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Abstract: Protein–RNA interactions (PRIs) are essential for many biological processes, so under-
standing aspects of the sequences and structures involved in PRIs is important for unraveling such
processes. Because of the expensive and time-consuming techniques required for experimental deter-
mination of complex protein–RNA structures, various computational methods have been developed
to predict PRIs. However, most of these methods focus on predicting only RNA-binding regions in
proteins or only protein-binding motifs in RNA. Methods for predicting entire residue–base contacts
in PRIs have not yet achieved sufficient accuracy. Furthermore, some of these methods require the
identification of 3D structures or homologous sequences, which are not available for all protein and
RNA sequences. Here, we propose a prediction method for predicting residue–base contacts between
proteins and RNAs using only sequence information and structural information predicted from
sequences. The method can be applied to any protein–RNA pair, even when rich information such
as its 3D structure, is not available. In this method, residue–base contact prediction is formalized
as an integer programming problem. We predict a residue–base contact map that maximizes a
scoring function based on sequence-based features such as k-mers of sequences and the predicted
secondary structure. The scoring function is trained using a max-margin framework from known
PRIs with 3D structures. To verify our method, we conducted several computational experiments.
The results suggest that our method, which is based on only sequence information, is comparable
with RNA-binding residue prediction methods based on known binding data.

Keywords: protein–RNA interaction; RNA secondary structure; structured support vector machine

1. Introduction

Recent studies have begun unraveling the mechanisms of biological processes involv-
ing functional non-coding RNAs, most of which interact with RNA-binding proteins (RBPs)
in essential roles, such as splicing, transport, localization, and translation. These interac-
tions involve sequence- and structure-specific recognition between proteins and RNAs.
Therefore, understanding aspects of sequences and structures involved in protein–RNA
interactions (PRIs) is important for understanding many biological processes. To that end,
several studies have focused on the analysis and discussion of PRIs [1–3].

Compared with deciphering genomic sequences by using high-throughput sequenc-
ing technology, experimental determination of protein–RNA joint structures is both more
expensive and more time consuming. Accordingly, rapid computational prediction of PRIs
from only sequence information is desirable. Existing methods for computational predic-
tion of PRIs can be roughly classified into four groups. The first group predicts whether a
given protein–RNA pair interacts or not [4–7]. A prediction algorithm for this approach can
be simply designed from interacting protein–RNA pairs alone, so 3D structures and residue–
base contacts are not necessary for use in model training. However, this approach cannot
predict binding sites of proteins and RNAs that should be biologically and structurally
essential for PRIs. The second group aims to predict RNA-binding residues from protein
information. DR_bind1 [8], KYG [9], and OPRA [10] are structure-based methods that use
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3D structures from PDB to extract descriptors for prediction. BindN+ [11] and Pprint [12]
are sequence-based methods that employ evolutionary information instead of 3D structures.
However, this approach ignores the binding partners of target proteins, although some
RNA-binding domains in RBPs recognize sequence- and structure-specific motifs in RNA
sequences. The third group computes RNA structural motifs recognized by RNA-binding
domains in certain proteins and includes MEMERIS [13], RNAcontext [14], CapR [15], and
GraphProt [16]. This approach focuses on a certain RBP and extracts RNA motifs as con-
sensus sequences and/or secondary structures of the RBP-binding RNAs. The fourth and
final group of methods predicts intermolecular joint structures between proteins and RNAs
such as residue–base contacts. To our knowledge, Hayashida et al.[17] have developed the
only method of this type. However, it is unfortunately not sufficiently accurate.

Accordingly, we propose a prediction method for residue–base contacts between pro-
teins and RNAs based only on sequence information and structural information predicted
from sequences. Our method can be applied to any protein–RNA pair, including those
for which rich information, such as 3D structures, are unavailable. Residue–base contact
prediction is formalized as an integer programming (IP) problem. Our method predicts a
residue–base contact map that maximizes a scoring function based on sequence features
such as k-mers of sequences and predicted secondary structures. The scoring function is
trained by a max-margin framework from known PRIs with 3D structures. To verify our
method, we performed several computational experiments. The results suggest that our
method based on only sequence information is comparable with RNA-binding residue
prediction methods based on actual known binding data.

