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Review Article

IntroductIon

Bone tissue is capable of complete regeneration without 
scarring. This property has enabled the development of bone 
tissue engineering (BTE), which has been widely explored 
since its inception by Langer and Vacanti.[1,2]

There are three primary elements required for BTE: A 
scaffold, growth factors, and stem cells.[3] Each plays an 
important role in the utility of the final composite, and 
current efforts are focused on developing combinations of 
these elements that provide optimum performance.

This review provides an overview of the current state of 
BTE with a focus on bone morphogenetic proteins (BMPs), 
calcium phosphate (CaP) scaffolds, and mesenchymal stem 
cells (MSCs).

Present sItuAtIon of Bone grAfts And Bone 
tIssue engIneerIng

One potential application of BTE is the production of 
grafts to heal bone defects in nonunion fractures, for 
which ordinary open reduction and internal fixation is 
inadequate or inappropriate.[4] In such cases, autogenous 
or allogenous bone grafts are widely used. Bone grafting is 
commonly performed, with autografts currently considered 
the gold standard for many procedures–including spinal 
fusion–because of its osteoinductive and osteoconductive 
characteristics.[5,6] However, allografts and synthetic grafts 
are also commonly used. Each of these approaches to 
graft production has benefits and drawbacks. Autografts 
are associated with the deficiency of limited resource, 
deep infection, chronic pain, and donor site morbidity.[6,7] 
Allografts have lower osteogenic capacity and carry risks 
of pathogen transmission and immunological rejection,[8‑10] 
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yet synthetic grafts are incapable of being remodeled.[4] 
These limitations indicate a clear need for novel strategies 
for graft production.

scAffolds for Bone tIssue engIneerIng

The acrylic material polymethylmethacrylate (PMMA) is 
currently one of the most widely used scaffold materials 
in BTE. PMMA cement is frequently used in orthopedic 
procedures, including percutaneous vertebroplasty and 
percutaneous kyphoplasty, in many joint replacements, and 
for arthroplasty.[11‑17] PMMA is also a good carrier vehicle 
for antibiotics and can facilitate sustained release at the site 
of infection.[16,18,19] However, PMMA is nonosteoinductive 
and nonosteoconductive, and the monomer is toxic and may 
initiate allergic reactions.[20] Additionally, the exothermic 
nature of the material may injure surrounding tissues and 
vessels during inappropriate application.

To overcome the limitations of traditional scaffolds, the 
ideal novel scaffold should be biocompatible, robust, 
osteoinductive, and osteoconductive, and should support 
cell attachment, proliferation, and differentiation.[21] 
Additionally, the scaffold should be biodegradable and be 
resorbed at a rate comparable with that of tissue regeneration 
to avoid a second surgery to remove the implant.[22]

Advantages of calcium phosphate scaffolds
Calcium phosphate‑based scaffolds are typically constructed 
using either hydroxyapatite (HA) or biphasic CaP (BCP; a 
composite of HA and β‑tricalcium phosphate). Synthetic 
polymers such as polylactic acid and polyglycolic acid, and 
natural polymers such as collagen, glycosaminoglycan, and 
fibrin are also widely used.[3]

Calcium phosphate is regarded as an excellent candidate 
for novel scaffold material because of its outstanding 
biocompatibility, bioactivity, and osteoconductivity.[23] 
Additionally, its degradation products can participate in 
biomineralization by redepositing on carbonate HA (CHA).[24] 
The biocompatibility of CaP is attributed to its structural 
similarity to bone CHA.[21,25] Hirasawa et al. applied CaP 
cement (CPC) to lumbar interbody fusions to achieve a 
fusion rate of 94%, which was similar to that for the use of 
iliac crest bone grafts (93%) or local bone grafts (95%).[26] 
This result indirectly demonstrates the significant potential 
for CaP in BTE applications.

Another beneficial feature of CaP is its injectability, which 
is similar to that of PMMA. CPC injectability can be further 
enhanced by increasing the liquid‑to‑powder ratio, rapid 
injection after mixing and using a paste made of round 
particles.[27,28] Zhang et al. determined that the best way to 
improve injectability of CaP is to use a viscous solution in 
the liquid phase.[29]

Disadvantages of calcium phosphate scaffolds
The most serious shortcoming of CaP is its porosity, 
which renders it brittle, weak and suitable for use only 
in nonload‑bearing bone repairs.[30,31] One study reported 

that the compressive strength of a HA scaffold was 
30.2 ± 6.0 MPa,[32] which is higher than that of cancellous 
bone (4–12 MPa) but far less than that of cortical bone 
(130–180 MPa).[33] Other parameters such as crystallinity 
and grain size can also influence the flexural and tensile 
strength of CaP scaffolds.[25] In order to maintain the hardness 
as well as relatively high porosity and large pore size, which 
contribute to bioactivity and osteoconductivity, several new 
hybrid CaP‑polymer composites have been developed, 
including poly (lactic‑co‑glycolic acid) (PLGA)/CPC,[34] 
CPC‑fibrin glue,[35] and CPC‑chitosan[36] and so on.

