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Abstract

For making decisions in everyday life we often have first to infer the set of environmental
features that are relevant for the current task. Here we investigated the computational
mechanisms underlying the evolution of beliefs about the relevance of environmental fea-
tures in a dynamical and noisy environment. For this purpose we designed a probabilistic
Wisconsin card sorting task (WCST) with belief solicitation, in which subjects were pre-
sented with stimuli composed of multiple visual features. At each moment in time a particu-
lar feature was relevant for obtaining reward, and participants had to infer which feature was
relevant and report their beliefs accordingly. To test the hypothesis that attentional focus
modulates the belief update process, we derived and fitted several probabilistic and non-
probabilistic behavioral models, which either incorporate a dynamical model of attentional
focus, in the form of a hierarchical winner-take-all neuronal network, or a diffusive model,
without attention-like features. We used Bayesian model selection to identify the most likely
generative model of subjects’ behavior and found that attention-like features in the behav-
ioral model are essential for explaining subjects’ responses. Furthermore, we demonstrate
a method for integrating both connectionist and Bayesian models of decision making within
a single framework that allowed us to infer hidden belief processes of human subjects.

Author Summary

When making decisions in our everyday life (e.g. where to eat) we first have to identify a
set of environmental features that are relevant for the decision (e.g. the distance to the
place, current time or the price). Although we are able to make such inferences almost
effortlessly, this type of problems is computationally challenging, as we live in a complex
environment that constantly changes and contains an immense number of features. Here
we investigated the question of how the human brain solves this computational challenge.
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In particular, we designed a new experimental paradigm and derived novel behavioral
models to test the hypothesis that attention modulates the formation of beliefs about the
relevance of several environmental features. As each behavioral model accounted for a dif-
ferent hypothesis about the underlying computational mechanism we compared them in
their ability to explain the measured behavior of human subjects performing the experi-
mental task. The model comparison indicates that an attentional-focus mechanism is a
key feature of behavioral models that accurately replicate subjects’ behavior. These find-
ings suggest that the evolution of beliefs is modulated by a competitive attractor dynamics
that forms prior expectation about future outcomes. Hence, the findings provide interest-
ing and novel insights into the computational mechanisms underlying human behavior
when making decisions in complex environments.

Introduction

A typical problem that humans encounter, in our complex environment, is to identify those
environmental features that are relevant for achieving a desired outcome in a given task. This
is computationally difficult because the real-world environment displays a large number of
environmental features. In addition, the relevance of the features can change over time and
the observations do not always reflect the relevance of specific features. For example, to
increase the chance of catching a fish, a fisherman has to consider various features (e.g. time
of the day, lightening conditions, water transparency, etc.). Depending on the fishing place
(e.g. pond, lake, or river) only some of these features will be relevant. To perfectly solve such
tasks all possible features should be taken into account simultaneously. However, due to an
apparent limitation in their cognitive resources, humans dynamically attend only to the most
relevant environmental features when deciding what action to pursue [1,2]. Our goal here is
to develop a computational model to analyze behavioral data and understand better how
attention modulates the update of beliefs about the relevance of features in such complex
environments.

An ideal test bed to address these questions is the Wisconsin card sorting task (WCST), as
it provides an experimental environment with multiple visual features, in which at any
moment of time only a single feature is relevant for correctly solving the task. The WCST was
originally designed to test for the damage or dysfunction of the prefrontal cortex, which regu-
lates executive functions [3-6]. More recently it was employed in various behavioral models
as a paradigm with which one can investigate computational mechanisms of higher cognitive
functions [7].

Here we will focus on the computational mechanisms that underlie update of beliefs about
the relevance of various visual features. However, inferring the hidden belief states of subjects
performing the standard WCST is difficult, as the only expression of an internal, multidimen-
sional belief space are the behavioral choices [1,8-10]. To address this issue we designed a
probabilistic variant of WCST in which we solicited subjects’ beliefs [11], that is, we requested
from subjects to bet an amount of money proportionally to their beliefs about the relevance of
each visual feature. Importantly, various sources of uncertainty made the environment of
WCST probabilistic and made the task more difficult, thus allowing us to measure smooth
belief trajectories that evolve over single trials. This fine-grained measure provides more direct
access to subjects’ hidden belief states and thus allowed for improved inference, compared to
the standard WCST. Using this novel variant of the WCST, we were able to develop a

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004558 October 23,2015 2/34



©PLOS

COMPUTATIONAL

BIOLOGY

Updating Beliefs Using an Attention-Like Mechanism

probabilistic model for the analysis of behavioral data to provide novel insights into the hidden
learning mechanism, which drives human behavior [12-14].

Previous computational models for the WCST can be divided into three groups based on
the assumed computational principle that were used to capture human behavior and cognition:
(i) functional cognitive models [10], which are motivated by algorithmic properties of the task;
(ii) connectionist models [9,15-19], which are motivated by the evidence that the brain is an
active and distributed system that constantly generates hypotheses about its environment and
tests for their validity [20-25]; and probabilistic Bayesian models [1], which further assume
that the brain combines prior knowledge and present sensory information based on their rela-
tive precision, that is, in a Bayes-optimal manner [26-32].

The classical connectionist approach provides an elegant framework for defining attention
formation in a distributed and dynamical manner. A potential limitation is that one requires
additional and rather ad-hoc assumptions to describe the interaction of prediction errors with
internal dynamics of beliefs. This issue can be addressed by the Bayesian approach which pro-
vides a framework for defining optimal interaction between prediction errors and current belief
states. Furthermore, the Bayesian framework provides a computational account of attention
[33-36], which the connectionist approach lacks. Here we build upon these past views of atten-
tion within the Bayesian framework, with an attentional focus mechanism that relies on com-
petitive and self-organized dynamical principles that guide spontaneous formation of
attention. We will fuse the winner-take-all (WTA) dynamics [37-43] with a Bayesian formal-
ism of decision making.

With this combined approach we can investigate, at the same time, the influence of atten-
tion and the influence of probabilistic aspects of the environment on the evolution of beliefs
during decision making. In addition, this framework allows us to relate our investigation to
previous findings of a presumed hierarchical representation in the brain [12,14,44-48]. Impor-
tantly, the introduction of such an attentional focus mechanism within a Bayesian framework
takes the model away from the rational Bayesian observer that is fully informed about the
structure of the probabilistic WCST and which updates beliefs about all features independent
of their relevance. However, we expect an attentional focus mechanism to provide a better
account for experimentally observed human behavior.

To test whether subjects’ behavior reflects the assumption that the update of beliefs is modu-
lated by attentional focus we compared multiple variants of the behavioral models, both with
and without an attentional focus mechanism, in their ability to generate behavioral data. In
particular, we used a recently described meta-Bayesian approach, the so-called ‘Observing the
observer’ (OTO) framework to infer the hidden belief states and their influence on behavioral
responses of human subjects [49,50]. Importantly, using the OTO framework enabled us to put
perception and action (i.e., subjects’ responses) into a single behavioral model and to compare
various variants of both perceptual and response models. Each variant of the perceptual model
tested for different assumptions about the mechanisms that underlie the update of beliefs. Sim-
ilarly different variants of the response model tested for evidence regarding sub-optimality in
human decision making, caused by a potentially stochastic representation of posterior beliefs
in the brain [51-53].

In what follows, we will first describe the experimental paradigm, briefly introduce the OTO
framework, and derive the update equations of several variants of the behavioral models. Then
we will describe the data analysis technique that relies on Bayesian model selection using a ran-
dom effects metric [54,55], and present the results of the analysis that we performed on a
behavioral, multi-subject, data set obtained from a probabilistic WCST paradigm. In the last
section of the article we discuss the relevance of the proposed attentional-focus mechanism
and its relation to past works.
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Methods

In this section we will first describe the experimental task, a probabilistic Wisconsin card sort-
ing task with belief solicitation. Afterwards, we will give a brief description of the OTO frame-
work ‘Observing the observer’ [49] and we will introduce the variants of perceptual and
response models that we used to model the update of the hidden belief states and the corre-
sponding solicited responses. Finally, we will outline the methods that we applied to estimate
the posterior distribution of model parameters and the corresponding model evidence, which
we used to perform Bayesian model comparison.

Ethics statement

The experiment was approved by the Caltech Institutional Review Board and all subjects gave
informed consent before participating in the study.

Probabilistic Wisconsin card sorting task

We designed the experimental task with the aim to access the hidden belief states of the sub-
jects. For this purpose we instructed the subjects to infer, by observing a series of an experimen-
ter's choices, which one of the three different visual features is relevant for the current choice,
and to report their beliefs about the relevance of each of the features. Participants in the experi-
ment were all healthy volunteers recruited from the Caltech student population.

The visual stimuli that we presented to subjects consisted of a pair of cards (top and bot-
tom), where each card contained three visual features (color, motion, shape). In turn, each
visual feature was represented by one of the two possible exemplars (red-green, left-right, cir-
cle-square). As each card had to contain a distinct exemplar, there were eight distinct configu-
rations of card pairs. Thus at each experimental trial the visual stimulus was randomly selected
from one of the eight configurations (e.g., a red right-moving circle and green left-moving
square; see Fig 1A).

Each out of n = 22 pre-trained subjects (14 male and 8 female) was exposed to an experi-
mental session divided into six blocks consisting of T'= 40 trials each. In three randomly
selected blocks the relevant feature remained fixed (no-switch condition), whereas in the other

f 1( 1 ( Motion )
A B C ot

Color Shape

\ J \ J \ 1O$ 4$ J

Fig 1. Experimental design. A trial consists of three subsequent steps: (A) The visual stimuli shown in a single trial as two cards. Note that each of the three
visual features (color, shape, and motion) has two exemplars (e.g red and green for color) which are assigned either to the top or to the bottom card. (B) The
experimenter selects one of the cards, here shown as a blue rectangle. (C) The subject distributes 20$ over three visual features by moving a cursor (red
circle) within a triangle. The closer the cursor was to one of the corners of the triangle, the more money was assigned to the corresponding visual feature.

doi:10.1371/journal.pcbi.1004558.9001
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three blocks the relevant feature would change with a probability p = 0.35 (switch condition).
After each switch the relevant feature would remain constant for 8 trials before another switch
could occur. Importantly, to make the otherwise quite simple task more difficult for healthy
subjects we introduced observation uncertainty: the experimenter would select a wrong card (a
card not containing the relevant exemplar) with probability £ = 0.2 in the no-switch condition,
and with probability £ = 0.3 in the switch condition. The error rate £ was set to values that
induced the most distinct behavioral responses between two experimental conditions, while
rendering the switch condition informative enough to induce betting responses in subjects.

At the beginning of each experimental block we informed the subjects about the block type,
but we did not inform them about the exact values of the error rates € or switch probabilities;
they had to infer these probabilities during the training phase. Each subject went through three
training sessions, where each subsequent session slightly increased the difficulty of the task in
the following manner: In the first session subjects were exposed to a no switch environment
with error rate of experimenters choices set to zero. In the second session the switches in the
selection rule where announced with error rate still being set at zero. The third session con-
sisted of the no-switch environment with € = 0.2. Afterwards, we explained to subjects the con-
dition in the final switch environment with non-zero error rate.