2. Methods

We present a novel algorithm for predicting PRIs using IP. Our algorithm consists of
the following two parts: (1) prediction of a residue–base contact map given a protein and
RNA pair by solving an integer programming problem; and (2) learning a scoring function
from a given training dataset using a max-margin framework.

2.1. Preliminaries

Let Σp represent the set of 20 canonical amino acid residues and let Σ∗p denote the set
of all finite amino acid sequences consisting of residues in Σp. Similarly, let Σr represent
the set of the four canonical ribonucleotide bases (A, C, G, and U) and let Σ∗r denote the set
of all finite RNA sequences consisting of bases in Σr. Given a protein P = p1 · · · p|P| ∈ Σ∗p
consisting of |P| residues and an RNA R = r1 · · · r|R| ∈ Σ∗r consisting of |R| bases, let
CM(P, R) represent the space of all possible residue–base contact maps between P and
R. An element z ∈ CM(P, R) is represented as an |P| × |R| binary-valued matrix, where
zij = 1 indicates that residue pi interacts with the base rj (Figure 1). We define the problem
of PRI prediction as follows: given a protein P and an RNA R, predict a residue–base
contact map z ∈ CM(P, R).

xi

yj

zij

Protein P

RNA R

Figure 1. An illustration of binary variables used in the IP formulation.

2.2. Scoring Model

A scoring model f is a function that assigns real-valued scores to protein–RNA pairs
(P, R) and residue–base contact maps z ∈ CM(P, R). Our aim is to find a residue–base
contact map z ∈ CM(P, R) that maximizes the scoring function f (P, R, z) for a given
protein–RNA pair (P, R). The scoring function f (P, R, z) is computed on the basis of
various local features of P, R, and z. These features correspond to residue features, base
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features, and residue–base contact features that describe local contexts around residue–base
contacts, respectively.

Residue features, as summarized in Table 1, describe the binding preference in the
amino acid sequences by local contexts around residue–base contacts. For this purpose, we
employ k-mers of the amino acids centered on the interacting ith residue. For each k-mer
of the amino acids, pkmer ∈ Σk

p, we define a binary-valued local feature of the ith residue as

φpkmer (P, z, i) = I(kmer(P, i) = pkmer)I(xi = 1),

where I(condition) is an indicator function that takes a value of 1 or 0 depending on
whether the condition is true or false, kmer(P, i) is the k-mer of the substring of P centered
on the ith residue pi, that is, kmer(P, i) = pi−(k−1)/2 . . . pi . . . pi+(k−1)/2, and xi is a binary-
valued variable such that xi = 1 if and only if residue pi is a binding site (Figure 1), that is,

∑
|R|
j=1 zij ≥ 1. We use k = 3 and k = 5 to characterize k-mer features.

Table 1. A summary of residue features.

Type Context len. # of Features

Residues 3 203

5 205

Simplified alphabets (10 groups) 5 105

7 107

Simplified alphabets (4 groups) 5 45

7 47

Secondary structures 3 83

5 85

To reduce the sparsity of amino acid contexts, we consider the k-mers of simplified
alphabets of amino acids proposed by Murphy et al. [18], who calculated groups of sim-
plified alphabets based on the BLOSUM50 matrix [19]. Note that Murphy et al. [18] have
shown that the simplified alphabets are correlated with physiochemical properties such as
hydrophobicity, hydrophilicity, and polarity, which may have important roles in PRIs. We
employ the simplified alphabets of 10 groups, Σg10, and those of 4 groups, Σg4 (Table 2).

Table 2. Groups of amino acids as defined by Murphy et al. [18].