Calcium phosphate scaffolds also lack osteoinductive 
activity.[37] However, BMPs have significant osteogenic 
properties,[38] and their combination with CaP can result 
in a scaffold with greater osteoinductive capacity.

Porosity
Scaffold porosity is crucial for appropriate wound repair, as 
cells and growth factors must have access to much of the 
scaffold surface area. Interconnected pores are essential to 
facilitate the invasion, growth, and nutrition of cells,[3] and 
the diffusion of waste from the inner core.[39] However, larger 
pore size and porosity compromise compressive strength 
and hardness.[40]

Small pore size and lower porosity facilitate osteoblast cell 
proliferation and osteogenic differentiation in vitro, while 
higher porosity enhances cell recruitment and vascularization 
in vivo.[41,42] Therefore, an appropriate pore size and porosity 
must be reached for specific situations. Karageorgiou and 
Kaplan reported that the minimum pore size to enable cell 
migration and transport is 100 μm.[41]

coMBInAtIon scAffolds of Bone MorPhogenetIc 
ProteIns And cAlcIuM PhosPhAte

Bone morphogenetic proteins
Bone morphogenetic proteins are expressed in the 
epithelium of the limb bud where they play crucial roles 
in the proliferation and differentiation of underlying 
mesodermal progenitor cells.[43] BMPs can upregulate growth 
factors such as platelet‑derived growth factor (PDGF), 
vascular endothelial growth factor, and insulin‑like growth 
factor‑1 (IGF‑1), and BMP‑2 and ‑7 have been used in 
clinical applications.[44‑46] BMP‑2 expression is induced 
during early MSC recruitment and is sustained throughout 
chondrogenic and osteogenic differentiation to the stage of 
woven bone formation.[47] Meanwhile, BMP‑7 is similarly 
upregulated during the early stages of intramembranous and 
endochondral ossification.[43]

Basic studies of calcium phosphate scaffolds combined 
with bone morphogenetic proteins
Bone morphogenetic proteins can be combined with 
injectable CPCs (ICPCs), and such osteoinductive 
composites are expected to be widely used in minimally 
invasive surgery in the future.
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The release kinetics of BMP‑2 loaded onto CPC/PLGA, 
incorporated into the liquid phase of CPC (CPC/liquid), 
and BMP‑2 adsorbed to the surface of CPC (CPC/surface) 
have been evaluated.[48] CPC/PLGA and CPC/liquid shared a 
similar release profile, which was feasible for ICPC and bone 
regeneration at orthotopic locations, whereas CPC/surface 
had a significant burst release of BMP‑2 that facilitated 
osteoinduction and extopic bone formation.

Following scaffold material injection, microporosity 
and BMP‑2 positively influence bone regeneration in 
different but complementary ways. Polak et al.[49] found 
that microporosity increased the bone volume fraction 
and facilitated a near‑perfect uniform distribution of bone 
within the scaffold. BMP‑2 enhanced surface area rather 
than the bone volume fraction. This study showed that a 
BMP‑microporous‑BCP scaffold facilitated a healing speed 
four times faster than a BMP‑nonmicroporous‑BCP scaffold 
and five times faster than the no‑BMP scaffold.

The osteogenic capacity of the composite can be further 
enhanced by addition of further elements. Zhang et al. found 
that silicon ions could stimulate the synergistic action of 
rhBMP‑2 and calcium silicate (CaS) to facilitate osteogenic 
differentiation and osteoinductivity.[50] They manufactured 
an rhBMP‑2‑loaded CaS/CPC scaffold that promoted greater 
osteogenic efficacy in vivo compared with CPC/rhBMP‑2.

Different uses of calcium phosphate cement/bone 
morphogenetic protein composites
Qian et al. used an ICPC and fibrin sealant (FS) rhBMP‑2 
composite for vertebroplasty in New Zealand rabbits.[51] 
The ICPC/FS/rhBMP‑2 scaffold possessed an increased 
osteogenic capacity and a faster FS absorption rate than the 
ICPC/FS group. ICPC/FS/rhBMP‑2 scaffold degradation 
synchronized with the new bone formation, and the scaffold 
material integrated closely with adjacent bones. Both the 
anti‑compression and anti‑torsion ability of bone repaired 
with ICPC/FS/rhBMP‑2 scaffold increased with time. This 
study also suggested that no bone grew into the material gap, 
and no bone replacement occurred with the use of PMMA 
scaffolds.

