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Abstract

Here, we describe the results from the first variance heterogeneity Genome Wide Association Study (VGWAS) on
yeast expression data. Using this forward genetics approach, we show that the genetic regulation of gene-expression
in the budding yeast, Saccharomyces cerevisiae, includes mechanisms that can lead to variance heterogeneity in the
expression between genotypes. Additionally, we performed a mean effect association study (GWAS). Comparing the
mean and variance heterogeneity analyses, we find that the mean expression level is under genetic regulation from a
larger absolute number of loci but that a higher proportion of the variance controlling loci were trans-regulated. Both
mean and variance regulating loci cluster in regulatory hotspots that affect a large number of phenotypes; a single
variance-controlling locus, mapping close to DIA2, was found to be involved in more than 10% of the significant
associations. It has been suggested in the literature that variance-heterogeneity between the genotypes might be
due to genetic interactions. We therefore screened the multi-locus genotype-phenotype maps for several traits where
multiple associations were found, for indications of epistasis. Several examples of two and three locus genetic
interactions were found to involve variance-controlling loci, with reports from the literature corroborating the functional
connections between the loci. By using a new analytical approach to re-analyze a powerful existing dataset, we are
thus able to both provide novel insights to the genetic mechanisms involved in the regulation of gene-expression in
budding yeast and experimentally validate epistasis as an important mechanism underlying genetic variance-
heterogeneity between genotypes.
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Introduction

Unravelling the genetic architecture of complex traits is a
grand challenge in current biology. New tools such as dense
genetic maps, high-throughput genotyping and large-scale
phenomics have made genome-wide association studies
(GWAS) a widely applied approach. The detected genes do,
however, often explain only a small amount of the phenotypic
variability. A potential reason could be that the contribution of
complex interactions of multiple genes is common [1,2], while
the most frequently used analysis methods assume that
inheritance is purely additive. There is however an increase in
reports on variance due to genetic interactions [3,4]. In general,
the contribution to trait variability of interacting loci is difficult to
assess as only the strongest interactions can be detected due
to the high significance thresholds needed to correct for the
multiple-testing performed in multi-dimensional scans for
interacting loci. For a more complete exploration, new methods
are needed that allow detection of all types of epistatic

interactions, i.e. also those that do not lead to strong main
effects, without using excessive multiple testing. Furthermore,
a more extensive use of model organisms for this purpose
would also be beneficial as the underlying biology of epistatic
interactions is difficult to assess in studies based on complex
phenotypic data in higher organisms. Thus, a more widespread
use of new methods for detecting genetic interactions to
analyze relatively simple phenotypes in well-studied model
organisms has the potential to uncover more information on the
biology and genetics underlying the complex genetic
interactions. In this way we can guide future efforts to dissect
important agricultural and medical traits in higher organisms.

An example where this approach has earlier been used is for
the genetic dissection of the genetic regulation of gene
expression in Saccharomyces cerevisiae. By crossing
divergent strains and analysing data on genotypes and
phenotypes in multiple haploid segregants, a large number of
genes, genomic regions and complex networks involved in
regulating expression have been found [5-11].
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Although complex to measure and analyze in itself,
expression data can be considered as a relatively simple
genetic trait, since the regulation of a single gene’s expression
is expected to involve much fewer factors than more complex
phenotypes such as growth rate, behaviour and disease
susceptibility. Furthermore, by using expression data as a
model phenotype for testing analysis methods for finding
interactions, it will not only allow an estimate of the total
contribution of epistasis to the trait, but also allow researchers
to utilize the wealth of available knowledge of yeast biology
[12]to functionally explain the inferred interactions.

The variance-heterogeneity GWAS, or vGWAS for short
[13-15], is a method developed to detect genomic loci that
display variance heterogeneity between genotypes. This
heterogeneity could be due to several underlying mechanisms,
one of them being epistasis. The reason for this is that, when
there is non-additive interaction between two loci, variance
heterogeneity is introduced into at least one locus when a one-
dimensional search is performed [15,16]. This means that the
loci detected in the vGWAS are likely candidates for being
involved in gene-by-environment or gene-by-gene interactions
[13-15,17]. As vGWAS is based on a one-dimensional scan of
the genome, it reduces the multiple testing penalty in screens
for epistatic interactions by identifying a smaller subset of
candidate interacting loci among which gene-gene interactions
can be detected. The method therefore has the potential to
both improve power, due to a decreased need for multiple-
testing corrections, and to considerably decrease the
computational demand of multi-locus analyses.