# Groups

Σg10 10 LVIM, C, A, G, ST, P, FYW, EDNQ, KR, H
Σg4 4 LVIMC, AGSTP, FYW, EDNQKRH

For each string sakmer ∈ Σk
g10 (or Σk

g4), we define a binary-valued local feature of the
ith residue as

φsakmer (P, z, i) = I(kmer(Psa, i) = sakmer)I(xi = 1),

where Psa is the string of simplified alphabets Σg10 (or Σg4) converted from P according to
Table 2. In contrast with the k-mers used in other part of this algorithm, we instead use
k = 5 and k = 7 for the k-mers of simplified alphabets.

To consider the structural preference of RNA-binding residues, we employ secondary
structures predicted by SSpro8 [20]. We predict one structural element [α-helix (H), 3-helix
(G), 5-helix (I), folded (E), β-turn (B), corner (T), curl (S), and loop (–)] for each residue. For
each string spkmer of structural elements of length k, we define a binary-valued local feature
of the ith residue as

φspkmer (P, z, i) = I(kmer(Psp, i) = spkmer)I(xi = 1),
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where Psp is the string of structural elements predicted from P. Here, we again use
structural contexts with lengths k = 3 and k = 5.

The collection of occurrences of the residue features are calculated as

Φp(P, z) =
|P|
∑
i=1

φp(P, z, i), (1)

where φp(P, z, i) is a vector whose elements are the residue features of the ith residue
mentioned above.

Base features, as summarized in Table 3, describe the binding preference in the ri-
bonucleotide sequences by local contexts around residue–base contacts. In addition to
the residue features, we employ the k-mer contexts of the ribonucleotides centered on
the interacting jth base. For each k-mer of the ribonucleotides rkmer ∈ Σk

r , we define a
binary-valued local feature of the jth base as

φrkmer (R, z, j) = I(kmer(R, j) = rkmer)I(yj = 1),

where yj is a binary-valued variable such that yj = 1 if and only if the residue rj is a

binding site (Figure 1), that is, ∑
|P|
i=1 zij ≥ 1. Here, we once again use k = 3 and 5 for the

k-mer features.
To consider the structural preference of binding sites, we employ secondary structures

predicted by CENTROIDFOLD [21]. We assign a structural element [external loop (E),
hairpin loop (H), internal loop (I), bulge (B), multibranch loop (M), or stack (S), as shown
in Figure 2] to each base. Note that to encode secondary structures as a sequence, this
encoding of structural profiles loses a portion of the structural information, e.g., base-
pairing partners for stacking bases. However, this approach is still efficient for describing
structural information [13–15]. For each k-length string srkmer of structural elements, we
define a binary-valued local feature of the jth base as

φsrkmer (R, z, j) = I(kmer(Rsr, j) = srkmer)I(yj = 1),

where Rsr is the string of structural elements predicted from R. Here, we use structural
contexts with lengths k = 3 and k = 5.

Table 3. A summary of base features.

Type Context len. # of Features

Bases 3 43

5 45

Secondary structures 3 63

5 65

図 3.2: RNA二次構造の分類

3.4.3 アミノ酸のグループ分け
Murphyら [54]はBLOSUM50行列 [55]を用いて20種のアミノ酸を分類した．そ
のうちの10グループへの分類 (LVIM),(C),(A),(G),(ST),(P),(FYW),(EDNO),(KR),(H)，
4グループへの分類 (LVIMC),(AGSTP),(FYW),(EDNOKRH)を利用し，長さk(=3，
5，7)の部分配列を抽出した。

これらの部分配列を用いて以下の特徴量を作成した．

・エッジの特徴量

タンパク質配列　 k − mer = 3 + RNA配列　 k − mer = 3

タンパク質配列　 k − mer = 3 + RNA配列　 k − mer = 5

タンパク質二次構造　 k − mer = 3 + RNA二次構造　 k − mer = 3

タンパク質二次構造　 k − mer = 5 + RNA二次構造　 k − mer = 5

タンパク質 10グループ　 k − mer = 3 + RNA配列　 k − mer = 3

タンパク質 10グループ　 k − mer = 3 + RNA二次構造　 k − mer = 3

タンパク質 10グループ　 k − mer = 5 + RNA配列　 k − mer = 5

タンパク質 10グループ　 k − mer = 5 + RNA二次構造　 k − mer = 5

タンパク質 4グループ　 k − mer = 3 + RNA配列　 k − mer = 3

タンパク質 4グループ　 k − mer = 3 + RNA二次構造　 k − mer = 3

12

Figure 2. Structural elements in RNA secondary structures.
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The collection of occurrences of the base features are calculated as