During a single trial subjects were first exposed to one of the eight possible visual stimuli
(see Fig 1A). After one second the presentation program would select a card containing the rel-
evant exemplar with probability 1 — & (see Fig 1B). After observing the selected choice for 5 sec-
onds subjects had a 4 second period to respond by distributing 20$ on the three visual features
depending on their belief about the relevance of each feature for the selection process. The
response was generated by moving a cursor within a triangle presented on the screen (see Fig
1C). The closer the cursor was to one of the corners of the triangle the more money was
assigned to the corresponding visual feature. Importantly, subjects were told that at the end of
the experiment a single trial will be randomly selected and that subjects will gain the amount of
money that they assigned to the relevant feature in that trial. This ensured that participants
were motivated to provide an accurate rendering of their beliefs over the features.

For clarification of the task we present at this point some of the key behavioral results (see
Fig 2). We quantified the performance of subjects as the median amount of their money bets
on a truly relevant visual feature over an experimental block. The maximal performance would
correspond to betting the full amount of 20$ to the truly relevant feature at each trial. As
expected, the median of subjects’ performance was higher during the no-switch condition
(Kruskal-Wallis test, p <10™'*), whereas the median reaction times were lower (Kruskal-Wallis
test, p <107'%) during the same experimental condition which reflects the increased difficulty
of the switch condition.

‘Observing the Observer framework

Our goal is to infer, from the behavioral data, the hidden belief states of each subject that are
conditioned on the past sequence of visual stimuli and experimenter choices. By deriving an
adequate mapping of observations onto internal belief states (the perceptual model) and the
mapping of the internal belief states onto desired responses (response model), we can define a
generative model of the whole observation-response process [49,50] as (see Fig 3 for a graphical
representation):

p(?'ﬂ y’ 9|Zt7 m(p>’ m(r)) = p(?t|bt(btfl7 Et’ y)’ H’ m(p)’ m(r))p(y7 9|m(r>’ m@))7 (1)

where p(7,|b,(b, ,,€,,7), 0,m? m") denotes the probability of observing a response 7, given
the hidden belief states b, (that depend on past beliefs, current sensory observations €,, and a
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Fig 2. Reaction times and task performance. Median reaction time plotted against median performance of 22 subjects for each of three experimental
blocks of the switch (orange circles) and no-switch condition (green circles). The two large circles denote the median values across all experimental blocks
within the two experimental conditions. We defined the median performance as the median money gain within an experimental block, that is, the median
amount of money assigned to the truly relevant visual feature within an experimental block.

doi:10.1371/journal.pcbi.1004558.9002

set y of free parameters of the perceptual model m*’) and a set 6 of free parameters of the
response model m™. The last term p(y, 8|m™, m’) in Eq (1) denotes a prior distribution over
the space of free parameters.

Thus, to infer the hidden belief states of a subject we have to invert the generative model (Eq
(1)) for the given set of behavioral responses r;_; and sensory stimuli e; _ 4, and compute the
posterior distribution over the model parameters

t

p(%@) p(?k"yvgvel..,k)

ooy 2)

p(y,0le, 1, )=

where we omitted m”, m® for better readability. Knowing the posterior distribution one can
either compute the most likely belief state at trial ¢ as b,(j)—where } denotes the mode of the
posterior—or an expected belief state at trial t, as b, = E, e o o [0:(0)]-

To test the hypothesis that subjects focus their attention on a subset of environmental fea-
tures when updating their beliefs about the features' relevance, it is essential to compare multi-
ple models in their ability to replicate the behavioral data and select the most appropriate
model. Bayesian model comparison uses model evidence, that is, marginal likelihood p(r;. |
e;. . 1), to estimate the probability that a specific model has generated the data. The advantage
of such a procedure, compared to standard goodness of fit approaches, is that more complex
models are penalized automatically. The model evidence, for any pair of perceptual and
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Fig 3. Schematic of implicit generative model as formulated under the Observing-the-observer
framework. The full generative model consists of a combined perceptual (orange box) and response model
(blue box). The perceptual part of the generative model defines the mapping from current observations €,,
past beliefs b;_4, and a set of model parameters y, onto current beliefs b;. The response part of the generative
model defines the mapping from current beliefs b; and a set of model parameters 6, onto responses r,.

Figure adapted from [49].

doi:10.1371/journal.pcbi.1004558.9003

response models, is given as

t

plr e, s m®, m%) = Jdvdepw,e) 1o 17.0.¢, . m® m"). (3)

k=1

To estimate the model evidence and obtain the posterior distribution over model parame-
ters p(y,0le1. ., r1.. ;) any approximate inference scheme can be applied. In particular, Dauni-
zeau et. al. [49,50] proposed the use of a variational scheme where the model log-evidence is
approximated with the variational free-energy and the posterior distribution over the model
parameters is selected as the maximizer of the free-energy obtained through variational calcu-
lus. However, this method requires the computation of the gradients of the log-joint probability
distributions (natural logarithm of the joint probability distribution given in Eq (1)), which in
our case are not obtainable analytically as the derivatives affect the parameters of the non-lin-
ear equations of the belief process. Furthermore, a small change in the parameters of the update
equations of beliefs (Eq (11), see below) can have a large influence on the shape of the trajec-
tory, thus the log-joint probability distribution can be ill-conditioned with respect to model
parameters. Therefore, even if the gradient, with respect to model parameters, would be com-
putable at every point of the trajectory, a gradient ascent method would have difficulties to con-
verge to a global mode of the joint probability distribution, as the underlying landscape might
have a multimodal, non-linear, and non-convex structure.
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Thus, we use a numerical gradient-free scheme to find the mode of the log-joint probability
distribution and apply a numerical method to compute the Hessian matrix at that mode [56—
58]. With the obtained values of the mode and the Hessian we compute the Laplace approxima-
tion to the model evidence [59]. We will discuss the specifics of the numerical estimates in the
final subsection of the methods. In what follows we will first introduce the behavioral models.

Perceptual model. To derive the perceptual model, which maps sensory cues onto beliefs
we followed previous accounts in making three important assumptions [60-62]. First, we will
assume that subjects combine prior beliefs and sensory information in a Bayes optimal fashion
(Bayesian observer assumption). Note that this assumption will later be relaxed to obtain a non-
Bayesian approximation to the update equations. Second, we assume that the update of beliefs
can be represented as a Markov process, that is, future belief states depend only on the present
beliefs. Third, we will assume that subjects perform counterfactual inference [35], that is, they
try to infer which of the several hypothesis (explanations of experimenter’s choices) is currently
correct. A single hypothesis would correspond to saying that the experimenter selects cards con-
taining a specific exemplar (e.g. color red). As each visual feature has two exemplars (red-green
color, leftward-rightward motion, and round-square shape), there are in total six hypotheses.

Starting with these three assumptions we will define a generative model of the sensory
observations in the form of a hierarchical state space model [63], that captures the dynamics of
the transient probability that one of the six possible selection rules is currently active. Inversion
of the generative model will provide us with the required mapping from sensory cues onto pos-
terior probability about the correctness of each hypothesis, that is, the posterior beliefs about
the relevance of different visual features and exemplars.

However, to specify the structure of the hierarchical generative model, a few additional
assumptions are required. First, we can assume that the probability p(H,) of hypothesis H,
being correct is represented in a factorized from, that is, p(H,) equals to the product of the
probability p(F,) that one of the visual features F; is currently relevant and of the conditional
probability P(E,|F;) that one of the two exemplars E; is currently relevant (given the fact that
the corresponding visual feature F, is relevant for the selection process). Alternatively, we can
assume that only the probability p(H,) of hypothesis H; being correct is explicitly represented
and that the marginal probability p(F,) is computed only implicitly via the integration of corre-
sponding beliefs.

Depending on the starting assumption one will end up with slightly different structure of
the corresponding hierarchical generative model. Here we will describe in detail only the gener-
ative model based on the assumption that only the joint hypothesis probability p(H;) is explic-
itly represented and actively updated within the belief space. The reason for this is that model
comparisons (see below) suggest that such representation better captures subject behavior.
Nevertheless, the detailed derivation and the analysis of the behavioral data based on the alter-
native assumption, mentioned above, are provided in the supplementary material (S1 Text).

Here we will define the generative model as a three-level hierarchy (see Fig 4 for graphical
representation): (i) the 1** level of the hierarchy encodes the hidden selection rule, that is, the
currently correct hypothesis H; (see Eq (5)); (ii) the 2" evel of the hierarchy encodes the prob-
ability, in the form of a state space vector h'®), that each of the possible exemplar-feature pairs
is currently relevant for the experimenter’s choices (see Eq (6)), and (iii) the 3" level of the
hierarchy encodes the probability, in the form of the state space vector hY) that each visual
feature is currently relevant for the experimenter’s choices (see Eq (7)).

Assuming that the k th hypothesis is the correct one (k € {1,. . .,6}), the corresponding
exemplar will be selected with probability 1 — £, where £ denotes the error rate of experiment-

er’s choices. We will encode the experimenter’s choice with a binary vector &, € {0,1}" whose
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Fig 4. A graphical representation of the hierarchical generative model of percepts. The highest 3 level

hierarchy describes the dynamics of the three dimensional state space vector ﬁﬁ” that encodes the relevance
of the three visual features. Similarly, the 2" level of the hierarchy describes the dynamics of the six

dimensional state space vector hﬁe) that encodes the relevance for the selection process of the six exemplar-

feature pairs. The functional form of the state transition probability p(h,|h, ,) is shown on the right hand side
of the plot. The 1% level of the hierarchy encodes the currently active selection rule, that is, a currently correct

hypothesis H;, where the currently correct hypothesis is drawn from a conditional probability p(Ht|E§e)) shown
on the right hand side of the plot. Finally, the observable states are denoted with the six dimensional vector
€,, that encodes currently selected exemplars. On the right hand side of the plot we show the conditional
probability p(€,|H,) of selecting the k th exemplar given the active selection rule H;. For details, see the Eqs
(4) to (7) and the accompanying text.

doi:10.1371/journal.pcbi.1004558.9004

elements are set to 1 or 0 depending on the presence or absence of the corresponding exemplar
on the selected card. Thus, we can write the observation likelihood as

p(&|H,) Hp (e le)™s pley,le) = (1— )&, (4)

where 0, , denotes Kronecker's delta and ey, denotes the kth component of ¢,.

At the 1% (lowest) level of the hierarchy, we defined the probability that a hypothesis H, €
{1,...,6} is the correct one as a categorical probability distribution

where the nk(ﬁie)) denotes the probability of the k th hypothesis. These probabilities are
encoded at the 2" level of the hierarchy (see Fig 4) with the real valued vector h € R°, where
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we defined the mapping to the space of categorical probabilities as the softmax transform

(e)
ehk.t

LR
et
=1

To incorporate an attention-like mechanism within the perceptual model, we make the state

nk(ﬁge)) =

transition of /1’ to follow a winner-take all (WTA) dynamics. We used this type of dynamics
for three reasons:

1. The WTA dynamics is characterized by a set of stable fixed points that can be arranged in
such a way that at each fixed point only one component of E£e> is set to a high value (which
encodes a high relevance of the corresponding exemplar), while all other components have
low values. Such attractor state captures the structure of the WCST environment, in which

at any moment in time only one exemplar-feature pair can be relevant.

2. Adding uncorrelated noise to the WTA dynamics mediates the switching between stable
attractors. The larger the noise term the more probable is the transition between attractors.
Thus, we can use a single parameter that defines the level of noise in the WT'A dynamics to
capture different experimental conditions.

3. WTA networks were successfully used before as a hierarchical neural model of higher cogni-
tive functions [8,15,16,18,21,25,64,65], and as a model of attention spontaneously emerging
from competitive neural dynamics [66].

