), 2.1 mm × 100 mm). A 5 µL sample was injected with a flow rate of 0.5 mL/min. The
mobile phase comprised 0.1% formic acid in water (solvent A) and 0.1% formic acid in ace-
tonitrile (solvent B) (CNW Technologies, Dusseldorf, Germany). Gradient elution followed
a multi-step linear program: starting at 85% A, decreasing to 25% A over 11 min, then to
2% A by the 12th minute, maintaining 2% A until the 14th minute, rapidly increasing to
85% A within 0.1 min, and holding at 85% A for the final 2 min.

In the mass spectrometry (Thermo Fisher Scientific, Waltham, MA, USA.), MS and
MS/MS data were collected using a Q Exactive Focus mass spectrometer linked to Xcalibur-
Massachusetts, USA 4.1 software in ion-driven acquisition (IDA) mode. The top three
precursor ions from each cycle were chosen for additional fragmentation and analysis when
the mass range scanned was between 100 and 1500 m/z. The capillary temperature was
kept at 400 degrees Celsius, the sheath gas flow rate was set at 45 arbitrary units (Arb), and
the auxiliary gas flow rate was set at 15 Arb. The resolution was set to 70,000 for full MS
and 17,500 for MS/MS. In neutral collision energy (NCE) mode, the collision energy was
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adjusted to three different levels: 15, 30, and 45. In positive mode, the spray voltage was
set to 4.0 kV, while in negative mode, it was set to −3.6 kV. The constituents of Chaga were
identified and structurally elucidated using mass spectrometry, with their primary and
secondary spectral data provided by the BIOTREE TCM database of Shanghai BIOTREE
Biological Technology Co., Ltd. (Shanghai, China).

4.3. Protein Targets of Components Prediction

Network pharmacology studies were carried out according to the previously described
method [24,29]. The PubChem database Smiles format of compounds from UHPLC-QE-MS
analyses was entered into the Swiss Target Prediction (http://www.swisstargetprediction.
ch/, accessed on 4 December 2024) and SEA (https://sea.bkslab.org/, accessed on 4 De-
cember 2024). With these two databases, compound targets based on a probability higher
than zero were predicted [15,16]. The species for target prediction was Homo sapiens. The
total targets of all the elements were combined after eliminating repeated targets. The
follow-up analysis was conducted using the sum of the targets of all the elements.

4.4. Diabetes-Related Target Collection

The diabetes and glucose metabolism targets were gathered from the GeneCards
database (retrieved from https://www.genecards.org/, accessed on 10 December 2024) [17].
For the following analysis, only the targets of protein-coding genes were chosen.

4.5. Overlapping Targets Between Components, Glucose Metabolism, and Diabetic Prediction

Using the Venny 2.1 online tool, the overlapping targets of diabetes, glucose
metabolism, and components were plotted (https://bioinfogp.cnb.csic.es/tools/venny/,
accessed on 15 December 2024) [18]. The overlapping area suggested potential targets in
Chaga that have anti-diabetic effects via enhancing glucose metabolism.

4.6. Protein–Protein Interaction (PPI) Network Construction

STRING (Heidelberg, Germany) 12.0 was used to visualize the many different anti-
diabetic targets of the components (https://string-db.org/, accessed on 15 December 2024).
Homo sapiens was chosen for further analysis [19].

The PPI network was physically and functionally connected to the settings. The two
nodes’ affiliations with one another were shown by the edge connecting them. Experiments,
databases, co-expression, and other sources of interaction between nodes were all chosen.
To enable identification, the overlapped nodes were separated. The PPI network was
exported in two different formats: TSV and PNG.

4.7. Chaga Core Anti-Diabetic Targets for Enrichment Analysis Construction

The nodes whose degree centrality (DC), betweenness centrality (BC), and closeness
centrality (CC) were all higher than the median were chosen as the primary targets af-
ter the interaction network was visualized using Cytoscape. Additionally, Metascape
(https://metascape.org/gp/index.html#/main/step1, accessed on 20 December 2024) con-
ducted the Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO)
enrichment analysis of the key targets [20].

4.8. Interaction Network Construction

Cytoscape (USA) 3.10.1 was used to import the PPI network with 431 targets that had
been exported from STRING [54]. CytoNCA was utilized to compute the degree, between-
ness, and closeness centralities for each of the 431 nodes. Additionally, cytoHubba was
used to compute the DC, CC, maximum neighborhood component (MNC), and maximal
clique centrality (MCC).

http://www.swisstargetprediction.ch/
http://www.swisstargetprediction.ch/
https://sea.bkslab.org/
https://www.genecards.org/
https://bioinfogp.cnb.csic.es/tools/venny/
https://string-db.org/
https://metascape.org/gp/index.html#/main/step1
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4.9. Chaga Central Targets for Component–Target Docking Construction

CytoHubba (Hsinchu, Taiwan, China) 0.1 was used to rank the 10 targets with the
highest DC, CC, MCC, and MNC. The core targets for further docking were those that
overlapped [55].