Φr(R, z) =
|R|
∑
j=1

φr(R, z, j), (2)

where φr(R, z, j) is a vector whose elements are the base features of the jth base men-
tioned above.

Residue–base contact features, which are summarized in Table 4, describe the binding
affinity between the local contexts of amino acids and ribonucleotides. For this purpose,
we employ combinations of the residue features and the base features mentioned above.
For example, for each pair of k-mers of amino acids pkmer and ribonucleotides rkmer, we
define a binary-valued local feature of the ith residue and the jth base:

φpkmer ,rkmer (P, R, z, i, j) = I(kmer(P, i) = pkmer)I(kmer(R, j) = rkmer)I(zij = 1).

Table 4. A summary of residue–base contact features.

Type
Residue Base Context len. # of Features

Residues Bases 3 203 × 43

5 205 × 45

Secondary structures Secondary structures 3 83 × 63

5 85 × 65

Simplified alphabets (10 groups) Bases 3 103 × 43

5 105 × 45

Simplified alphabets (10 groups) Secondary structures 3 103 × 63

5 105 × 65

Simplified alphabets (4 groups) Bases 3 43 × 43

5 45 × 45

Simplified alphabets (4 groups) Secondary structures 3 43 × 63

5 45 × 65

The collection of occurrences of the residue–base contact features are calculated as

Φc(P, R, z) =
|P|
∑
i=1

|R|
∑
j=1

φc(P, R, z, i, j), (3)

where φc(P, R, z, i, j) is a vector whose elements are the residue–base contact features of
the ith residue and the jth base mentioned above.

The notation Φ(P, R, z) denotes the feature representation of protein–RNA pair (P, R)
and its residue–base contact map z ∈ CM(P, R), that is, the collection of occurrences of
local features in P, R, and z defined as follows:

Φ(P, R, z) =

 Φp(P, z)
Φr(R, z)

Φc(P, R, z)

. (4)

Each feature in Φ is associated with a corresponding parameter, and the score for the
feature is defined as the value of the occurrence multiplied by the corresponding parameter.
We define the scoring model f (P, R, z) as a linear function

fλ(P, R, z) = 〈λ, Φ(P, R, z)〉 (5)

= 〈λp, Φp(P, z)〉+ 〈λr, Φr(R, z)〉+ 〈λc, Φc(P, R, z)〉,

where 〈·, ·〉 is the inner product and λ = (λ>p , λ>r , λ>c )> is the corresponding parameter
vector trained with training data as described in Section 2.4.
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2.3. IP Formulation

To formulate the problem as an IP problem, we rewrite the scoring function (5) as

fλ(P, R, z) =
|P|
∑
i=1

uixi +
|R|
∑
j=1

vjyj +
|P|
∑
i=1

|R|
∑
j=1

wijzij, (6)

where ui, vi, and wij represent the binding preferences for xi, yj, and zij, respectively,
calculated as

ui = 〈λp, Φp(P, z, i)〉
vj = 〈λr, Φr(R, z, j)〉

wij = 〈λc, Φc(P, R, z, i, j)〉.