Similarly, Gu et al. evaluated an injectable silk fibroin 
(SF)‑enhanced CPC loaded with rhBMP‑2 in ovine lumbar 
interbody fusion and found that both the amount of new bone 
formation and the stiffness of fusions in the CPC/SF/rhBMP‑2 
group were higher than those of the CPC/SF group, which 
was similar to autografts at 12 months.[5] However, compared 
with the CPC/SF group, the ceramic residue volume in the 
CPC/SF/rhBMP‑2 group was lower. The fusion rate of the 
CPC/SF/rhBMP‑2 group (56% at 6 months and 78% at 
12 months) was markedly higher than that of the CPC/SF 
group (0% at 6 months and 11% at 12 months), and reached 
the same level as autografts (78%) at 12 months.

Li et al. used a rhBMP‑2/CPC composite to treat osteoporosis 
in vitro and showed that the push‑out test value of the 
rhBMP‑2/CPC group was 5.9 ± 1.3 MPa at 140 days while 
that of the untreated group was 3.1 ± 0.9 MPa.[52] In addition, 

the mineralization rate of new bone was 3.99 ± 0.62 μm/day 
versus 1.95 ± 0.16 μm/day at 45 days. These results indicate 
that the composite could accelerate bone healing in 
osteoporosis. They also found that the addition of gelatin 
microspheres could further facilitate the release of rhBMP‑2.

These studies demonstrate that CPC/BMPs composites 
possess significant potential for widespread clinical 
application in the future.

the coMBInAtIon of MesenchyMAl steM cells 
And cAlcIuM PhosPhAte scAffolds

Mesenchymal stem cells
Properties of mesenchymal stem cells
Sufficient numbers of MSCs for grafting can be readily 
harvested from patients, and their application does not induce 
immune‑mediated rejection. Additionally, MSCs have a 
high proliferative capacity, and their osteogenic potency 
is greater than that of total bone marrow (TBM).[53‑55] In 
addition, MSCs regulate bone remodeling by balancing the 
osteoblast‑osteoclast ratio.

Bone marrow MSCs (bMSCs) can be identified by: Their 
ability to adhere to plastic during culture; their expression of 
the surface antigens CD29, CD73, CD90, and CD105, with 
the concurrent absence of CD19, CD34, CD45, CD79a, and 
HLA‑II; and their ability to differentiate into osteogenic, 
adipogenic, and chondrogenic lineages under appropriate 
conditions.[56]

Secretion of signaling molecules by mesenchymal stem 
cells
During fracture healing, the matrix surrounding the defect 
site can secrete multiple signaling molecules, including 
transforming growth factor‑β (TGF‑β), IGF‑1, PDGF, 
interleukin‑1 (IL‑1), and IL‑6.[57‑60] These molecules can 
recruit MSCs and their progeny, and further stimulate their 
proliferation, differentiation, and maturation. Interestingly, 
some of these molecules–including BMPs–can also be 
secreted by MSCs themselves in addition to their release 
by the matrix.[60]

Inflammation is a very important stage in the healing process. 
However, the mechanisms by which inflammation influences 
MSCs are poorly understood. Sundelacruz and Kaplan 
reported that the release of tumor necrosis factor‑α (TNF‑α), 
PDGF, IL‑1, and IL‑6 from inflammatory cells can affect 
MSC migration and proliferation.[21] In contrast, Forostyak 
et al. found that an anti‑inflammatory effect is beneficial 
for MSC function, with anti‑inflammatory TGF‑β1 present 
at a higher level than other anti‑inflammatory chemokines/
cytokines such as TNF‑α, IL‑1 β, and IL‑6.[61]

Varieties of mesenchymal stem cell source for bone tissue 
engineering application
Mesenchymal stem cells can be isolated from organs and 
tissues including adult bone marrow,[62] fetal bone marrow,[63] 
the umbilical cord,[64] umbilical cord blood,[65] periosteum,[66] 
and adipose.[67] However, there is no consensus as to which 



Chinese Medical Journal ¦ April 20, 2015 ¦ Volume 128 ¦ Issue 81124

source is optimal. Forostyak et al. found adipose‑derived 
MSCs to be the most promising,[61] while Zhang et al. 
concluded that human fetal MSCs were the best source.[53]