Variance heterogeneity has been observed in a number of
studies [18-21] and has also been implicated in complex
genome wide regulation of gene by RNA degradation in
humans [22]. It has also been shown that vGWAS is able to
identify many novel variance controlling loci and that they can
make large contributions to the phenotypic variance of many
complex traits in Arabidopsis thaliana [15]. In a separate study,
the physiological and metabolic stochastic noise observed in
Arabidopsis thaliana have been shown to be under genetic
control [23]. The underlying biology is, however, largely
unknown and it is therefore of interest to further explore the
mechanisms underlying such effects in other experimental
systems.

Here, we apply both GWAS and vGWAS, analyses on data
from a publically available Saccharomyces cerevisiae dataset
[9] to find QTL and variance controlling QTL (vQTL) regulating
gene-expression. Although this dataset has been well studied
before [5,6,9], we find many previously unidentified loci
involved in regulation of expression and highlight a few cases
where vQTL are involved in epistatic interactions. We focus on
gene-gene interactions, since the yeast model is well studied
and incorporating database information, supporting functional
links between genes, allows us to present a comprehensive
description of the genetic architecture.

Furthermore, we report a description of the distribution of the
QTL and vQTL in the genome and discuss the potential
functional relevance of the overlap of the loci in hotspots. In
light of this analysis, vGWAS emerges as a promising
approach to functionally dissect the complex genetics

underlying gene-expression. By combining the results from
GWAS and vGWAS analyses with available knowledge on
biological networks, we connect the results with known
molecular mechanisms in yeast, verify established pathways
and, more importantly, provide a new route to more complete
dissection of the genetics of complex traits.

Results and Discussion

We have mapped genes affecting either the mean difference
or variance heterogeneity in expression levels of single genes
in a cross between two divergent yeast strains. We describe
the genomic distribution of variance controlling loci in the
genome, compare it to the distribution of mean controlling loci
and are able to identify potential master loci involved in the
regulation of genome-wide variance heterogeneity in
expression. By exploring whether genetic interactions is a
plausible explanation for the observed genetic variance
heterogeneity between genotypes at the vQTL, we provide new
insights to their role in multi-locus interactions.

Genome-wide mapping of QTL and vQTL
In total, 8387 QTL and vQTL were identified for the 4482

expression phenotypes across the two treatments (Table 1).
Study-wide, there are considerably more QTL than vQTL in the
genome (8196 vs. 191) with a relatively even distribution of
signals across the two treatments. The total number of vQTL is
thus lower in this study than in some of the other earlier studies
of more complex phenotypes in higher organisms [15]. This is
likely due to the fact that expression phenotypes are, by nature,
less genetically complex than phenotypes measured on an
organismal level (e.g. weight, growth rate or flowering time),
the number of gene-gene (epistatic) interactions that could lead
to a variance heterogeneity between genotypes are lower than
for macroscopic traits. On the other hand, it is expected that
the vQTL affecting the expression phenotypes will have a tight
connection with the biology of the particular trait and therefore
more useful for dissecting the underlying mechanisms of the
signals. The results from this study conform to the expectation
that less complex phenotypes are affected by fewer loci since,
a study on more complex phenotypes observed equal numbers
of QTL and vQTL [15].

The genome-wide distribution of QTL and vQTL in cis- and
trans- was visualized by plotting the location of the QTL and
vQTL peaks across all phenotypes against the position of the
expression phenotype they affect (Figure 1; Figure S1; Tables
S1, S2). Roughly 25% of the peaks fall close to the diagonal in
Figure 1, and are thus cis-QTL or cis-vQTL, respectively. In
Table 1, we summarize the locations of the sets of significant
QTL and vQTL relative to the expression phenotype they
affect. There is slightly less than two times as many trans-QTL
as cis-QTL, while, the trans-vQTL are eight times more
abundant than the cis-vQTL.