We find a z ∈ CM(P, R) that maximizes the objective function (6) under the following
constraints to ensure consistency among the variables xi, yj, and zij as follows:

xi + yj ≥ 2zij (1 ≤ ∀i ≤ |P|, 1 ≤ ∀j ≤ |R|) (7)

xi ≤
|R|
∑
j=1

zij (1 ≤ ∀i ≤ |P|) (8)

yj ≤
|P|
∑
i=1

zij (1 ≤ ∀j ≤ |R|) (9)

yj−1 + (1− yj) + yj+1 ≥ 1 (1 ≤ ∀j ≤ |R|) (10)
|R|
∑
j=1

zij ≤ Xi (1 ≤ ∀i ≤ |P|) (11)

|P|
∑
i=1

zij ≤ Yj (1 ≤ ∀j ≤ |R|). (12)

The constraints defined by Equations (7)–(9) describe the relation between contacts zij
and binding sites xi, yj. The constraint defined by Equation (10) disallows any isolated inter-
acting bases, which are rare in PRIs. The constraints defined by Equations (11) and (12) de-
fine the upper bound on the number of contacts Xi and Yj for each residue and
base, respectively.

2.4. Learning Algorithm

To optimize feature parameter λ, we employ a max-margin framework called struc-
tured support vector machines [22]. Given a training dataset D = {(P(k), R(k), z(k))}K

k=1,
where P(k) and R(k) are the protein and RNA sequences, respectively, and z(k) ∈ CM(P(k), R(k))
is their corresponding contact map for the kth datapoint, we aim to find the parameter λ
that minimizes the objective function

L(λ) = ∑
(P,R,z)∈D

(
max

ẑ∈CM(P,R)
[ fλ(P, R, ẑ) + ∆(z, ẑ)]− fλ(P, R, z) + C||λ||1

)
, (13)
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where ||.||1 is the `1 norm and C is a weight for the `1 regularization term to avoid overfit-
ting to the training data. Here, ∆(z, ẑ) is a loss function of ẑ for z defined as

∆(z, ẑ) =δFN residue(# of false negative residues) (14)

+ δFP residue(# of false positive residues)

+ δFN base(# of false negative bases)

+ δFP base(# of false positive bases)

+ δFN contact(# of false negative contacts)

+ δFP contact(# of false positive contacts),

where δFN residue, δFP residue, δFN base, δFP base, δFN contact, and δFP contact are hyperparameters
controlling the trade-off between sensitivity and specificity for learning the parameters. In
this case, we can calculate the first term of Equation (13) by replacing scores ui, vj, and wij
in Equation (6) as follows:

ūi =

{
ui − δFN residue (if xi=1)
ui + δFP residue (if xi=0)

v̄i =

{
vi − δFN base (if yj=1)
vi + δFP base (if yj=0)

w̄ij =

{
wij − δFN contact (if wij=1)
wij + δFP contact (if wij=0).

See Section S1 in the Supplementary Material for the derivation.
To minimize the objective function (13), we can apply stochastic subgradient descent

(Figure 1) or forward-backward splitting [23].

3. Results
3.1. Implementation

Our method was implemented using the IBM CPLEX optimizer http://www.ibm.
com/software/integration/optimization/cplex-optimizer/) (accessed on 21 October 2021)
for solving IP problems (6)–(12). To extract the structural feature elements described in
Section 2.2, we employed SSpro8 [20] and CENTROIDFOLD [21] to predict secondary struc-
tures of protein and RNA sequences, respectively. We empirically chose the following
hyperparameters: penalty for positives, δFN * = 0.5; penalty for negatives, δFP * = 0.005;
and the weight for the `1 regularization term, C = 10−5. See Section S2 in the Supplemen-
tary Material for details. We implemented AdaGrad [24] to control the learning rate η in
Algorithm 1. The source code for our algorithm is available at https://github.com/keio-
bioinformatics/practip/ (accessed on 21 October 2021).

Algorithm 1 The stochastic subgradient descent algorithm for a structured support vector
machine; sgn is the sign function, whereas η > 0 is the predefined learning rate.