4.10. GO and KEGG Enrichment Analysis

The KEGG pathway enrichment analysis of cellular components (CCs), molecular func-
tions (MFs), and biological processes (BPs) of core targets was all conducted on Metascape
(retrieved from https://metascape.org/gp/index.html#/main/step1, accessed on 20 De-
cember 2024). Homo sapiens was selected as the organism. The p-value threshold was 0.01,
the minimum enrichment was 1.5, and the minimum overlap was 3. Bioinformatics was
used to visualize the findings of the enrichment study (https://www.bioinformatics.org/,
accessed on 20 December 2024).

4.11. Chaga-Components-Targets-Diabetics-Signaling Pathway Network Construction

Cytoscape 3.10.1 was used to visualize the Chaga-components-targets-diabetics-
signaling pathway interaction network. For convenience of presentation, the PubChem CID
was used in place of the compound name. Different colors and forms were applied to nodes
belonging to different groups. The components, targets, and pathways were arranged in a
cyclic pattern based on their degree of centrality. Nodes with a higher degree of centrality
were positioned closer to the center.

4.12. Molecular Docking

The study confirmed the interaction between central targets and five active phy-
tochemicals from Chaga using molecular docking with the highest degree values [56].
Avoiding false-positive results from network pharmacology analysis is the goal of molec-
ular docking. ChemDraw (version 23.0) was used to convert the active phytochemi-
cal structures into SMILES once they were downloaded from the PubChem database
(https://pubchem.ncbi.nlm.nih.gov/, accessed on 3 January 2025). The central targets’
structure files were stored in PDB format after being retrieved from the PDB database
(https://www.rcsb.org/, accessed on 3 January 2025). AutoDockTools was used to import
the central targets and bioactive phytochemicals for pre-docking processing. The Autodock
Vina was also accustomed to docking. PyMol and DiscoveryStudio tools were used to
visualize and analyze some of the docking results [57].

4.13. Core Gene Expression Analysis

GSE7014 is a gene expression data set of 26 skeletal muscle samples (20 samples
from diabetes patients and 6 healthy subjects) analyzed using GPL570 [HG-U133_Plus_2]
Affymetrix human genome U133 Plus 2.0 array. GSE7014 was used as a training data set to
explore the difference in core target expression between the diabetes group and the healthy
group [58]. Then, we compared the expression of core targets in liver cancer and healthy
individuals in the GEPIA database (http://gepia.cancer-pku.cn/, accessed on 3 January
2025) [59].

4.14. Analysis of Immune Cell Infiltration

The CIBERSORT algorithm (http://cibersort.stanford.edu/, accessed on 14 January
2025) is a proper method to identify the relationship between the core targets and immune
cells. Using the CIBERSORT algorithm, we explored the mechanisms linking the core
targets to 22 subtypes of immune cells in diabetes samples. These subtypes represent
the cellular composition of the immune microenvironment in diabetes, and Spearman
correlation analysis was carried out on immune cells and genes [60].

https://metascape.org/gp/index.html#/main/step1
https://www.bioinformatics.org/
https://pubchem.ncbi.nlm.nih.gov/
https://www.rcsb.org/
http://gepia.cancer-pku.cn/
http://cibersort.stanford.edu/
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5. Conclusions
This study elucidates the potential anti-diabetic mechanisms of Inonotus obliquus

(Chaga) by integrating network pharmacology, molecular docking, and bioinformatics
analyses. The results identified key bioactive compounds such as forskolin, epicatechin,
lupenone, laetiposide G, and smilagenone, which may play pivotal roles in regulating
glucose metabolism and insulin sensitivity. Key targets such as JUN, AKT1, ESR1, CASP3,
TNF, SRC, and IL6 were identified as central regulators in diabetes-related pathways, with
molecular docking confirming strong binding interactions between Chaga-derived phyto-
chemicals and these targets. Functional enrichment analysis highlighted the involvement
of critical signaling pathways, including PI3K/Akt, which is closely associated with glu-
cose metabolism and insulin sensitivity. Additionally, bioinformatics analysis revealed
significant dysregulation of ESR1, IL6, and SRC in diabetic conditions, further supporting
their relevance in disease progression. While these findings provide a theoretical frame-
work for Chaga’s anti-diabetic effects, experimental validation through in vitro and in vivo
studies is crucial to confirm its therapeutic potential. Future research needs to be conducted
focusing on deciphering the precise molecular mechanisms, bioavailability, and clinical
applicability of Chaga-derived compounds to establish them as promising candidates for
diabetes management.
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Abbreviations

AGEs Advanced glycation end-products
Akt Protein kinase B
AMPK AMP-activated protein kinase
BC Betweenness centrality
BPs Biological processes
CC Closeness centrality
CCs Cellular components
DC Degree of centrality
DM Diabetes mellitus
GLUT4 Glucose transporter type 4
GO Gene Ontology
GSK-3β Glycogen synthase kinase-3β
KEGG Kyoto Encyclopedia of Genes and Genomes
LC-MS Liquid chromatography–mass spectrometry
MCC Maximal clique centrality
MFs Molecular functions
MNC Maximum neighborhood component
PI3K/Akt Phosphatidylinositol 3-kinase/protein kinase B
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PPI Protein–protein interaction
ROS Reactive oxygen species
T2D Type 2 diabetes
UHPLC Ultra-high-performance liquid chromatography
UHPLC-QE-MS Ultra-high-performance liquid chromatography–Q-Exactive HF mass spectrometry
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