Figure 1 shows that a number of QTL or vQTL in the genome
affect multiple phenotypes. These hotspots, that together
regulate transcription of thousands of genes distributed
throughout the genome, are themselves spread across the
genome and have earlier been reported in this data (Figure 1,
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Figure S1; see 5,9). In Table 2, we summarize the locations of
the significant trans-QTL/vQTL relative to the 19 visually
identified hotspots, which in total cover approximately 22% the
genome. There is a significant bias for the trans-QTL/vQTL to
be located within a hotspot (Table S3). The majority of the
trans-QTL (95%) and trans-vQTL (67%) fall within one of these
hotspot regions (Figure 2; Table S1). More than 40 percent of
all the trans-QTL/vQTL are located in the first hotspot on
chromosome 15. Several of the hotspots include vQTL and
some are biased in favor of vQTL (Figure 2).

Trans acting QTL are found to regulate approximately 60%
of the expression phenotypes, as also reported earlier [5,6,9].
However we find that almost 90% of the vQTL are in trans
relative to the expression phenotypes they affect. Although the
total number of trans-QTL is very large (4941), only 274 of
these are located outside of a hotspot. This is in contrast to the
trans-vQTL, where 56 out of 170 are located outside of the
hotspots. There are thus proportionally more trans-vQTL than
trans-QTL and there are significantly more trans-QTL than
trans-vQTL in hotspots (Table S3). This is consistent with the
expectation that vQTL are more likely to be involved in epistatic

Table 1. The number of significant QTL and vQTL peaks per treatment.

 Glucose Ethanol Proportion trans
 cis trans Totala cis trans Totala  
QTL 1541 2845 4397 1563 2228 3799 0.62
vQTL 13 95 108 8 75 83 0.89
Total 1554 2940 4505 1571 2303 3882  

SNP peaks separated by 50,000bp were considered to be two peaks.
a A few expression phenotypes have unknown genome positions and thus the total number of QTL is larger than the sum of the cis and trans QTL.
doi: 10.1371/journal.pone.0079507.t001

Figure 1.  Genome wide distribution of QTL and vQTL.  The distribution of QTL and vQTL with significant effects on gene-
expression across the yeast genome (for a by-chromosome version see Figure S1). Red and blue indicate significant QTL/vQTL
peaks for glucose and ethanol treatments respectively. Closed circles indicate QTL affecting the mean level of expression and
crosses vQTL affecting the variance heterogeneity. Chromosome boundaries are indicated by gray, horizontal and vertical lines.
Cis-QTL are located on the diagonal with our defined cis-/trans-border indicated black dotted lines (Table 1). The shaded vertical
bands containing many peaks are suggested hotspots of gene-regulation (see Figure 6B).
doi: 10.1371/journal.pone.0079507.g001
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interactions and act as key regulatory elements in particular
biochemical pathways, whereas the expression QTL are
expected to be master regulators that act simultaneously on
many other loci.

The distribution of the cis- and trans-vQTL is consistent with
the fact that epistatic regulation of gene-expression will, by
definition, include trans-effects. A number of vQTL are located
in hotspot regions, indicating that epistasis might also involve
some master-regulators. Hotspot 18, on chromosome 15
(Table S1), may be one such regulator, containing almost 10%
of all the vQTL. The gene DIA2 is located within this hotspot
and has been indicated as a gene essential for genome
stability [24]. It is thus a potential candidate gene for
introducing high levels of variance heterogeneity between
functional and disrupted alleles at many loci across the
genome, potentially by causing high levels of chromosomal
rearrangements [24].

Most vQTL are, however, located outside of the hotspots,
presumably as part of more specific, epistatic regulatory control

systems. Although the number of vQTL inferred here is small
relative to the number of QTL (only about 2% of the total
number of significant loci), they represent about 20% of the
regulatory loci that are neither master-regulators nor auto-
regulatory. The picture thus emerges that epistasis might be an
important factor in specific regulatory control of individual
genes and that identification of vQTL emerges as a useful
approach to identify such novel regulatory elements in the
genome.