1: λk ← 0 for ∀λk ∈ λ
2: repeat
3: for all (P, R, z) ∈ D do
4: ẑ← arg maxẑ[ fλ(P, R, ẑ) + ∆(z, ẑ)]
5: for all λk ∈ λ do
6: λk ← λk − η(φk(P, R, ẑ)− φk(P, R, z) + Csgnλk)
7: end for
8: end for
9: until all the parameters converge

http://www.ibm.com/software/integration/optimization/cplex-optimizer/
http://www.ibm.com/software/integration/optimization/cplex-optimizer/
https://github.com/keio-bioinformatics/practip/
https://github.com/keio-bioinformatics/practip/
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3.2. Dataset

We prepared our datasets in accordance with those of Chen et al. [8] and Miao et al. [25]
and extracted RNA-bound proteins with an X-ray resolution of ≤3.0 Å from the Protein
Data Bank (PDB) [26]. To reduce dataset redundancy, we discarded some extracted data
such that the dataset contained no protein pairs whose sequence identity was >30%. As a
result, our test dataset consisted of 98 protein–RNA interacting pairs from 81 protein–RNA
complexes from Chen et al. [8] as listed in Table S6 in the Supplementary Matrial, and our
training dataset consisted of 4399 protein–RNA interacting pairs from 772 protein–RNA
complexes was from Miao et al. [25]. Note that our training data and test data share no
common complexes. We considered a residue to bind RNA if at least one non-hydrogen
atom was contained within the van der Waals contact (4.0Å) or hydrogen-bonding distance
(3.5Å) from the non-hydrogen atom of its binding partner. We employed HBPLUS [27]
to detect the hydrogen bonds and van der Waals contacts. Our datasets are available at
https://doi.org/10.5281/zenodo.5584470 (accessed on 21 October 2021).

3.3. Prediction of Residue–Base Contacts

To validate our method, we conducted computational experiments on our dataset,
comparing the accuracy under several conditions related to the maximum number of
contacts for each residue and base, Xi and Yj in Equations (11) and (12) from 1 to 9, and no
upper bounds.

We evaluated the accuracy of predicting residue–base contacts between proteins and
RNAs using three measures: predicted residue–base contacts, binding residues in proteins,
and binding bases in RNA sequences. The accuracy of residue–base contacts is assessed by
the positive predictive value (PPV) and the sensitivity (SEN), respectively defined as

PPV =
TP

TP + FP
, SEN =

TP
TP + FN

,

where TP is the number of correctly predicted contacts (true positives), FP is the number
of incorrectly predicted contacts (false positives), and FN is the number of contacts in the
true contact map that were not predicted (false negatives). We also used the F-value as a
balanced measure between PPV and SEN, and it is defined as their harmonic mean:

F =
2× PPV × SEN

PPV + SEN
.

The accuracy of binding residues and binding bases is defined in the same way.
Table 5 shows the accuracy of predicting residue–base contacts in PRIs, binding

residues in proteins, and binding bases in RNA sequences for upper bounds of contacts
Xi, Yj in Equations (11) and (12) from 1 to 9 and for no upper bounds. The case with the
strongest constraint (Xi = Yj = 1) has a very high PPV because it limits the number of
contacts to be predicted, while its SEN is poor because of a lack of coverage of the prediction.
On the other hand, if there is no constraint on the number of contacts (corresponding to the
row labeled “no limit” in Table 5), both PPV and SEN are not high owing to many incorrect
predictions being made. We found that if the upper limit of the number of contacts is set
between 4 and 9, reasonably accurate contact prediction, residue binding site prediction,
and base binding site prediction can be obtained. As a result, we set Xi = Yj = 8 as the
default constraint for the upper bound of the number of contacts.

https://doi.org/10.5281/zenodo.5584470
https://doi.org/10.5281/zenodo.5584470
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Table 5. Accuracy under varying conditions on the maximum number of contacts for each residue
and base.