Thus, assuming the WTA dynamics, the time evolution of h fe) becomes

Wy = th + k + Wile(h? — k) + Wile(h! — i) + 3. (6)
Here ¢(x) = =and ¢(¥) = (¢(y,), -+, 0(0,)); @\ denotes a vector of i.i.d. random vari-
ables drawn from normal distribution ' (&3\; 0, g,1I,) with zero mean and variance g,; 7.

denotes the time scale of the update equations, and «, an additive constant. Importantly, the
dynamics of the 1\ is influenced by the state vector hY) € R® at the 3 level of hierarchy,

which encodes the relevance of the three visual features (see Fig 4). The time evolution of h 9 is
defined by an analogous set of equations

ht@l = Tfhtm + K+ ngr)‘P(hff) —K;) + W;fg,(p(hﬁg) —x,)+ o). (7)

Importantly, the connectivity matrices W\, WY) denote the inhibitory interactions within
levels, which are essential for the realization of attractor dynamics and W,gfjt, ng.jt denote the
excitatory interactions between the levels of the hierarchy. This allows for integrating the
beliefs about hypothesis relevance into beliefs about feature relevance.

In what follows, to simplify the notation, we will merge the state vectors 1\ and hY into a

single state vector fzt = (h, ") whose update equation is denoted by g(%), that s,

Htﬂ = g(ﬁt)
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Bayesian inference. Given the observation likelihood Eq (4), hypothesis probability Eq (5)
and the transition probabilities Eqs (6) and (7) we write the full generative model as

P, H, h,h,_ e, ) =p@ H)pH,h )Mk )ph_le ), (8)

wheree, , , = (€,,...,€_,) denotes all past observations. As we are interested in obtaining

the posterior probability of the hidden states p(H,, h .le, ), we require a compact form of the
generative model

p(gﬁ Ht7 hf ‘e]...tfl) = J Tt J p(EH Ht7 hf7 h,71 |el...t71)dht7] N
To obtain this compact form it is necessary to calculate the following integral

p(hle, ), = J o Jp(ﬁ,ul1>p<ﬁu|e1_“>dﬁt.

Assuming that p(E 1le, ,_,) is a normal distribution with mean i, , and covariance matrix
X, 1, we can approximate the integral on the right hand side as

p(h e, ) =N(H;g(E, ) hEE, %8 +Q), Q=ql,®ql,

p(hy) = N(hys iy, Zy), By = (ﬁ&ﬁ?) and %, = GSIG D U}JI;;»

where the approximate predictive distribution p(h, |e, , ,) is obtained by linearizing g (%)
around the currently known mean ji, ,, and where & denotes direct sum of matrices which
constructs a block diagonal matrix from the elements of the sum.

To invert the generative model we apply the variational Bayesian method and the mean-
field approximation in which the posterior distribution is approximated by a variational distri-
bution. Thus, we write the posterior probability over the hidden states as a product of approxi-
mate posterior distributions, that is

p(Htv ht‘gl...t) = Q(Ht)Q(Et)7

where we chose the functional forms of the approximate posteriors as the distribution with
maximum entropy given the specified mean and variance. This procedure allows for minimal
assumptions about the form of the approximate posterior [46]. Hence, for the posterior proba-
bility over the discrete space of hypotheses we selected again a categorical probability

6
OI(H:) = Hpt‘kém'k )
k=1

whereas for the posterior beliefs about the relevance of exemplars and visual features we
selected a multivariate normal distribution

q(ﬁt) = N(Ht; ﬁt’ Zt)‘
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Note that in this formulations the posterior belief is fully defined by the tuple of the poste-
rior expectations and the posterior covariance, that is, posterior uncertainty; hence we will
denote beliefs as a set b, = {i,, %, }.

Following variational calculus, the approximate posterior, given the mean-field approxima-
tion, is proportional to the exponential of the variational energy [67]. The variational energies
for the given generative model and the above mentioned factorization of approximate posterior
are defined as

=

e

Il
g 8
g %
X

S

“N

e

=

Y

=

=

I(Et) = Z Q(Htﬂnp(EMHnlj[t'a...z—l)'

To find the dependency of current beliefs b, on prior beliefs b, ; and current observation €,
we used a series of approximations previously described in [46], which we extended to the mul-
tidimensional case.

First, to compute I(H;), we need to know the beliefs b;, whose computations require knowing
1(h .)» which is a functional of q(H,), thus leading to a circular problem. We break the circularity
by computing I(H,) with the expected beliefs b, € {g(f, ,), 3;§ =, ,0;8" + Q}; hence, we
assume that the information about the observation ¢, first changes the 1* level of the model’s
hierarchy and then propagates to the 2" and 3" level. As the exponential of the I(H;) has the
form of a categorical distribution, one can show with simple algebraic manipulations that

|8)egk(llt 1)

g P t1|8 eg,m 1)

With the known g, one can compute the I (fz .)» where the difficulty is that the variational

©)

energy does not have a quadratic form, that is, the exponential of I (ﬁ .) is not a Gaussian distri-
bution. Thus, to obtain a Gaussian form of the approximate posterior we need an additional
quadratic approximation to the variational energy

where we made a second order Taylor expansion of I (ﬁ .) around the predictive mean g(ii, ,),
that is, the anticipated position of the posterior expectation. Finally, having the quadratic form
we get the posterior mean fi, as the argument of the maximum of [ (}_z't) The maximum is
obtained with the Newton’s method

i, = argmaxi(h) = i, — [a% i(ﬁ,)} o, 1(R,). (10)

hy

As Eq (10) is valid for any point ﬁt of the quadratic function I (E .), we can select again the
expansion point g(ii, ) as the starting value. In this way we obtain the following update
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equations for the expected relevance of the hidden states

lL_it :g(ﬁtfl) + Zt517

2 o (11)
o, = (p, — #(F(H,1)),0,),

where 0, denotes the three-dimensional zero vector and where the posterior covariance X, is
given as the inverse of the negative Hessian at the expansion point g(ji,_,), that is,

z, = —[0F 1@ )]

The posterior covariance is updated as

by .
== ﬁiun; ZH = 0;8(i, ) zt—laﬁgT(ut—l) +Q,
Y, = [0, m (@Y () - #E9(#H, )EE(E )] © 0y, (12)

where 05 ; denotes squared null matrix and &g (fi, ) denotes the Jacobian matrix of g(/1)
computed at prior expectations [, ;.
There are two interesting features of these update equations:

« The update equation for the posterior expectation Eq (11) have the form of a WTA neural
network, with the key feature that the external input is proportional to the prediction error.
This is similar to the hierarchical neuronal network models used in [15,25] to model behav-
ioral planning in prefrontal cortex. The important difference is that in our model the update
equations are derived from a probabilistic generative model (see Eq (8)), and therefore there
is an adaptive influence of prediction errors on the internal dynamics of the WTA network;
as expected from the Bayesian observer assumption.

o The hypothesis evidence p(&;|H;) is modulated by the predicted relevance of that hypothesis
g (€) (fi—1) when the posterior hypothesis probability g, is computed (see Eq (9)). Effectively,
the evidence in favor of a hypothesis is neglected if the expectation about its relevance is low.
This is similar to the effect that attention has on the processing of sensory information, as
only the currently relevant features of the stimuli are being processed at any moment of time.
Importantly, in the presence of competitive inhibitory dynamics the expectations of all but
the most likely hypothesis will be suppressed. In other words, internal dynamics of beliefs
leads to selection of prior expectation [34].

As the derivation of the perceptual model required multiple assumptions, which are not
directly motivated by the behavioral data, it is important to test which of the assumption is
actually essential for describing and predicting behavioral responses. Thus, in what follows we
will describe several variants of the perceptual model that are obtained by relaxing some of the
assumption made in the derivations presented above.

Structured models. To reduce the number of free parameters in the perceptual model
described above we will assume that between the 2" and the 3™ level there are only symmetric
excitatory connections with equal values and that these connections exist only between compo-
nents encoding the relevance of exemplars and corresponding visual features, thus

e o forv(i) =
[Wg’?t] ij - [W‘gi;}ji B { wg,t fofl;/:i; 7éj],
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where v(i) maps the i th exemplar to the corresponding visual feature. Furthermore, we will
assume that within the 2@ and the 3™ level there are only symmetric inhibitory connections
with equal values, thus

(e.f) . .
[Wl(:r.f)} _ Wit for i 7§]
el 0, fori=j

Importantly, we will constrain the WTA dynamics to attractor states in which only single
component of k' and h) have high values while all other components are set to zero or lower
values. This is achieved by setting w\*/) = 2K, ;> as suggested in [41].

However, removing the lateral inhibition form either the 2" or the 3™ level would not dis-
rupt completely the attractor dynamics as long as there are excitatory connections between lev-
els. Thus, we will also consider two additional variants of the structured model in which we set
either x, or xyto zero.

Therefore, the full set of parameters of the structured perceptual models is given by
IR I O " st ﬁgf, GSJ}, where in the first variant, denoted by wy, we have that ./
# 0, in the second variant, w5, we set k, = 0, and in the third variant, w3, we set k;= 0. The
graphical representation of all structured model variants is shown in Fig 5A-5C.

Structure-free model. To explicitly test whether a complex attractor dynamics is neces-
sary to describe subjects’ behavior, that is, to test whether an attention-like mechanism modu-
lates the update of beliefs, we require an alternative model without such an attentional focus
mechanism. Hence, by setting both «, and K¢to zero we obtain a structure-free model, denoted

by d, in which the state transition of h , is described with a diffusive dynamics (Fig 5D). The
effect of removing the lateral inhibition is that a feature considered relevant will not inhibit
other features, that is, there is no attentional focus effect. Note that setting x, = 0 also reduces
the number of free parameters, thus the model complexity. Critically, by employing a model
with lower complexity enables us to test whether the attentional focus model may be too com-
plex for the behavioral data.

Note that both the structured and the structure-free models are able to capture the transient
relevance of visual features. However, one expected difference is that the structured model, as it
encodes a key constraint of the task environment, requires less evidence to form strong beliefs
about relevance of visual features.

Reduced structured and structure-free models. To further simplify both structured and
structure-free models note that the 3™ level of the hierarchy encodes the beliefs about the rele-
vance of a visual feature. The importance of the 3™ level is to provide, as a dynamical implemen-
tation, the integration of the beliefs from the 2" level of the hierarchy. The expectations at the
3™ Jevel of the hierarchy are then used to generate responses, as described in the text below. In
addition, one can also generate responses by using directly the expectations provided at the 2"
level of the hierarchy. In such a case the 3™ level of hierarchy is obsolete and can be removed.

In this way we obtain two reduced variants of the perceptual model defined by the following
set of the free parameters {€, 1,, k,, q,, ii’, 7 }. For the reduced structured model, denoted by
W, K, is a free parameter (Fig 5E), while for the reduced structure-free model, denoted by rd,
K, is fixed to zero (Fig 5F).