The expression-traits affected by vQTL
In total, 133 phenotypes had at least one significant vQTL

(61 in glucose-, 72 in ethanol-, and 8 in both treatments; Table
S2). To explore whether some of the vQTL were strong
candidates for being involved in epistatic interactions, we
mined the results for potential interactions between the vQTL,
the gene whose expression it affects and other vQTL or QTL
affecting the same expression phenotype. Unbalanced
sampling in the genotypic classes may inflate the significance

Table 2. Distribution of trans QTL and vQTL across the genome (see also Table S1).

 Glucose - trans Ethanol - trans Proportion in hotspot
 Hotspot   Non-hotspot   Total   Hotspot   Non-hotspot   Total  
QTL 2713 132 2845 2086 142 2228 0.95
vQTL 66 29 95 48 27 75 0.67
Total 2779 161 2940 2134 169 2303  

doi: 10.1371/journal.pone.0079507.t002

Figure 2.  Distribution of QTL and vQTL across hotspots.  A comparison of all proportion QTL and vQTL for each treatment for
the 19 gene-regulation hotstpots in the yeast genome (see also Table S1).
doi: 10.1371/journal.pone.0079507.g002
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of the variance (Shen and Carlborg submitted), however, the
vQTL reported here have balanced genotype frequencies due
to the F2 design, this artefact is thus avoided (Shen and
Carlborg submitted). The first step in the evaluation was to
inspect the pairwise genotype-phenotype (GP) maps for all
possible pairs of loci affecting a given phenotype for signs of
epistasis. If the GP-map indicated epistasis, all genes in the
region ±10kb of each QTL and vQTL peaks were identified and
a search conducted in the literature and relevant databases for
known interactions between the genes in the epistatic regions
(Table S4). In the following sections we will discuss four
illustrative examples of two- and three-locus interactions
involving vQTL as a way to illustrate the type of effects that
could be detected by vGWAS analyses.

Epistatic interactions in the regulation of flocculation
The expression of the flocculation gene FLO8 (YER109C;

Figure 3) is regulated by multiple loci. The mean expression
level is regulated by a cis-QTL located 16kb from the gene
itself. A trans-vQTL on Chromosome 1 (200,997bp, Figure 3B)
shifts the mean expression level and also introduces a genetic
variance-heterogeneity in the expression of FLO8. The
genotype-phenotype map for the interaction between these two
loci showed a distinct epistatic pattern in the ethanol treatment
(Figure 3A), where there is up-regulation of expression of FLO8
if and only if there are RM-derived alleles at both loci. In all
other genotypic combinations, expression is lower. The genes
involved in flocculation have been well studied [25-27] and both
of the regions identified in this study contain candidate genes
for the observed effects. The most obvious candidate gene in
the region of the cis-QTL is FLO8 itself and the peak on
Chromosome 1 contains the gene FLO1 (YAR050W;
203,403-208,016 bp). The interaction between FLO1 and FLO8
and its role in flocculation has been experimentally verified

[25-27] and it is known that the expression of FLO8 regulates
the expression of FLO1 [25,26]. The link between FLO1 and
FLO8 has earlier been reported in this population [5], but our
vQTL results provide additional insights to the nature of this
interaction by showing that the expression, and especially the
variance in the expression, of FLO8 is affected by FLO1.
Although the genes in this particular example can be detected
also in a GWAS for mean effects, it illustrates the ability of the
vGWAS to not only identify QTL but also indicate potential
epistatic interactions to be explored in more detail.

Epistatic interactions involving multiple loci in the
pyrimidine metabolism pathway

Several of the identified vQTL are involved in two-way
interactions in the pyrmidine metabolism pathway (Figure 4).
The expression of URA4 (YLR420W) is affected by two
variance-controlling loci when grown in glucose. The first is
located in a hotspot on Chromosome 5 (117,705bp; Figure 4B;
hotspot 6 Table S1) and causes both a shift in the mean
expression level and variance heterogeneity in URA4
expression. The second locus, located on Chromosome 13
(46,084bp; Figure 4B), only introduces a variance-
heterogeneity between the alternative genotypes. The two-
locus genotype-phenotype map (Figure 4A) shows a clear
epistatic interaction between the two vQTL: the expression of
URA4 is up-regulated only in the RM genotype background for
the vQTL on Chromosome 5, but expression is, on average
much higher in the BY genotype background for the vQTL on
chromosome 13. The genetic effects on URA4 expression in
the ethanol treatment are smaller and non-significant, but
follow the same general trend.