Upper Bounds Contacts Binding Residues Binding Bases
of # Contacts (Xi, Yj) PPV SEN F PPV SEN F PPV SEN F

1 0.599 0.192 0.278 0.829 0.349 0.460 0.877 0.361 0.481
2 0.552 0.347 0.414 0.736 0.509 0.578 0.796 0.506 0.597
3 0.523 0.436 0.462 0.679 0.585 0.608 0.744 0.595 0.644
4 0.532 0.480 0.491 0.676 0.642 0.638 0.718 0.626 0.656
5 0.534 0.506 0.507 0.655 0.667 0.641 0.693 0.656 0.657
6 0.537 0.515 0.514 0.669 0.671 0.654 0.688 0.647 0.652
7 0.541 0.520 0.518 0.671 0.685 0.663 0.677 0.649 0.647
8 0.539 0.525 0.519 0.664 0.688 0.657 0.684 0.655 0.652
9 0.531 0.513 0.510 0.658 0.679 0.649 0.659 0.650 0.638

no limit 0.321 0.367 0.328 0.481 0.556 0.493 0.535 0.530 0.508

It should be noted that in this experiment, we were unable to compare our method
with the method by Hayashida et al. [17], which is the only published method for predicting
residue–base contacts in PRIs. Specifically, we were unable to conduct an experiment using
the method by Hayashida et al. on the same dataset because their software implementa-
tion is not yet available and their method requires homologous sequences with accurate
alignments to calculate evolutionary information. In addition, Hayashida et al. [17] have
reported that the method is not sufficiently accurate for such analyses.

3.4. Comparison of Binding Residues Predictions among the Present and Existing Methods

We compared our method with existing methods for predicting RNA-binding residues
in proteins. DR_bind1 [8], KYG [9], and OPRA [10] are structure-based methods that use 3D
structures from PDB to extract descriptors for prediction. BindN+ [11] and Pprint [12] are
sequence-based methods that employ evolutionary information instead of 3D structures.
Table 6 indicates that our method is comparable to other methods. Recall that our method
employs only sequence information and structural information predicted from sequences
as well as information on the partner RNAs bound to RNA-binding proteins, rather than
3D structures and evolutionary information.

Table 6. Comparison of our method with other existing methods on our dataset.

Our Method DR_bind1 KYG OPRA BindN+ Pprint

PPV 0.66 0.69 0.38 0.50 0.54 0.42
SEN 0.69 0.05 0.60 0.33 0.73 0.82

F 0.66 0.09 0.47 0.40 0.62 0.56

4. Discussion

Several existing methods for predicting PRIs utilize evolutionary information from
homologous sequences, [11,12] for protein sequences and [17] for both protein and RNA
sequences. Homologous sequences of target sequences are typically searched for in large
databases using a highly sensitive homology search engine such as PSI-BLAST [28]. Fur-
thermore, to extract evolutionary information, homologous sequences must be aligned
before PRI prediction. Homology searches are employed in a wide range of analyses,
such as functional analysis of proteins, because if homologous proteins can be found in
curated databases, the function of the target protein can be easily inferred. However, as
described above and by Zhang et al. [29], the secondary structures of proteins play essential
roles in residue–base contacts. Similarly, structural elements of RNA secondary structures
also serve as key descriptors for residue–base contact prediction [13–16]. This means that
structure-based homology searches are needed for PRI prediction based on evolutionary
information. Although efficient structural alignment algorithms for proteins (e.g., [30])
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and RNAs (e.g., [31]) have recently been developed, they have not yet been successfully
applied to large-scale homology searches.

To our knowledge, Hayashida et al. [17] have developed the only existing method that
predicts intermolecular joint structures between proteins and RNAs such as residue–base
contacts; however, this method is unfortunately not sufficiently accurate. The method by
Hayashida et al. [17] is similar to our method in that its approach is based on a machine
learning technique with `1 regularization. The main difference between our method and
the method by Hayashida et al. [17] is that our method employs a large number of features,
including structural information about proteins and RNAs, which have been shown to
serve as key descriptors of PRIs as mentioned above.