Calcium phosphate scaffolds combined with 
mesenchymal stem cells
Influence in cells and scaffolds
The primary problem concerning the combination of 
MSCs with CaP scaffolds is the viability of cells within 
the scaffold. To enhance the survival of MSCs, cells are 
often encapsulated within alginate microbeads.[68‑71] These 
microbeads can protect cells during transplantation, and 
rapidly degrade to release cells after grafting.[72]

Tang et al. reported that the percentage of live stem cells 
encapsulated within microbeads in CPC between days 1 and 
21 was 85% and 95%, suggesting that encapsulated stem 
cells were viable within CPC.[73] Weir and Xu enhanced 
the CPC physical properties by adding chitosan lactate and 
reinforcing fibers and found that the live‑cell density of 
MSCs in CPC and CPC‑chitosan‑fiber scaffolds was similar 
to that of microbeads alone.[74] However, the density of cells 
in all three groups at day 7 was significantly lower than that 
at day 1, with little difference between groups at days 14 and 
21. This decrease in density was attributed to the continued 
swelling of the alginate beads during cell culture. In contrast, 
a similar study from Chen et al. reported that the live‑cell 
density of all groups exhibited an upward trend with time.[75] 
In their study, fibronectin and arginine‑glycine‑aspartic 
acid (RGD) were combined with CPC. These two agents 
are known to biofunctionalized scaffolds and promote cell 
adhesion. The live‑cell density on scaffolds made from 
CPC + 0.1% RGD was approximately four times that of 
the CPC control.

The addition of stem cells does not appear to compromise 
the physical characteristics of the CaP scaffold, either. 
Zhao et al. found that even though addition of microbeads 
slightly increased the injection force required compared 
with scaffolds of CPC alone, this was still a relatively low 
force level.[70] In addition, when the cement was further 
combined with chitosan, the injection force could actually 
be lower than that for CPC alone. This study also reported 
that the paste mixing and injection processes did not harm 
the encapsulated MSCs.

Attachment of cells
Cells can efficiently attach to CaP scaffolds within a 
satisfactory period. Zhao et al. reported that while cell 
attachment was below 300 cells/mm2 at day 1, nearly 
700 cells/mm2 were attached by day 4.[76] This lower 
level of attachment at day 1 was attributed primarily to 
MSC proliferation. Additionally, there was no significant 
difference between the attachment of MSCs to CPC or 
polymer scaffolds.

Osteogenic differentiation of cells
During osteogenesis, MSCs express alkaline phosphatase 
(ALP) and osteocalcin (OC), which are well‑defined 

markers of osteogenic differentiation.[77‑80] Tang et al. 
reported that ALP and OC gene expression were increased 
10–100‑fold and ALP activity was increased 5‑fold by day 
21 compared with day 1.[73] These data demonstrated that 
MSCs encapsulated within CPC scaffolds differentiated 
down the osteogenic lineage and synthesized bone minerals.

Bao et al. enhanced CPC with electrospun submicron fibers 
and detected elevated ALP and OC expression in MSCs 
on CPC with fibers.[81] Schumacher et al. used a novel 
strontium (II)‑modified CPC and also detected elevated ALP 
expression in MSCs.[77] Zhao et al. found that the percentage 
of mineral area synthesized by encapsulated MSCs increased 
from 3% at day 7–12% at day 21, demonstrating that MSCs 
in CPC‑chitosan‑fiber scaffold can efficiently undergo 
osteogenic differentiation and synthesize bone minerals.[82] 
These findings indicate that appropriate materials combined 
with CaP can facilitate osteogenesis by MSCs.

Animal model experiments
Wang et al. studied a bMSC‑CPC composite in lumbar 
fusion in rhesus monkeys. Fusions in the bMSC‑CPC group 
were significantly stiffer than those in the cell‑free ceramic 
group with regard to bending and torsion, but weaker than 
the autograft group.[83] Conversely, bMSC‑CPC fusions 
developed an osseous union while cell‑free ceramic fusions 
only developed a fibrous union. However, the graft site may 
experience an inflammatory reaction resulting from cell 
damage around the implanted biphasic bioceramic following 
the release of microparticles.[84]

When comparing bone regeneration in the dog mandible 
directed by BCP and natural bovine bone mineral loaded 
MSCs, Jafarian et al. found that the osteogenic capacity of 
BCP scaffolds was notably higher than that of natural bone 
mineral group, which indicated that BCP loaded with MSCs 
provided better conditions for bone regeneration.[85]

Chen et al. found that human umbilical cord MSCs 
(hUCMSCs) and human bone marrow MSCs (hBMSCs) 
seeded on CaP for bone regeneration in rat cranial defects 
induced a similar bone mineral density, new bone amount, 
and vessel density in regenerated bone tissue.[86] Given that 
hBMSCs require an invasive procedure to harvest and will lose 
their potency with diseases, while hUCMSCs can be harvested 
for a low cost, are effectively inexhaustible, and have a high 
plasticity and developmental capability, hUCMSCs are 
considered more suitable for osteogenic applications.