Non-Bayesian perceptual models. All the previous variants of the perceptual model were
based on the same form of the update equations as provided in Eqs (11) and (12). The only dif-
ference so far between them is that certain parameters were removed, that is, fixed to zero.
Importantly, these update equations are based on the assumption that subjects combine prior
beliefs and sensory information in a Bayes optimal fashion. This requires the representation of

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004558 October 23,2015 14/34



@' PLOS | soMpuTaTioNAL
Nz : BIOLOGY Updating Beliefs Using an Attention-Like Mechanism

p(h

Fig 5. Visualization of six different model structures. Graphical representations of the connectivity matrix W of all variants of the perceptual model: the
three variants of the structured model denoted with (A) w4, (B) w, and (C) wg; (D) the structure-free model variant denoted with d; and the two reduced
variants of the perceptual model denoted with (E) rw, and (F) rd (for formal definition please see the accompanying text). The relevance of visual features and

exemplars encoded by the vector ﬁt = (ﬁie),ﬁi’)) (see Fig 4) corresponds to the activity levels at the nine nodes of the neural network. The orange nodes
encode the relevance of three visual features F)E’) (color, motion, and shape). The purple nodes encode the relevance of six exemplar-feature pairs Frﬁe) (red-
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color, green-color, leftward-motion, rightward-motion, circle-shape and square-shape). The structured models incorporate symmetrical lateral inhibition w;

(ef)

(depicted with blue lines) that implements a winner-take-all dynamics (see Eq (6) and Eq (7)) and symmetrical excitation between levels wy;s; (depicted with
red lines), that implement integration of relevance between levels of hierarchy. Note that the structure-free model has only symmetrical excitation w;s; (red
lines) from the level of exemplar-feature pairs to the level of visual features. In the case of the reduced perceptual models, the level of visual features is

removed.

doi:10.1371/journal.pcbi.1004558.g005

both the expectations about the true state of the world and the uncertainties about these expec-
tations. This assumption might not be correct in our case, and potentially the only relevant
quantity, both for update of beliefs and for generating responses, might be the expectations
about the relevance of exemplars and visual features. Thus, to test for this possibility we consid-
ered a non-Bayesian variant of the perceptual model described above, in which we fix the val-
ues of prior and posterior uncertainty on all levels of the hierarchy. This effectively makes the
perceptual model non-Bayesian, as the sensory observations are not combined with the prior
knowledge in a Bayes-optimal fashion. Thus, in the non-Bayesian variant of the perceptual
model, we will set the posterior covariance matrix to a fixed value, X; = aly, which leads to the
following update equations of expectations

A = §OG, ) + (B, — 7@, ),

=)

(13)
Ky = g(f)(,u,f]).

Furthermore, in this formulation the evidence p;; = 1 — € if the exemplar supporting kth
hypothesis was selected and p, . = € otherwise, where € € [0, ] denotes a free parameter which
is not equivalent to the experimenters error rate €, but only related to it. Note that the update
equations shown in Eq (13) have a functional form similar to the Rescorla-Wagner model
which is often used in reinforcement learning models [68,69].

Response model. Having obtained the update equation for the hidden belief states, the
next step is to define an appropriate response model (see Fig 3). Thus, the question we will
answer here is what would be an optimal response in an experimental trial ¢ given the hidden
beliefs b2 Note first that the posterior probability that the ith visual feature is currently relevant
is defined as

P =

3 ’
E u(o
et
j=1

in the case of the perceptual model variants with the 3" level of hierarchy, and

(e) (e)
elin 4 My

b =c=v
pe
E el
j=1

in the case of the reduced perceptual model variants without the 3" Jevel (where i; and i,
denote the positions of the exemplars of the corresponding ith visual feature).

Importantly, as described above, we have instructed the subjects that at the end of the exper-
iment one of the experimental trials will be randomly selected and the subject will receive as a
reward the money that they have assigned to the truly relevant visual feature. Thus, we will
assume that the subject’s responses depend on the subject’s risk attitude. As various studies
have demonstrated that humans exhibit variable risk tendencies [70-73], we will parametrize
the subject’s individual levels of risk aversion with an inverse risk factor 8. Using the formal-
ism of the Bayesian decision theory (BDT) and under the assumption that a subject’s absolute
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risk aversion is inversely related to the outcome of the bet, we have derived theoretical evidence
that the optimal response (for more details see S2 Text) is defined as

=0
- _ P
rt - 3 ?
O
> Py

where the elements of the response vector 7, denote the fraction of money assigned to the cor-
responding visual feature. Note that the higher the 0, is the more money will be assigned to the
visual feature with highest posterior probability p; ;, hence the higher the 6, the riskier is the
subject’s behavior. In the limit of 6; —0, the responses become independent of the posterior
beliefs and the same amount of money is always assigned to all visual features, thus reflecting

(14)

infinite risk aversion.

However, using the optimal response function to model subjects’ behavior may be too
restrictive, as the behavioral responses might deviate from the optimal responses for at least
two reasons: First, the perceptual models proposed might not fully capture the hidden percep-
tual processes of human subject, thus there might be an unknown influences on the decision
process. Second, recent findings suggest that human brain maintains only stochastic represen-
tation of posterior beliefs [51]. In other words, an exact representation of posterior expectations
is not internally available to the subject. Thus, under an assumption that the posterior expecta-
tions are sampled stochastically, one expects that the deviation of the response from the opti-
mal one is proportional to the posterior uncertainty [51].

To account for potential deviation from optimal response we will define the behavioral
responses as

=g,
pt ]e t
3 )
§ : PrJOl eir'j
=1

where & . denotes a vector of i.i.d. random variables representing perturbations to the optimal

(15)

r, =

response. We will assume here that the perturbation term ¢ has two components expressed as
separate components of the covariance matrix of a zero-mean Gaussian distribution:

Z ~N(0,P); P, = 0,1, + 0,5 (16)

The first noise source represents unknown influences on the decision process, which we
assume to be i.i.d. The second noise source, which represents the above stochastic sampling
assumption, is proportional to the uncertainty about the expected relevance of the visual fea-
tures. Note that the second component is only relevant for the probabilistic variants of the per-
ceptual model with full hierarchical representation, as only in those cases is the posterior
uncertainty about the feature relevance a dynamic quantity. Consequently, the full set of the
parameters for the response model m™ becomes 6 = {6,,6,,05}.

Finally, for the above defined response model the response likelihood is defined as the mul-
tivariate logistic-normal distribution, that is,

1
B Srt,lrt‘Qrt‘S : Z(ﬁ%tv Pt)

p(7.[b,(7),0) N {(clr(7,); m,, P,).
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Here clr(7,) denotes the centered log-ratio transform

cr(¥) =1In + ,

3
I | Tyi

i=1

Z(i#,, P,) denotes a normalization constant, and 771, = 0, /i’ in the case of the full perceptual
model or 711, = 0,clr(p,) in the case of the reduced perceptual model.
The normalization constant is computed as

2, P) = [[f 6(@" - )N (R, P,)dR, = ——— exp<_ (ﬁTf?lf)
Yt R t t? t) t t Qn(&’TP,&’) 2(6—1»Tptaa) 9

where the projection vector @ = (1,1,1)". The normalization constant is required because of

the mapping of the space of posterior expectations i) € R® onto a 2D simplex, which is the

3
space of responses A* = {?t € R’| E r,=1, 1, > OforVi} )
=1 b :

For model comparisons, we will consider two response models. For both models, all the
equations in this section apply, but the critical difference is that we only allow 6; as a free
parameter in the so-called full response model, while in the reduced response model we fix 0,
at 0. The effect of this difference is that the reduced model assumes a constant response vari-
ability of subjects, while the full response model allows for response variability to be dependent
on the internal uncertainty about feature relevance. Note that having the inverse risk factor 6,
as a free parameter in all variants of the response model is a result of a preliminary analysis
(not presented here) which showed that response model variants with fixed risk factor have
substantially lower model evidence compared to the considered variants of the response
model.

List of models and model evidence computation

For the model comparison, we have paired all the full variants of the Bayesian perceptual mod-
els with the two variants of the response model; the reduced variants of the Bayesian models
and all the variants of the non-Bayesian perceptual models were paired only with the reduced
response model, as the posterior uncertainty about the visual features =) is set to constant val-
ues in this cases. In addition, we have defined a simple baseline model. Hence in total we con-
sider 17 behavioral models denoted as:

1. BM—Baseline model in which the beliefs and the uncertainties about the beliefs are
assumed to be constant over time. Thus, all the parameters of the perceptual model are set
to zero, except ﬁj? Similarly, we fixed 6, = 0, = 1 as they are redundant for this case and
leave only 0; as the free parameters of the response model. The role of the baseline model
here is to provide for a trivial explanation to the behavioral data: subjects generated random
responses around a fixed mean independent from the sensory cues.

2. B{w'rd d. wy. wywy — L Welve different Bayesian perceptual models, where the superscript
denotes the variant of the response model (f—0,> 0, r— 0, = 0), and the subscript denotes
the variants of the perceptual model (rw— reduced perceptual model with lateral inhibition,
rd— reduced perceptual model without lateral inhibition, d— full perceptual model without

inhibition at all levels, w;— full model with lateral inhibition on all levels, w,— full model
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©PLOS

COMPUTATIONAL

BIOLOGY

Updating Beliefs Using an Attention-Like Mechanism

with lateral inhibition only at the 2" level, w;— full model with lateral inhibition only at
the 3" level), see Fig 5.

3. NB!

mord, d. wy, wy.wy—S1X different non-Bayesian perceptual models, where the superscript
denotes the only possible variant of the response model, the reduced response model, and

the subscripts denote the variants of the perceptual model, with the same notation as above.

To summarize the motivation for these different variants of the perceptual model (see
Methods above for details): the structure-free model variants test for the possibility that the
structured representation is not required for describing the behavioral data; the model variants
without the final level of the hierarchy (rw,rd) test for the possibility that the final level of hier-
archy is redundant for describing the behavior; the non-Bayesian variants of the perceptual test
for the possibility that the Bayesian observer assumption is not required for describing the
behavior.

Each model variant is defined using a set of free parameters {,0} for the perceptual and
response models. To be able to define prior and posterior distributions in the same functional
form of multivariate normal distributions, we transform all parameters so that they have the
same domain of real numbers. Note that such a transformation does not change the value of
model evidences, as to compute the model evidence one integrates over all the free parameters
of a generative model. Let us denote by J the vector of perceptual and response parameters
transformed to real space, then ¥ = (9(y), 3(0)), where

In(z), ifz € {oc,rce_f,qef,wd"“,agf,Gl,Gz, 0.}

2z o
11](1_—2Z), le—€

o if z € {A )

Thus, we can define the prior distribution over model parameters as a multivariate normal
distribution NV (7; 7, s,1).-
The log-joint probability distribution can then be written as

T

7) = > Inp(Fulby (897 (7). 97 () + I (Ze ). (17)

k=1

where T denotes the number of trials within a single experimental block. The Laplace approxi-
mation to the log-evidence is obtained as

|
Inp(r, ,Jé, ) = I(F) +5In[2S). (18)

where f denotes the mode of I(})and S = —E)‘Nl()‘{)f1 |;_p> i-e. S is the negative inverse of the

Hessian matrix at the mode E .

To find the mode of I(¥) we applied the so-called Covariance Matrix Adaptation Evolution
Strategy (CMA-ES). CMA-ES is a numerical optimization method, which has been applied
successfully in various research areas [74-77] and is particularly useful for ill-conditioned and
multimodal objective functions. In short, CMA-ES is a stochastic derivative-free method for
numerical optimization of non-linear optimization problems [56,57]. We used a freely
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available Matlab toolbox that implements the algorithm [Hansen, Nikolaus (2004). (https://
www.lri.fr/~hansen/cmaes_inmatlab.html#matlab), Version 3.61].

Once the mode of the log-joint probability distribution (Eq (17)) is found, we have to esti-
mate the curvature at the mode, that is, the Hessian matrix. We estimated the Hessian matrix
by numerical differentiation [58], where we used the following toolbox [D’Errico, John (2006).
(http://www.mathworks.de/matlabcentral/fileexchange/13490), MATLAB Central File
Exchange. Retrieved 10. November 2013].