The literature and database mining provides a promising
candidate gene for the vQTL effect on Chromosome 5: URA3
(YEL021W; 116,167-116,970bp). Both URA3 and URA4 are

Figure 3.  QTL and vQTL regulation of FLO8.  Using a GWAS and vGWAS analysis, several loci were identified as either QTL,
vQTL or both in their effects on gene-expression of FLO8. A) The genotype-phenotype map for the glucose (red) and ethanol (blue)
treatments for genotypic combinations of all the QTL and vQTL identified in B. B) Manhattan-plots for GWAS (grey) and vGWAS
(coloured). Squares and circles represent markers from the glucose and ethanol treatments respectively. The horizontal dotted line
represents 0.5% FDR significance level. The purple vertical line indicates the position of the expression phenotype.
doi: 10.1371/journal.pone.0079507.g003
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enzymes in the pyrimidine metabolism pathway. URA3 is
downstream of URA4 with three intermediate metabolites
between them (for a review on the topic see [28]). There is,
however, no known direct links between URA3 and URA4, but
the results obtained here indicate that it should be worthwhile
to further explore the functional link between these loci by e.g.
looking for a potential feed-back or feed-forward mechanism
involving these two loci.

Several candidate genes are located in the vQTL region on
Chromosome 13, (Table S4), the most interesting being TAF8
(YML114C) that, like URA3 and URA4, also effects pyrimidine
metabolism through the transcription factor PPR1. PPR1
(YLR014C) is a key regulator in the activation of the genes in
the pyrimidine pathway, especially during pyrimidine starvation
and it interacts with other proteins in the transcription
machinery during pyrimidine biosynthesis [28,29]. TAF8 is a
transcription factor subunit with a verified genetic link with
PPR1 [30]. The promoter sites of URA3 and URA4, where
PPR1 binds, are similar and there is thus competitive binding
[31]. URA4 is only up regulated when the QTL at URA3 is from
the RM strain and it is further enhanced when the vQTL close
to the TAF8 gene is from the BY strain. Further experimental
work is needed to explore the molecular mechanisms
underlying this epistatic interaction. It would e.g. be interesting
to test whether there is differential binding affinity of PPR1 to
the URA3/URA4 promoters when it is combined with the
alternative TAF8 alleles and whether leads to a differential
expression of URA3 and/or URA4 that could explain the
differences observed in expression of URA4 in this study.

Multi-locus interactions affecting the expression of
CTA1 (YDR256C)

The expression of CTA1 in the ethanol treatment is affected
by three loci (Figure 5). The first two are trans-QTL in hotspots
on chromosome 1 (42,489bp; hotspot 1, Table S1) and on

chromosome 12 (662,627bp; hotspot 11, Table S1), while the
third is a vQTL on chromosome 14 (714,215bp). The three-
locus genotype-phenotype map (Figure 5A) illustrates a clear
three-locus epistatic interaction, where individuals with the BY
genotype at all three loci have down regulated expression of
CTA1. Any other genotypic combination results in up regulation
of CTA1; an example of a classic three-locus, duplicate-factor
epistasis.

CTA1 encodes a catalase enzyme that decomposes
hydrogen peroxide in the perisomes and mitochondria during
fatty acid beta oxidation [32]. Its expression is increased during
caloric restriction and oxidative stress, as is the case in
exposure to ethanol [33]. The expression of CTA1 is lower in
individuals with the BY genotype at all three loci, i.e. in the
domesticated genotype. An explanation for this pattern is that
these loci are involved in making the domesticated strain better
adapted to deal with exposure to the oxidative stress under the
ethanol treatment, possibly due to multiple exposures in during
domestication and use in fermentation. Its response to this
exposure would therefore not be as strong. The identification of
the vQTL, in addition to the two QTL, allowed this three-way
interaction to be detected. However, although a number of
candidate genes could be identified in the QTL and vQTL
regions (Table S4), we were not able to assign any of these to
a coherent network that has been experimentally verified
before. Further investigation of the candidate genes (Table S4)
would be interesting as it may reveal genes and biochemical
mechanism responsible for response to oxidative stress
through multi-locus epistatic regulation of expression.