When comparing bone regeneration by MSCs with that by 
TBM in association with a CaP scaffold in irradiated hind 
limbs of rats, Espitalier et al. found that the TBM group 
possessed higher bone ingrowth.[87] This suggested that the 
BCP‑TBM composite induced increased vascularization of 
the irradiated bone.

Cooperation of bone morphogenetic proteins and 
mesenchymal stem cells on calcium phosphate scaffolds
Overman et al. incubated stem cells with BMP‑2 prior to 
loading them on CaP scaffolds and found that cell attachment 
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was unaffected, while gene expression of collagen‑1, 
and the osteogenic markers core binding factor alpha 1, 
osteonectin, and OC was stimulated.[88] Their subsequent 
study identified increased expression of many bone 
formation‑associated factors including IL‑2, BMP‑7, IGF‑1 
in the BMP‑2‑treatment group.[89] These findings indicate that 
the composite possessed a long‑lasting modulating effect on 
bone formation.

Zhao et al. directly loaded rhBMP‑2 and hUCMSCs on an 
injectable CaP‑chitosan fibrous scaffold.[90] The stem cells 
encapsulated within the cement maintained their viability, 
while the release of rhBMP‑2 was also satisfactory, and 
lead to successful osteogenic differentiation. The composite 
cement demonstrated excellent mineralization, ALP activity, 
and gene expression (OC, ALP, osterix, collagen and 
ALP protein synthesis) compared with the control group, 
indicating that BMPs and MSCs could cooperate to promote 
efficient osteogenic differentiation.

Kai et al. used a lumbar fusion model in rabbits to assess 
the impact of BMP‑2 on a bMSC/CPC scaffold.[91] All 
individuals treated with bMSCs/CPC or bMSCs/CPC/
BMP‑2 underwent fusion while fusion occurred in only 
50% and 67% of individuals treated with CPC alone or 
autograft, respectively. Importantly, disc height losses in 
the bMSCs/CPC and bMSCs/CPC/BMP‑2 groups were also 
minimal. Flexion, extension, bending, torsion, and bone 
formation were similar for bMSC/CPC with and without 
BMP‑2. However, fusion size and stiffness was significantly 
enhanced when using bMSCs/CPC/BMP‑2. This is likely 
because BMP‑2 can induce MSCs to differentiate, integrate 
with bone cells, and enter a resting stage in which a complete 
ossicle with a cortex of lamellar bone and marrow cavity 
develops.[92]

conclusIons

Bone tissue engineering holds great potential for the repair 
of bone defects. However, this technology remains immature 
and composite scaffolds have not been widely used in clinical 
applications. Autografts remain the current gold standard 
treatment, and PMMA is still one of the mostly widely used 
cement. There are several crucial issues to address before 
clinical use of BTE products, including the ethical concerns 
surrounding MSC use,[53] the optimal size and density of 
pores and the most ideal way to enhance CaP scaffolding, and 
the limitations of manufacturing technology in fabricating 
ideal biocompatible materials with cell‑permissive internal 
architectures.[22] Additionally, the current literature reports 
varied concentrations of BMP‑2 were required for adequate 
bone formation depending on the model used.[92,93] Therefore, 
the optimal dose and mode of delivery for BMP‑2 in humans 
remains uncertain. Additionally, the current understanding 
of the mechanisms and methods whereby MSCs can be 
differentiated towards mature cells is rudimentary.[94,95] The 
behavior of MSCs within the pathological environment 
following transplantation also requires further study, as 
does the optimal time frame and the most efficient route for 

delivery. An initial release of angiogenic growth factor can 
induce new blood vessels at an early stage of bone healing 
while later stage release of BMP‑2 and IGF‑1 can induce 
the osteogenic properties.[96] Thus, the sequential delivery of 
biomolecules may also play an important role in regulating 
the natural bone remodeling process. Finally, ideal bone 
scaffolds will be stiff enough and will enable commitment 
to the desired mature cell‑type in vitro, with complete and 
rapid integration in vivo.[97]

Nevertheless, many studies have reported that composite CaP 
scaffold with BMPs or MSCs can develop cortical bone and 
produce results superior to those of autografts. Therefore, 
autografts should be replaced with off‑the‑shelf products in 
the foreseeable future.
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