Because of the stochastic nature of the CMA-ES algorithm we repeated the stochastic search
N =50 times per experimental block for each model. For each of the N solutions we estimated
the Hessian matrix and computed the Laplace approximation to the log-evidence. Finally, we
kept the solution with the largest log-evidence, therefore increasing the probability of finding
the maximal lower bound to the log-evidence and thus the most likely model of a subject’s

behavior. The numerically obtained f and S are used as the mean and the covariance matrix of

the approximate posterior distribution NV (¥; ﬁ ,S). Note that in this way we obtain the full
covariance matrix without the need for a mean field approximation, which would neglect any
existing correlations between parameters. All data processing was performed using MATLAB
[version 8.1, The MathWorks Inc., Natick, Massachusetts].

Bayesian model selection

We first estimated the log model evidence of the 17 generative models described above for each
experimental block. To obtain a total per-subject log-evidence for each experimental condition,
we summed the estimated log-evidences over experimental blocks of a single experimental con-
dition. This gives us the log model evidence of each generative model for each subject per
experimental condition. We used the obtained log-evidences to apply the hierarchical Bayesian
model selection approach described in [54,55]. By using hierarchical Bayesian model selection
we assumed that the identity of the best-fitting model may vary across subjects. This requires
treating the posterior model probability (the posterior belief that a given model has generated
the data) as a random variable.

Thus, the two computed quantities of interest are the expected probability (EP) and the
exceedance probability (XP) of each model: The EP is defined as the probability that a given
model generated the behavioral data of a randomly selected subject (see [55] for a detailed
mathematical description); The exceedance probability XP tells how likely it is that a given
model will have the largest probability in a random sample from the posterior distribution.
Importantly, the XP can be seen as a degree of confidence in the difference between posterior
model probabilities [55]. Thus, when presenting the results of a model comparison we will only
report the XP of the corresponding model or model family, as large XP at the same time implies
significantly larger EP. Importantly, we will only consider recently proposed “protected”
exceedance probability, which takes into account the null hypothesis that assumes that all the
models are equally likely (see [55] for details). We will consider that the EP of a single genera-
tive model is significantly larger than the EP of other generative models, if the model’s XP is
above threshold value set at 0.95. Although, this threshold value was selected in the analogy to
classical statistical tests that rely on p-values, its relation to the statistical power is not equiva-
lent (see [55]).

We used the MATLAB implementation of the random-effect Bayesian model selection
[(https://sites.google.com/site/jeandaunizeauswebsite/code/rfx-bms), retrieved January 2014].
In what follows we will describe the results obtained by applying the Bayesian model selection
to the set of behavioral models that we used to approximate subjects’ behavior in the probabi-
listic WCST.
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Results

In Figs 6 and 7 we present the results of the random-effects Bayesian model comparison at the
group-level. We have separated the model comparison between the two experimental condi-
tions, switch and no-switch. We estimated the per-subject log-evidence for each experimental
condition as the sum of log-evidences across the three corresponding experimental blocks. The
top graph in both Figs 6 and 7 depicts the model attributions to the behavioral responses of
each subject, that is, the posterior probability that a given model has generated the behavioral
responses of each subject, for each condition separately. The bottom graphs show the corre-
sponding XP for each of the 17 models. The direct comparison of behavioral models is

no-switch condition
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Fig 6. Random-effects model comparison for the no-switch condition. (top) Posterior model probability (see color bar) for each subject. For an exact
description of each of the 17 models see main text. (bottom) Exceedance probability (XP) that a given model is more likely to generate the data than any
other model. The dashed orange line denotes the confidence threshold level set at 0.95.

doi:10.1371/journal.pcbi.1004558.9006
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Fig 7. Random-effects model comparison for the switch condition. (top) Posterior model probability (see color bar) for each subject. For the exact
description of each of the 17 models see main text. (bottom) Exceedance probability (XP) that a given model is more likely to generate the data than any
other model. The dashed orange line denotes the confidence threshold level set at 0.95.

doi:10.1371/journal.pcbi.1004558.9007

inconclusive, as the highest XP is in both cases below the threshold value. Note that this is a
typical issue when the model comparison set contains groups of closely related models [78].
The solution here is that instead of trying to answer which of the models provides the best
description of behavioral data, we should ask which of the features of the perceptual and the
response model are the most relevant for generating the data [78]. Note that in both figures we
observe clustering of high model probabilities (top graphs) within closely related perceptual
models (e.g. B/

Wy, W, W3

) which only differ in the type of the connectivity matrix (see subsection
Structured models in Methods). Thus, to determine which of the features of the perceptual and
the response model are the most relevant for generating the behavioral data, we have per-
formed four so-called family-wise model comparisons [78]. To test whether non-Bayesian or
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Bayesian model variants better describe the behavioral data, we grouped all models into base-

line (BM = {BM}), non-Bayesian (NB = {NB’ }) and Bayesian

rw,rd,d,wy,wy,wg
(B = {Bfﬂ’;,d’ dowy g }) model families. Similarly, to test whether a hierarchical representation

of feature relevance is truly necessary we have grouped the models into BM, reduced perceptual
(RP = {NB:Wd, B:Wd}), and full perceptual (FP = {NB;awlaWZsW.’i’B)‘;:’;Vl’WZaWZi }) model families.
Finally, to test whether the attractor dynamics contributes to an explanation of the behavioral
data, we have grouped models into the BM, structure-free <SFM = {NB: 1> Bl BQ'}), and

structured (SM = {NB,,, . ... B,,, B, . }) model families. In addition to separating behav-
ioral models based on the features of perceptual model, we have grouped them based on the
features of the response model, for which we considered only two model families, a model fam-

ily with the reduced response model (RR = {BM ,NB’ }) and a fam-

BI’
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From the results of the four family-wise model comparisons, shown in Fig 8, we can con-
clude with high confidence (XP above the threshold level of 0.95) that the Bayesian formulation
of the perceptual model is essential for generating behavioral data in both experimental condi-
tions (see Fig 8A and 8B). To understand the difference between NB and B model families in
their ability to predict subjects” behavior we tested how well the behavioral models within each
of these families predict subjects’ performance. We computed the mean model performance by
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Fig 8. Family-wise model comparisons. (A-B) Exceedance probability (XP) of the baseline model (BM) non-Bayesian (NB) and Bayesian (B) model
families. (C-D) XP of the BM, reduced perceptual (RP) and full perceptual (FP) model families. (E-F) XP of the BM, structure-free (SFM) and structured (SM)
model families. (G-H) XP of the reduced response (RR) and full response (RR) model families. The top graphs (A,C,E,G) show the exceedance probability of
model families for the switch condition, whereas the bottom graphs (B, D, F, H) show the exceedance probability of the model families for the no-switch
condition. The dashed orange lines denote the confidence threshold level set at 0.95.

doi:10.1371/journal.pcbi.1004558.9008
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Fig 9. Distribution of the correlations between the mean model performance and the mean subjects’ performance across two model families.
Boxplot of the Pearson correlation coefficient r., estimated for each model within the non-Bayesian (NB) and the Bayesian (B) model families in the no-
switch and switch condition. For each model within each family we have computed the Pearson correlation coefficient between the mean model performance
and mean subjects’ performance. In both conditions the non-Bayesian model family has a significantly lower median correlation (denoted by a dark horizontal
line within the boxes) with p<0.005 (Kruskal-Wallis test).

doi:10.1371/journal.pcbi.1004558.9009

first estimating the expected performance per trial. To do this, we fixed model parameters to

the mode E of the posterior parameter distribution and computed the expected model
response; hence the expected performance per trial corresponds to the mean fraction of money
assigned to the truly relevant visual feature at that trial. We averaged the per-trial expected
model performance over a whole experimental block to obtain the mean model performance
per experimental block. We then estimated the Pearson correlation coefficient between the

mean model performance and mean subjects’ performance across blocks and both experimen-
tal conditions. In Fig 9 we illustrate, with a box plot, the distribution of the estimated correla-
tion within NB and B model families. The correlation coefficient shows that, on average, the
NB model family has significantly lower correlation with subjects’ performance, or in other
words, the NB model family provides a worse fit to subjects’ behavior compared to the Bayesian
model family. Interestingly, within the NB family the models with consistently low correlation,

in both conditions, are the structure-free model variants NB), and NB/, (see S1 Fig), whose

update equation correspond to what is typically used in classical reinforcement learning mod-
els. On the other hand, the non-Bayesian model variants with attractor dynamics, namely
NB! wy> Show consistently high correlation with subjects’ performance in both conditions

™W,wy, Wy

(with one exception being model NB;Q). This indicates that even only within the NB model

family the attentional focus mechanism plays a critical role in replicating subjects’ behavior.

Importantly, from the results of the family-wise model comparison we can also conclude
with high confidence that the full variant of the perceptual model (including both the 2" and
3™ Jevel of the hierarchy, see Reduced structured and structure-free models for details) is an
essential feature in both experimental conditions (see Fig 8C and 8D). The structured family of
the perceptual model shows an XP above the threshold level only in the no-switch condition
(Fig 8F), whereas in the switch condition the XP is slightly below the confidence threshold level
(Fig 8E), but still high enough to be considered a trend. One possible explanation for the
slightly reduced confidence in the structured model family (Fig 8E) is that in the switch
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Fig 10. Behavioral responses and modeled responses for a representative single subject. (left) The
three no-switch blocks, and (right) the three switch blocks. Colored circles denote the behavioral responses
of subject #9 obtained as the fraction of money assigned to each of the three visual features on single trials.

Solid lines denote the expected model response computed at the mode [f of the posterior distribution over
model parameters and averaged over posterior model probabilities for subject #9 (see Figs 6 and 7). The
shaded area corresponds to the 95% probability interval. Each color corresponds to one of the three visual
features (red—color, yellow—motion, blue—shape). The dotted colored line at the top of each plot denotes
the relevant visual feature during each experimental trial, where the black diamond marks on the dotted line
denote trials in which the experimenter selected the wrong card.

doi:10.1371/journal.pcbi.1004558.9010

condition one expects high levels of posterior uncertainty about the relevance of visual features.
This is due to an increased difficulty in assigning contradicting evidence either to an experi-
menter’s error or a change in the selection rule. Thus, in such an environment one does not
expect that a subject can form strong beliefs about the relevance of each visual feature. Hence
the attractor dynamics would not show strong advantages in generating the data, when com-
pared to the structure-free model family.

Finally, when comparing model families with the full against the reduced variant of the
response model we get mixed results across conditions. The full response model seems to be
relevant for generating behavioral data only in the no-switch condition (Fig 8H), whereas in
the switch condition the evidence is inconclusive (Fig 8G). This discrepancy between the confi-
dence levels in the two experimental conditions may be caused by the increased difficulty of
the switch task, which effectively introduced a higher variability in subjects’ responses. Most of
this variability may be explained simply by a high but constant level of response noise as for-
mulated in the reduced response model.
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To illustrate the dynamics encountered under the most likely types of behavioral model
(B |y, 11 the no-switch condition and B, |, _ in the switch condition) we have plotted the
measured and modeled responses of a representative subject (#9), see Fig 10. The modeled
response was averaged over posterior model probability (see top graphs of Figs 6 and 7). Note
that for the selected subject only the B], (in the no-switch condition) and B, (in the switch
condition) have posterior model probabilities close to one and therefore contributed to the
shown modeled responses. Importantly, one can see that the expected model responses appro-
priately track the subject’s responses in all six experimental blocks, and that the deviations of
the subject’s responses from the expected response are mostly explained by the response vari-
ability, as indicated by the shaded area.