An interaction involving DIA2 (YOR080W) and Rim8
controls the variance-heterogeneity in expression of
VPS20 (YMR077C)

In the ethanol treatment, we detect a significant genetic
variance-heterogeneity for the expression of VPS20 between

Figure 4.  QTL and vQTL regulation of URA4.  A) The genotype-phenotype map of URA4 expression for the two-way interactions
identified in B (colours are the same as Figure 3). B) Manhattan-plots of GWAS and vGWAS of the URA4 phenotype. The horizontal
dotted line represents 0.5% FDR significance level. The purple vertical line indicates the position of the expression phenotype.
Colours and symbols are the same as Figure 3.
doi: 10.1371/journal.pone.0079507.g004
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the alternative genotypes of a vQTL on chromosome 15
(476,328 bp) (Figure 6A and 6B). This trans-vQTL is located in
a hotspot on chromosome 15 (hotspot 18, Table S1) within the
DIA2 gene that contains almost 12% of the significant trans-
QTL/vQTL for all the expression phenotypes. DIA2 is known to
play a central and regulatory role in a number of mini-pathways
[34], and has been implicated in genome stability [24] affecting
a number phenotypes and gene expressions. The genetic link
between DIA2 and VPS20 is confirmed [34]. Both VPS20 and
DIA2 are involved in ubiquitin-dependent protein degradation
where VPS20 interacts with other subunits to form complexes
involved in transportation and localization of proteins in the
degradation pathway [35-39]. Upon further inspection, the
distribution of the VPS20 expression within the high-variance
DIA2 RM genotype appears to be bimodal (Figure 6E). In an
attempt to identify the reason for this bimodality, a second
association analysis was performed where only individuals that
had the RM genotype at the chromosome 15 vQTL were
included (Figure 6D and 6E). The strongest signal in this
analysis maps to the gene RIM8 (YGL045W). This is an
interesting finding as RIM8 has earlier been reported to interact
with RIM101 (YHL027W; see 37,40) which in turn interacts with
both VPS20 and DIA2 [30,37,41]. All these genes are involved
in the ESCRT pathway, and, more specifically, transportation
and interaction with ubiquitin modified proteins [30,35-39,41].

Conclusions

When variance-heterogeneity exists between genotypes at a
locus, it is an indication that the locus could be involved in
epistatic interactions with other loci. When testing for epistatic
QTL, a vQTL scan combined with a conditional mean effect
scan has been shown to be more powerful than a two
dimensional mean effect QTL scan [15]. Here we show
evidence, indicating that several such vQTL are involved in the

regulation of gene-expression. vQTL were less common than
QTL affecting the mean, rarely acted in cis-, but constituted a
significant portion of the trans-QTL, in particular trans-QTL
located outside of suggested master regulatory regions
(hotspots). This observation is in line with the expectation that
vQTL are more likely to be involved in epistatic interactions
modifying the expression in particular systems rather than act
as master regulators of expression. One exception to this
pattern is a hotspot on chromosome 15 close to the DIA2 gene
that contains 12% of the trans-QTL/vQTL and therefore might
be a master regulator of genome-wide variance heterogeneity.

In this study, we provide several examples of interactions
involving vQTL where links between candidate genes have
been described before and in this way add new insights to how
these links might be functionally connected through genetic
interactions. In this way it is shown that the additional
information gained from vGWAS analysis may provide useful
additional insight into how loci combine to regulate expression
and also contribute to the variation observed in the phenotype
of the studied organism.