We utilized the structural profiles of predicted RNA secondary structures, which does
lose an important part of structural information, such as base-pairing partners for stacking
bases. Most of the existing RBP-binding RNA motif finding methods [13–15] have also
utilized similar encoding, which may not be suitable for dealing with the recognition sites
of double-stranded RNA-binding proteins. GraphProt [16] is an exceptional algorithm
that utilizes graph-based encoding of RNA secondary structures. Our method should be
extended by utilizing another structural profile with no loss of base pairing information
like the graph-based encoding of GraphProt.

To predict the secondary structure of RNA and amino acid sequences, we employed
CENTROIDFOLD [21] and SSPro8 [20], which are standard tools, respectively. Since our
method takes as input the results of secondary structure prediction, the prediction error
may propagate to the residue–base contact prediction and worsen the prediction accuracy.
The accuracy of our method could be improved by exploring various combinations of
prediction methods, including the state-of-the-art secondary structure prediction methods
such as MXfold2 [32] and DeepCNF [33].

As shown in Section 2.3, we formulated the residue–base contact prediction as an IP
problem, which enables us to build a flexible model, including, for example, constraints on
the upper bound on the number of contacts for each residue and base. In contrast to the
RNA–RNA interaction model [34,35] in which each base interacts with at most one base
via hydrogen bonds such as Watson–Crick and wobble base pairs, PRIs contain diverse
patterns of residue–base contacts. For example, Kondo et al. have classified residue–base
contacts with respect to three interaction edges on nucleotides (Watson–Crick, Hoogsteen,
and sugar) with side-chains and backbones of their partner residues, and have analyzed
their propensities [1]. Thus, there is room for further improvement of our model, which
can be extended by using other constraints for each contact between a residue and a base
to include such considerations.

In terms of the formulation as the integer programming problem, the RNA–RNA
interaction prediction model [34,35] and our model for protein–RNA interaction predic-
tion proposed in this paper are quite similar. In the RNA–RNA interaction prediction
model, the probability distribution of RNA–RNA interactions can be calculated (even
though it is an approximation), and thus the number of variables to be handled in the
integer programming problem can be greatly reduced by using a technique called the
threshold cut, which has succeeded in reducing the computation time. However, since
such probability distributions are not known so far for protein–RNA interactions, there is
no breakthrough technique that can significantly speed up the process like threshold cut.
Therefore, speeding up our method is one of the future challenges for large-scale screening
of protein–RNA interactions.

The large-scale sequencing data produced by RNA-related high-throughput sequenc-
ing technologies, such as Structure-seq [36] and hiCLIP [37], will help us improve our
algorithm, especially by providing data for training the model. In the present work, we
employed complete joint 3D structures of proteins and RNAs as the training dataset, which
was not sufficiently large. We cannot build from large-scale sequencing data a complete
dataset with residue–base contact maps, but we can partially calculate structural profiles
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and binding bases from in vivo chemical probing data such as Structure-seq datasets. This
information will significantly help us improve our model.

Deep learning has been increasingly used in various fields, including bioinformatics,
in recent years. Wei et al. [38] have provided a review of the use of deep learning in RNA–
protein interaction prediction. Yamada et al. [39] have developed a method to accurately
identify RNA sequences that interact with a particular protein by using the DNABERT
model [40] that is pre-trained using the human genome. Although our method does not
use deep learning, we expect to achieve higher accuracy in prediction by using a pre-
trained BERT model, which could be improved through the application of deep learning
relatively easily.

5. Conclusions

We developed a max-margin framework for predicting residue–base contacts between
proteins and RNAs based on integer programming. To verify our method, we performed
several computational experiments. The results suggest that our method based only on
sequence information and structural information predicted from sequences is comparable
with RNA-binding residue prediction methods based on known binding data. Further im-
provements are needed, such as the incorporation of informative features, the development
of a joint prediction model that simultaneously predicts RNA secondary structures and
protein contact maps, and the utilization of high-throughput sequencing data that can deal
with PRI without residue–base contact information as training data.

Supplementary Materials: The following are available at https://www.mdpi.com/article/10.3
390/life11111135/s1, A max-margin model for predicting residue-base contacts in protein-RNA
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