Discussion

We have used a probabilistic variant of the Wisconsin card sorting task (WCST) with belief
solicitation to show that, in a rather complex environment, update of beliefs is modulated by
an attentional focus mechanism. We analyzed behavioral data of 22 subjects using a meta-
Bayesian framework [49,50]. This framework allowed us to compare multiple behavioral mod-
els, each implementing different assumptions about the underlying mechanisms that govern
update of beliefs. We found evidence that incorporating an attentional focus mechanism within
the behavioral model is the essential feature for modeling behavior. Specifically, we demon-
strated that the attentional focus mechanism modulates subjects’ expectations about the rele-
vance of each visual feature and consequently influences the update of beliefs when new visual
evidence is provided. In addition, we found that introducing a deviation from optimal
responses (as predicted by Bayesian decision theory), during belief solicitation, further
increased model evidence in one experimental condition.

WCST and belief solicitation

The variant of the WCST used here can be seen as a simple but representative task to which
humans are often exposed, namely making decisions in situations where the relevant features
of the environment are not obvious but need to be inferred first. What makes the WCST sim-
pler when compared to natural environment is the reduced number of possible pre-learned
hypotheses. However, the dynamic complexity is comparable to real world situations: (i) the
rules of the environment can change, and (ii) in the specific WCST used here the experimenter
occasionally ‘makes a mistake’ just as in the natural environment one often cannot know some-
thing with certainty. For the WCST task, these two naturally occurring sources of uncertainties
make the necessary inference sufficiently complex to compute the subject’s uncertainty about
the relevance of visual features. To better infer the hidden internal beliefs and uncertainties of
subjects, we used belief solicitation in a form of a betting assignment, which reflect a subject’s
hidden beliefs over the space of possible hypotheses. To our knowledge, such belief solicitation
was not previously used in a WCST task, although similar experimental designs were used for
simpler tasks [11,79].

Modeling effects of attention on evolution of beliefs

To incorporate attentional-focus within the perceptual part of the behavioral model we mod-
eled the dynamics of the hidden states of a probabilistic generative model with a winner-take-
all (WTA) dynamics. This is a well-known type of dynamics applied to artificial neural net-
works [37-40,80-82] and used as a part of connectionist models of decision making and
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planning [19,25]. In addition, WTA network dynamics have been reported to capture a wide
range of experimental findings [48,83-86].

For our purposes, the WTA neuronal network implemented a dynamic and self-regulated
attention formation at the top level of a hierarchical representation of environmental features.

In comparison to the classical connectionist approach, e.g. [25], the main advantage of
using the WTA dynamics within a Bayesian framework is that the adaptive coupling between
the intrinsic network dynamics and external input (see Eqs (11) and (12)) is derived automati-
cally as part of the update equations. These update equations provide Bayes-optimal behavior
of the model by setting the connection weights to their optimal value. Although the optimiza-
tion technique used by the brain may be different, such weight optimization may be assumed
as a guiding computational principle of information processing in the brain.

Our finding—that competitive inhibitory WTA dynamics as a model of attentional focus is
required for describing the hidden update process of subjects’ beliefs—is in agreement with
previous findings of Wilson and Niv [1]. This suggests that in a WCST task humans actively
track only the evidence corresponding to features they pay attention to, that is, the ones they
found potentially relevant for the current task. Importantly, as a safe-guard against over-fitting
the data with a complex WTA dynamics, we employed simpler (with a reduced number of free
parameters) variants of the perceptual model. The fact that the less complex behavioral models
have lower model evidence suggests that the WTA dynamics has indeed adequate complexity
to describe the behavioral data.

Predicting effects on behavior

The WTA dynamics introduces the following features in the evolution of beliefs: (i) faster con-
vergence of beliefs to the working hypothesis; (ii) the beliefs are more inert to frequent changes
in the environment, that is, to switch between the hypotheses sufficient amount of contradict-
ing evidence has to accumulate. (iii) The beliefs change faster if the changes in the environment
are rare, as after the fixed point is reached beliefs do not evolve further. In contrast, the diffu-
sive dynamics of the SFM variants of the perceptual model is not bounded within finite volume
of the belief space. Hence, as the posterior beliefs about a hypothesis’ relevance can be strongly
separated if the environment is stable for a long period of time and, once the switch occurs it
would take a very long time to adjust the beliefs as nothing constrains the separation of the pos-
terior expectations.

Consequently, as our results suggest, the proposed attractor dynamics modulate expecta-
tions. This would predict the following effects on behavior: (i) Even small amount of evidence
can have a big impact on beliefs, (ii) if changes in the environment are too frequent they will
have smaller impact on beliefs than expected from the diffusive dynamics, and (iii) if changes
in the environment are rare it will take less contradicting evidence to change the working
hypothesis than predicted by the diffusive and unconstrained dynamics.

Sub-optimality in human behavior

Although various studies have demonstrated that human behavior can approximate a Bayesian
observer [26-28,60-62,87], human subjects can also behave sub-optimally when exposed to
sufficiently complex tasks [28].

In recent work Acerbi et al. [51] have demonstrated that the response variability (deviation
from expected response) is proportional to posterior uncertainty. Such a deviation from opti-
mal responses can be explained if one assumes a stochastic representation of the posterior
beliefs by the human brain [52,53].
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Thus, to account for potential dependence of response variability on posterior uncertainty we
considered two variants of the response model. In the first variant we assume that the response
variability is constant over an experimental block. In the second variant we additionally allow for
the variability of the modeled responses proportional to the posterior uncertainty (see Eqs (15)
and (16)), which accounts for the potential stochastic representation of posterior beliefs.

Depending on the experimental condition both variants of the response model provide
good accounts for the deviation of subjects’ responses from the optimal response. In the no-
switch condition (the relevance of visual feature is unchanged during the block, see Fig 8H)
we found that the response variability is indeed proportional to the posterior uncertainty; in
the switch condition (Fig 8G) the evidence is inconclusive although in favor of the assump-
tion that the response variability is fixed and independent of the posterior uncertainty. A
reason for this inconclusive result may be the increased difficulty of the experimental task in
the switch condition. An increased difficulty makes the behavioral responses noisier
(responses deviate more from the optimal response compared to the no-switch condition,
see Fig 10). As the average response variability increases, there is less information about the
dependency of response variability on experimental trials. Hence, most of this additional
variability may be explained simply by a rather high but constant level of response noise as
formulated in the reduced response model.

Related work on the computational role of attentional processes

Earlier work on the computational role of attention in the processing of sensory information
suggested that attention can be understood as prior expectations about the sensory stimuli
[88,89]. This rather simple view of attention as a prior has recently been extended to account
for both selective and integrative attentional phenomena [34-36]. This extended view suggests
that due to the computational complexity of the exact probabilistic inference and the limited
amount of available cognitive resources, the human brain has to rely on approximations to effi-
ciently solve perceptual tasks. In other words, the role of attention is to assign limited cognitive
resources to the relevant part of the sensory stimuli, which provides local refinement of the
internal representation of the hidden states of the environment.

However, this view on attention as an approximation to the exact Bayesian inference has
been recently challenged. Under the free-energy principle [90]—which suggests that percep-
tion, attention, and action are all aimed toward suppressing the perceptual surprise about
future sensory stimuli—attention is viewed as a sampling of only those parts of sensory stimuli
that have high-precision in relation to the predictions of the internal model of the world [33].
Importantly, if the model of the world also predicts the precision of different parts of sensory
stimuli, then that prediction is what Friston and colleagues propose to be associated with
attention.

Our work presented here can be related to both assumptions about the computational role
of attention, and as such cannot reconcile this dispute. Note, that the competitive attractor
dynamics can be seen both as an approximation to the exact inference (the attractor dynamics
regulates the update of beliefs by assigning the computational resources only to the most rele-
vant hypothesis) and as a suppressor of the perceptual surprise (the attractor dynamics actively
reduces the uncertainty about future sensory stimuli by predicting both the future expectation
and precision of a categorical probability of hypothesis relevance; see Eq (9)).

Potential limitations of the experimental design

We believe that the probabilistic WCST provides a promising experimental paradigm for
investigating complex behavioral models. However, one can probably improve on the current
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design using two changes. Firstly, in spite of the initial training, several subjects exhibit rather
poor performance in the no-switch condition (see Fig 2). Ten out of twenty two subjects show
poor performance in at least one experimental block of the no-switch condition. Importantly,
we have included these subjects in our analysis, because the model comparison did not show
any correlation between subjects’ performance and the best fitting behavioral model. Also note
that a key strength of the proposed model is that it can explain this poor performance well, see
for example Fig 10; insofar a potentially suboptimal performance does not pose a limitation to
the proposed modelling approach. However, the obtained results may be even more compelling
if subjects practiced the task until a stable performance is reached for both conditions. Sec-
ondly, as mentioned in the Methods section, the error rate £ was set to values that induced the
most distinct behavioral responses between two experimental conditions, while rendering the
switch condition informative enough to induce betting responses in subjects. However, these
led to a partially imbalanced manipulation between conditions. Thus, a potential improvement
would be to introduce a fractal design, such that both the error rate and the switch probability
are incrementally increased. Such a fractal design would provide further insights into how each
environmental parameter influences behavior and what effects, if any, each parameter might
have on the model comparison.

Limitations of the analytical method

Similar to the experimental design, the analytical approach presented here may also be poten-
tially improved upon. Firstly, as mentioned in the Methods section, the behavioral model pro-
posed here is not the only possible formulation. Depending on how one defines the
observation likelihood (Eq (4)) and the parametrization of the hypothesis probability (Eq (5)),
one can obtain different variants of the perceptual model. Although we have tested a couple of
them (one additional, alternative formulation is described in S1 Text), there is a large number
of possible perceptual models. We anticipate that more studies are required to come to a gen-
eral conclusion which of the models or model families is the most useful for describing behav-
ioral data of studies similar to the one presented here. Secondly, the model comparison
presented here relies solely on the Bayesian model selection that is useful for inferring which of
the given models is most likely to generate the data. However, it cannot be directly used to
answer the question whether a given model is a good predictor of behavior. To address this
question one has to rely on cross-validation strategies, that is, on model testing [91]. Still, one
important prior assumption of model testing is that the behavior can be described by parame-
ters which are stable over blocks. We do not assume that this is the case for our experimental
data as subjects were not over-trained which would motivate the assumption that subjects per-
formed the task in some stable parameter regime. Thus, it is plausible that the experience in
previous experimental blocks influences, at least slightly, the behavior in subsequent blocks.
For this reason model testing may not be usefully applicable to our study. Nevertheless, for
future studies changes to the training procedure may stabilize behavior across experimental
blocks and would allow one to also apply model testing methods to predict behavior.

Neuroimaging application

Although the presented analysis has been applied to behavioral data only, it would be poten-
tially useful and feasible to extend the behavioral analysis to the investigation of neuroimaging
data. The inferred belief trajectories would be used as regressors [13], and thus can provide
insights into the functional aspects of specific brain areas involved in the decision making pro-
cess during the ongoing task.
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Conclusion

We found strong evidence that an attention-like mechanism modulates the update of beliefs in
human subjects who had to infer the relevance of various features in a dynamic and noisy envi-
ronment. Effectively, this attentional focus facilitates the increase of expectations about the rel-
evant feature and inhibits the expectations about irrelevant features. Subsequently, these
modulated expectations affect update of beliefs. We expect that the same computational mech-
anism can be applied to modelling other complex tasks that impose high cognitive load on sub-
jects, thus require the attentional focus strategies for decision making.
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S1 Text. An alternative formulation of the perceptual model. Contains derivations of an
alternative perceptual model (and reduced model variants) and also contains the results of the

model comparison.
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$2 Text. Response model derivation. Contains detailed derivation of the response model
within the framework of Bayesian decision theory.
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(and covariance matrix) of the free model parameters, estimated log-model evidence for each
behavioral model, and the model comparison results.
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condition (bottom).