Methods

Data
We re-analysed a publically available yeast dataset with

genotypes and expression phenotypes on individuals from
cross between a laboratory S. cereviciae strain (BY4716 ,
isogenic to S288C) and a wild isolate (RM11-1a)(for a
complete description, see [7,9]). Briefly, the dataset consisted
of 109 haploid segregants. Each segregant was grown in two
conditions with either glucose or ethanol as the main carbon
energy source. Bar the different growth mediums, all other
environmental conditions were kept constant throughout the
experiment. For each segregant, a set of 2956 SNP markers
were genotyped providing an average marker density of one

Figure 5.  QTL and vQTL regulation of CTA1.  A) The genotype-phenotype map of CTA1 expression for the three interactions
identified in B (colours are the same as Figure 3). B) Manhattan-plots of GWAS and vGWAS of the CTA1 phenotype. The horizontal
dotted line represents 0.5% FDR significance level. The purple vertical line indicates the position of the expression phenotype.
Colours and symbols are the same as Figure 3.
doi: 10.1371/journal.pone.0079507.g005
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marker every 4.1 kbp. The expression profiles for 4482 genes
were obtained for each segregant. The expression profile of
each individual consisted of the normalized and log2-
transfomed hybridization profiles of RNA, from the 4482 genes,
to cDNA microarrays (for each treatment). These were used as
the phenotypes in the GWAS and vGWAS.

Genome wide association analysis for mean controlling
loci (GWAS)

For each of the expression phenotypes, a genome-wide
association analysis to detect mean effects of loci was
performed using the Wilcoxon test to test for association at all
genotyped marker locations. The Wilcoxon rank-sum test is
non-parametric and is a standard test used for association
studies. The analyses were performed in R, using a modified
verions of the vGWAS package [15] with the Wilcoxon test

replacing the variance-comparing Brown-Forsyth test.
Significance was estimated using the procedure below.

Genome-wide association analysis for variance
controlling loci (vGWAS)

For each expression phenotype, a genome-wide association
analysis to detect variance controlling loci was performed,
using the Brown-Forsythe test implemented in the vGWAS
package in R [15]. The Brown-Forsythe test assesses the
equality of variances between different samples. The
application to genomic data, as in the vGWAS package, means
that the spread of the variances of the phenotype given the
genotype is tested. Loci affecting the variance in expression
are detected using this test [13-15]. Significance was estimated
using the procedure below.

Figure 6.  QTL and vQTL regulation of VPS20.  A) Expression of VPS20 for the different genotypes at the DIA2 locus (colours are
the same as Figure 3). B) Manhattan-plots of GWAS and vGWAS of the VPS20 phenotype. The horizontal dotted line represents
0.5% FDR significance level. The purple vertical line indicates the position of the expression phenotype. Colours and symbols are
the same as Figure 3. C) The genotype-phenotype map of VPS20 expression for the two way interactions identified from the
vGWAS B. and GWAS D. D) Manhattan-plots of GWAS on VPS20 expression in individuals with RM genotype at the DIA2 locus.
The horizontal dotted line represents 5% FDR significance level. E) Distribution of VPS20 expression levels for individuals with RM
genotype at DIA2.
doi: 10.1371/journal.pone.0079507.g006
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Significance thresholds
The significance for both the GWAS and vGWAS was

obtained using a method similar to that used in Smith and
Kruglyak [9]. Permutation testing was performed on two
hundred random phenotypes with one hundred permutations
for each phenotype, resulting in a combined total of 20000
permutations. This was repeated for each of the treatments for
both GWAS and vGWAS (i.e. four separate permutation test
sets). Random phenotypes were used to ensure there was no
systematic bias due to a specific phenotype. For each
permutation the values of the selected phenotype was
randomly assigned to the genotypes. Assuming that there is no
true signal in the randomly assigned phenotypes, we obtained
a distribution of false positive signals. Based on this
distribution, we chose a threshold of 1.00x10-5. For the four
permutation test sets, this threshold corresponds to a FDR of
ranging from 0.43% to 0.48%.

In the VPS20 example specifically, we identified a vQTL
peak close to the DIA2 gene (Figure 6A and 6B) using the
thresholds calculated above. A bimodal distribution is seen in
the phenotypes for the individuals with the RM genotype at the
peak (Figure 6E) and a subsequent association analysis was
performed on this subset of individuals. Permutation testing
was performed in the data subset with 500 permutations,
sufficient to estimate a 5% threshold. Based on the permutation
result we used a significance threshold of 10-3.82, corresponding
to a 5% FDR.