(TIFF)

Acknowledgments

We thank Sebastian Bitzer and Daniel McNamee for helpful discussions and comments on ear-
lier versions of the manuscript. We also thank the Center of Information Services and High
Performance Computing (ZIH) at Technische Universitidt Dresden for providing the computer
resources.

Author Contributions

Conceived and designed the experiments: JG JO PB. Performed the experiments: JG. Analyzed
the data: DM SJK. Wrote the paper: DM SJK.

References
1.  Wilson RC, Niv Y (2011) Inferring relevance in a changing world. Frontiers in human neuroscience 5.

2. Roberts AC, Robbins TW, Weiskrantz LE (1998) The prefrontal cortex: Executive and cognitive func-
tions: Oxford University Press.

3. Milner B (1963) Effects of different brain lesions on card sorting: The role of the frontal lobes. Archives
of Neurology 9: 90-00.

4. Drewe E (1974) The effect of type and area of brain lesion on Wisconsin Card Sorting Test perfor-
mance. Cortex 10: 159—170. PMID: 4844468

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004558 October 23,2015 30/34


http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pcbi.1004558.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pcbi.1004558.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pcbi.1004558.s003
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pcbi.1004558.s004
http://www.ncbi.nlm.nih.gov/pubmed/4844468

B PLOS | Suryanonat

Updating Beliefs Using an Attention-Like Mechanism

10.

11.

12

13.

14.

15.

16.

17.

18.

19.

20.

21.

22,
23.

24.

25.

26.

27.

28.

29.

Nelson HE (1976) A modified card sorting test sensitive to frontal lobe defects. Cortex 12: 313-324.
PMID: 1009768

Robinson AL, Heaton RK, Lehman RA, Stilson DW (1980) The utility of the Wisconsin Card Sorting
Test in detecting and localizing frontal lobe lesions. Journal of consulting and clinical psychology 48:
605. PMID: 7410659

Robbins TW, Weinberger D, Taylor J, Morris R (1996) Dissociating executive functions of the prefrontal
cortex [and discussion]. Philosophical Transactions of the Royal Society of London Series B: Biological
Sciences 351: 1463—-1471.

Rougier NP, O’Reilly RC (2002) Learning representations in a gated prefrontal cortex model of dynamic
task switching. Cognitive Science 26: 503-520.

Kaplan GB, Sengér NS, Girvit H, Geng |, Guizelis C (2006) A composite neural network model for per-
severation and distractibility in the Wisconsin card sorting test. Neural Networks 19: 375-387. PMID:
16343846

Bishara AJ, Kruschke JK, Stout JC, Bechara A, McCabe DP, et al. (2010) Sequential learning models
for the Wisconsin card sort task: Assessing processes in substance dependent individuals. Journal of
mathematical psychology 54: 5-13. PMID: 20495607

Stern ER, Gonzalez R, Welsh RC, Taylor SF (2010) Updating beliefs for a decision: neural correlates of
uncertainty and underconfidence. The Journal of neuroscience 30: 8032—-8041. doi: 10.1523/
JNEUROSCI.4729-09.2010 PMID: 20534851

Behrens TEJ, Woolrich MW, Walton ME, Rushworth MFS (2007) Learning the value of information in
an uncertain world. Nat Neurosci 10: 1214-1221. PMID: 17676057

Glascher J, Daw N, Dayan P, O'Doherty JP (2010) States versus rewards: dissociable neural prediction
error signals underlying model-based and model-free reinforcement learning. Neuron 66: 585-595.
doi: 10.1016/j.neuron.2010.04.016 PMID: 20510862

Iglesias S, Mathys C, Brodersen KH, Kasper L, Piccirelli M, et al. (2013) Hierarchical Prediction Errors

in Midbrain and Basal Forebrain during Sensory Learning. Neuron 80: 519-530. doi: 10.1016/j.neuron.
2018.09.009 PMID: 24139048

Dehaene S, Changeux J-P (1991) The Wisconsin Card Sorting Test: Theoretical analysis and modeling
in a neuronal network. Cerebral cortex 1: 62—79. PMID: 1822726

Berdia S, Metz J (1998) An artificial neural network stimulating performance of normal subjects and
schizophrenics on the Wisconsin card sorting test. Artificial intelligence in medicine 13: 123—138.
PMID: 9654382

Morton JB, Munakata Y (2002) Active versus latent representations: A neural network model of persev-
eration, dissociation, and decalage. Developmental psychobiology 40: 255—-265. PMID: 11891637

Rougier NP, Noelle DC, Braver TS, Cohen JD, O'Reilly RC (2005) Prefrontal cortex and flexible cogni-
tive control: Rules without symbols. Proceedings of the National Academy of Sciences of the United
States of America 102: 7338—7343. PMID: 15883365

Stemme A, Deco G, Busch A, Schneider WX (2005) Neurons and the synaptic basis of the fMRI signal
associated with cognitive flexibility. Neuroimage 26: 454-470. PMID: 15907303

Guigon E, Dorizzi B, Burnod Y, Schultz W (1995) Neural correlates of learning in the prefrontal cortex of
the monkey: a predictive model. Cerebral Cortex 5: 135-147. PMID: 7620290

Dehaene S, Changeux JP (1995) Neuronal models of prefrontal cortical functions. Annals of the New
York Academy of Sciences 769: 305-320. PMID: 8595034

Houghton G (2005) Connectionist models in cognitive psychology: Psychology Press.

Thomas MS, McClelland JL (2008) Connectionist models of cognition. The Cambridge handbook of
computational psychology: 23-58.

O'Reilly RC, Herd SA, Pauli WM (2010) Computational models of cognitive control. Current opinion in
neurobiology 20: 257—261. doi: 10.1016/j.conb.2010.01.008 PMID: 20185294

Dehaene S, Changeux J-P (1997) A hierarchical neuronal network for planning behavior. Proceedings
of the National Academy of Sciences 94: 13293—-13298.

Weiss Y, Simoncelli EP, Adelson EH (2002) Motion illusions as optimal percepts. Nat Neurosci 5: 598—
604. PMID: 12021763

Knill DC, Pouget A (2004) The Bayesian brain: the role of uncertainty in neural coding and computation.
Trends in Neurosciences 27:712-719. PMID: 15541511

Kérding KP, Wolpert DM (2006) Bayesian decision theory in sensorimotor control. Trends in cognitive
sciences 10: 319-326. PMID: 16807063

Norris D (2006) The Bayesian Reader: Explaining word recognition as an optimal Bayesian decision
process. Psychological Review 113: 327. PMID: 16637764

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004558 October 23,2015 31/34


http://www.ncbi.nlm.nih.gov/pubmed/1009768
http://www.ncbi.nlm.nih.gov/pubmed/7410659
http://www.ncbi.nlm.nih.gov/pubmed/16343846
http://www.ncbi.nlm.nih.gov/pubmed/20495607
http://dx.doi.org/10.1523/JNEUROSCI.4729-09.2010
http://dx.doi.org/10.1523/JNEUROSCI.4729-09.2010
http://www.ncbi.nlm.nih.gov/pubmed/20534851
http://www.ncbi.nlm.nih.gov/pubmed/17676057
http://dx.doi.org/10.1016/j.neuron.2010.04.016
http://www.ncbi.nlm.nih.gov/pubmed/20510862
http://dx.doi.org/10.1016/j.neuron.2013.09.009
http://dx.doi.org/10.1016/j.neuron.2013.09.009
http://www.ncbi.nlm.nih.gov/pubmed/24139048
http://www.ncbi.nlm.nih.gov/pubmed/1822726
http://www.ncbi.nlm.nih.gov/pubmed/9654382
http://www.ncbi.nlm.nih.gov/pubmed/11891637
http://www.ncbi.nlm.nih.gov/pubmed/15883365
http://www.ncbi.nlm.nih.gov/pubmed/15907303
http://www.ncbi.nlm.nih.gov/pubmed/7620290
http://www.ncbi.nlm.nih.gov/pubmed/8595034
http://dx.doi.org/10.1016/j.conb.2010.01.008
http://www.ncbi.nlm.nih.gov/pubmed/20185294
http://www.ncbi.nlm.nih.gov/pubmed/12021763
http://www.ncbi.nlm.nih.gov/pubmed/15541511
http://www.ncbi.nlm.nih.gov/pubmed/16807063
http://www.ncbi.nlm.nih.gov/pubmed/16637764

B PLOS | Suryanonat

Updating Beliefs Using an Attention-Like Mechanism

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

4.

42,

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

Koérding KP, Beierholm U, Ma WJ, Quartz S, Tenenbaum JB, et al. (2007) Causal inference in multisen-
sory perception. PLoS one 2: €943. PMID: 17895984

Orban G, Fiser J, Aslin RN, Lengyel M (2008) Bayesian learning of visual chunks by human observers.
Proceedings of the National Academy of Sciences 105: 2745-2750.

Vossel S, Mathys C, Daunizeau J, Bauer M, Driver J, et al. (2013) Spatial attention, precision, and
bayesian inference: A study of saccadic response speed. Cerebral Cortex: bhs418.

Feldman H, Friston KJ (2010) Attention, uncertainty, and free-energy. Frontiers in human neuroscience
4.

Whiteley L, Sahani M (2012) Attention in a Bayesian framework. Frontiers in human neuroscience 6.

Koechlin E (2014) An evolutionary computational theory of prefrontal executive function in decision-
making. Philosophical Transactions of the Royal Society of London B: Biological Sciences 369:
20130474. doi: 10.1098/rstb.2013.0474 PMID: 25267817

Chikkerur S, Serre T, Tan C, Poggio T (2010) What and where: A Bayesian inference theory of atten-
tion. Vision research 50: 2233-2247. doi: 10.1016/j.visres.2010.05.013 PMID: 20493206

Fang Y, Cohen MA, Kincaid TG (1996) Dynamics of a winner-take-all neural network. Neural Networks
9:1141-1154. PMID: 12662589

Gros C (2009) Cognitive computation with autonomously active neural networks: an emerging field.
Cognitive Computation 1: 77-90.

Kaski S, Kohonen T (1994) Winner-take-all networks for physiological models of competitive learning.
Neural Networks 7: 973-984.

Maass W (2000) On the computational power of winner-take-all. Neural computation 12: 2519-2535.
PMID: 11110125

Bitzer S, Yildiz IB, Kiebel SJ (2012) Online Discrimination of Nonlinear Dynamics with Switching Differ-
ential Equations. arXiv preprint arXiv:12110947.

Usher M, McClelland JL (2001) The time course of perceptual choice: the leaky, competing accumula-
tor model. Psychological review 108: 550. PMID: 11488378

Hopfield JJ, Tank DW (1985) “Neural” computation of decisions in optimization problems. Biological
cybernetics 52: 141-152. PMID: 4027280

Summerfield C, Behrens TE, Koechlin E (2011) Perceptual classification in a rapidly changing environ-
ment. Neuron 71: 725-736. doi: 10.1016/j.neuron.2011.06.022 PMID: 21867887

Payzan-LeNestour E (2010) Bayesian learning in unstable settings: Experimental evidence based on
the bandit problem. Swiss Finance Institute Research Paper: 1-41.

Mathys C, Daunizeau J, Friston KJ, Stephan KE (2011) A Bayesian foundation for individual learning
under uncertainty. Frontiers in Human Neuroscience 5.

Mathys C, Daunizeau J, Iglesias S, Diaconescu AO, Weber LAE, et al. (2012) Computational modeling
of perceptual inference: A hierarchical Bayesian approach that allows for individual and contextual dif-
ferences in weighting of input. Int J Psychophysiol 85: 317-318.

Kiebel SJ, Daunizeau J, Friston KJ (2008) A hierarchy of time-scales and the brain. PLoS computa-
tional biology 4: €1000209. doi: 10.1371/journal.pcbi.1000209 PMID: 19008936

Daunizeau J, Den Ouden HE, Pessiglione M, Kiebel SJ, Stephan KE, et al. (2010) Observing the
observer (l): meta-Bayesian models of learning and decision-making. PLoS One 5: e15554. doi: 10.
1371/journal.pone.0015554 PMID: 21179480

Daunizeau J, Den Ouden HE, Pessiglione M, Kiebel SJ, Friston KJ, et al. (2010) Observing the
observer (l1): deciding when to decide. PLoS one 5: e15555. doi: 10.1371/journal.pone.0015555
PMID: 21179484

Acerbi L, Vijayakumar S, Wolpert DM (2014) On the Origins of Suboptimality in Human Probabilistic
Inference. PLOS Computational Biology 10: €1003661. doi: 10.1371/journal.pcbi.1003661 PMID:
24945142

Vul E, Goodman ND, Griffiths TL, Tenenbaum JB. One and done? Optimal decisions from very few
samples; 2009. pp. 66-72.

Vul E, Pashler H (2008) Measuring the crowd within probabilistic representations within individuals.
Psychological Science 19: 645-647. doi: 10.1111/].1467-9280.2008.02136.x PMID: 18727777

Stephan KE, Penny WD, Daunizeau J, Moran RJ, Friston KJ (2009) Bayesian model selection for
group studies. Neuroimage 46: 1004—1017. doi: 10.1016/j.neuroimage.2009.03.025 PMID: 19306932

Rigoux L, Stephan KE, Friston KJ, Daunizeau J (2014) Bayesian model selection for group studies—
revisited. Neuroimage 84:971-985. PMID: 24018303

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004558 October 23,2015 32/34


http://www.ncbi.nlm.nih.gov/pubmed/17895984
http://dx.doi.org/10.1098/rstb.2013.0474
http://www.ncbi.nlm.nih.gov/pubmed/25267817
http://dx.doi.org/10.1016/j.visres.2010.05.013
http://www.ncbi.nlm.nih.gov/pubmed/20493206
http://www.ncbi.nlm.nih.gov/pubmed/12662589
http://www.ncbi.nlm.nih.gov/pubmed/11110125
http://www.ncbi.nlm.nih.gov/pubmed/11488378
http://www.ncbi.nlm.nih.gov/pubmed/4027280
http://dx.doi.org/10.1016/j.neuron.2011.06.022
http://www.ncbi.nlm.nih.gov/pubmed/21867887
http://dx.doi.org/10.1371/journal.pcbi.1000209
http://www.ncbi.nlm.nih.gov/pubmed/19008936
http://dx.doi.org/10.1371/journal.pone.0015554
http://dx.doi.org/10.1371/journal.pone.0015554
http://www.ncbi.nlm.nih.gov/pubmed/21179480
http://dx.doi.org/10.1371/journal.pone.0015555
http://www.ncbi.nlm.nih.gov/pubmed/21179484
http://dx.doi.org/10.1371/journal.pcbi.1003661
http://www.ncbi.nlm.nih.gov/pubmed/24945142
http://dx.doi.org/10.1111/j.1467-9280.2008.02136.x
http://www.ncbi.nlm.nih.gov/pubmed/18727777
http://dx.doi.org/10.1016/j.neuroimage.2009.03.025
http://www.ncbi.nlm.nih.gov/pubmed/19306932
http://www.ncbi.nlm.nih.gov/pubmed/24018303

B PLOS | Suryanonat

Updating Beliefs Using an Attention-Like Mechanism

56.

57.

58.

59.
60.

61.

62.
63.
64.

65.

66.

67.
68.

69.

70.

71.

72.

73.

74.

75.

76.

77.

78.

79.

80.

81.

82.

83.

Hansen N, Miller SD, Koumoutsakos P (2003) Reducing the time complexity of the derandomized evo-
lution strategy with covariance matrix adaptation (CMA-ES). Evolutionary Computation 11: 1-18.
PMID: 12804094

Hansen N, Kern S. Evaluating the CMA evolution strategy on multimodal test functions; 2004.
Springer. pp. 282-291.

Lyness J, Moler C (1966) van der Monde systems and numerical differentiation. Numerische Mathema-
tik 8:458-464.

Friel N, Wyse J (2012) Estimating the evidence—a review. Statistica Neerlandica 66: 288-308.

Geisler WS, Kersten D (2002) lllusions, perception and Bayes. Nat Neurosci 5: 508-510. PMID:
12037517

Kersten D, Mamassian P, Yuille A (2004) Object perception as Bayesian inference. Annu Rev Psychol
55:271-304. PMID: 14744217

Knill DC, Richards W (1996) Perception as Bayesian inference: Cambridge University Press.
Durbin J, Koopman SJ (2012) Time series analysis by state space methods: Oxford University Press.

Changeux J-P, Dehaene S (2000) Hierarchical neuronal modeling of cognitive functions: from synaptic
transmission to the Tower of London. Int J Psychophysiol 35: 179—-187. PMID: 10677646

Goela V, Pullara SD, Grafman J (2001) A computational model of frontal lobe dysfunction: Working
memory and the Tower of Hanoi task. Cognitive Science 25: 287-313.

Standage DI, Trappenberg TP, Klein RM (2005) Modelling divided visual attention with a winner-take-
all network. Neural networks 18: 620-627. PMID: 16087317

Beal MJ (2003) Variational algorithms for approximate Bayesian inference: University of London.

Miller RR, Barnet RC, Grahame NJ (1995) Assessment of the Rescorla-Wagner model. Psychological
bulletin 117: 363. PMID: 7777644

Siegel S, Allan LG (1996) The widespread influence of the Rescorla-Wagner model. Psychonomic Bul-
letin & Review 3: 314-321.

Bland AR, Schaefer A (2012) Different varieties of uncertainty in human decision-making. Frontiers in
neuroscience 6.

De Palma A, Ben-Akiva M, Brownstone D, Holt C, Magnac T, et al. (2008) Risk, uncertainty and discrete
choice models. Marketing Letters 19: 269-285.

Kolling N, Wittmann M, Rushworth MF (2014) Multiple neural mechanisms of decision making and their
competition under changing risk pressure. Neuron 81:1190-1202. doi: 10.1016/j.neuron.2014.01.033
PMID: 24607236

Platt ML, Huettel SA (2008) Risky business: the neuroeconomics of decision making under uncertainty.
Nat Neurosci 11: 398—403. doi: 10.1038/nn2062 PMID: 18368046

Heidrich-Meisner V, Igel C (2008) Evolution strategies for direct policy search. Parallel Problem Solving
from Nature—-PPSN X: Springer. pp. 428-437.

Heidrich-Meisner V, Igel C (2009) Neuroevolution strategies for episodic reinforcement learning. Jour-
nal of Algorithms 64: 152—168.

Hou S, Li Y (2009) Short-term fault prediction based on support vector machines with parameter optimi-
zation by evolution strategy. Expert Systems with Applications 36: 12383-12391.

Meng Y, Zhang Y, Jin Y (2011) Autonomous self-reconfiguration of modular robots by evolving a hierar-
chical mechanochemical model. Computational Intelligence Magazine, IEEE 6: 43-54.

Penny WD, Stephan KE, Daunizeau J, Rosa MJ, Friston KJ, et al. (2010) Comparing families of
dynamic causal models. PLoS computational biology 6: €1000709. doi: 10.1371/journal.pcbi.1000709
PMID: 20300649

Kepecs A, Mainen ZF (2012) A computational framework for the study of confidence in humans and
animals. Philosophical Transactions of the Royal Society B: Biological Sciences 367: 1322—1337.

Choi J, Sheu BJ (1993) A high-precision VLSI winner-take-all circuit for self-organizing neural networks.
Solid-State Circuits, IEEE Journal of 28: 576-584.

Coultrip R, Granger R, Lynch G (1992) A cortical model of winner-take-all competition via lateral inhibi-
tion. Neural networks 5: 47-54.

Ermentrout B (1992) Complex dynamics in winner-take-all neural nets with slow inhibition. Neural net-
works 5:415-431.

Koch C, Ullman S (1987) Shifts in selective visual attention: towards the underlying neural circuitry.
Matters of Intelligence: Springer. pp. 115-141.

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004558 October 23,2015 33/34


http://www.ncbi.nlm.nih.gov/pubmed/12804094
http://www.ncbi.nlm.nih.gov/pubmed/12037517
http://www.ncbi.nlm.nih.gov/pubmed/14744217
http://www.ncbi.nlm.nih.gov/pubmed/10677646
http://www.ncbi.nlm.nih.gov/pubmed/16087317
http://www.ncbi.nlm.nih.gov/pubmed/7777644
http://dx.doi.org/10.1016/j.neuron.2014.01.033
http://www.ncbi.nlm.nih.gov/pubmed/24607236
http://dx.doi.org/10.1038/nn2062
http://www.ncbi.nlm.nih.gov/pubmed/18368046
http://dx.doi.org/10.1371/journal.pcbi.1000709
http://www.ncbi.nlm.nih.gov/pubmed/20300649

B PLOS | Suryanonat

Updating Beliefs Using an Attention-Like Mechanism

84.

85.

86.

87.

88.

89.

90.

91.

Lee DK, ltti L, Koch C, Braun J (1999) Attention activates winner-take-all competition among visual fil-
ters. Nat Neurosci 2: 375-381. PMID: 10204546

Bodegard A, Geyer S, Grefkes C, Zilles K, Roland PE (2001) Hierarchical processing of tactile shape in
the human brain. Neuron 31: 317-328. PMID: 11502261

Wessinger C, VanMeter J, Tian B, Van Lare J, Pekar J, et al. (2001) Hierarchical organization of the
human auditory cortex revealed by functional magnetic resonance imaging. Journal of Cognitive Neuro-
science 13:1-7. PMID: 11224904

Friston KJ, Daunizeau J, Kilner J, Kiebel SJ (2010) Action and behavior: a free-energy formulation. Bio-
logical cybernetics 102: 227-260. doi: 10.1007/s00422-010-0364-z PMID: 20148260

Angela JY, Dayan P. Inference, attention, and decision in a Bayesian neural architecture; 2004. pp.
1577-1584.

Rao RP (2005) Bayesian inference and attentional modulation in the visual cortex. Neuroreport 16:
1843-1848. PMID: 16237339

Friston K (2010) The free-energy principle: a unified brain theory? Nature Reviews Neuroscience 11:
127-138. doi: 10.1038/nr2787 PMID: 20068583

Arlot S, Celisse A (2010) A survey of cross-validation procedures for model selection. Statistics surveys
4:40-79.

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004558 October 23,2015 34/34


http://www.ncbi.nlm.nih.gov/pubmed/10204546
http://www.ncbi.nlm.nih.gov/pubmed/11502261
http://www.ncbi.nlm.nih.gov/pubmed/11224904
http://dx.doi.org/10.1007/s00422-010-0364-z
http://www.ncbi.nlm.nih.gov/pubmed/20148260
http://www.ncbi.nlm.nih.gov/pubmed/16237339
http://dx.doi.org/10.1038/nrn2787
http://www.ncbi.nlm.nih.gov/pubmed/20068583