Defining QTL/vQTL peaks
When a significant association was detected, we assigned

SNPs in the same genomic regions to the same association
peak as follows. First, the significant SNP with the lowest p-
value was defined to be at the centre of the peak. Then, all
SNPs within ±25 kb of this SNP was assigned to the same
peak. This was performed for all significant SNPs in a sliding
window fashion. Although slightly arbitrary it is nessesary to
quantify the number of QTL rather than the absolute number of
significant SNPs and 25kb was chosen based on the extend of
observed distinct signals in the dataset.

We further defined association peaks that mapped within
150kb of the position of the gene whose expression it affects
as cis-QTL/vQTL, and all peaks located further away as trans-
QTL/vQTL. The 150kb range was chosen on the observed
placement of the majority of significant SNPs on the diagonal
(Figures 1 and S1) and we intentionally err on the conservative
side to ensure all trans-QTL/vQTL are true.

Genome wide hotspots
We identified 19 areas in the genome where multiple

phenotypes are affected by QTL or vQTL in close proximity
(see Figures 1 and S1 and Table S1). The QTL/vQTL
distribution throughout the genome is visually uneven.
However, the borders of the hotspots are not very sensitive to
different estimates and we included all regions that had an
overrepresentation of QTL/vQTL for a number of phenotypes.
The combined size of the hotspots is 22.3% of the whole
genome. To assess that the chosen hotspots were enriched for
QTL/vQTL we performed a chi-square test (i.e. ratio of QTL

and vQTL within/outside the hotspot). We found a significant
difference between the QTL/vQTL within vs. outside the
hotspot (Table S3).

Evaluation of interactions
Gene-gene interactions (epistasis) can lead to a genetic

variance–heterogeneity when the different alleles at the locus
enhance or suppress the effects of other loci in the genome.
Here, we studied the phenotypes for which significant vQTL
were found in more detail to identify possible gene-gene
interactions. First, genotype/phenotype maps were plotted for
all possible two-locus combinations including an identified
vQTL and other significant QTL or vQTL. These maps were
manually evaluated to identify putative epistatic interactions.
Candidate epistatic pairs were further explored by first
identifying all genes located less than 10kb upstream or
downstream from the QTL/vQTL peaks in the Saccharomyces
cerevisiae reference genome (http://www.ncbi.nlm.nih.gov/
genome/15/?project_id=128, Table S4). All pairs of genes in
these 20kb regions were listed and used to mine the literature,
the Yeastmine (http://yeastmine.yeastgenome.org/) and KEGG
(http://www.genome.jp/kegg/) for previously described
interactions between the gene-pairs or between the genes and
the gene whose expression was analyzed. In this way, several
putative functional interactions underlying the candidate
epistatic pairs were identified.

Data access
The expression data used in this study was obtained from:

http://www.plosbiology.org/article/info%3Adoi
%2F10.1371%2Fjournal.pbio.0060083 and is also available via
Gene Expression Omnibus (GEO: http://www.ncbi.nlm.nih.gov/
projects/geo/) accession number GSE9376 [9]. The genotypic
data used in this was obtained from: http://
blogs.ls.berkeley.edu/bremlab/data/ (see [7]).

Supporting Information

Figure S1.  A per-chromosome distribution of QTL and
vQTL with significant effects on gene-expression across
the yeast genome (for a genome-wide visualization, see
Figure 1). Red and blue indicate significant QTL/vQTL peaks
for glucose and ethanol treatments respectively. Closed circles
indicate QTL affecting the mean level of expression and
crosses vQTL affecting the variance heterogeneity. The eight
solid grey lines are hotspots identified by [5]. The slanted red,
blue and pink areas are hotspots identified by the study by [9],
indicating glucose, ethanol and glucose-ethanol interaction
respectively.
(TIFF)

Table S1.  Summary of the detected trans-QTL/vQTL per
hotspot.
(TXT)

Table S2.  All the peaks (QTL and vQTL for both
treatments) per phenotype.
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Table S3.  Chi-square p-values for occurrence of QTL/
vQTL in hotspots, per treatment, and test for difference
between occurrence of vQTL and QTL in hotspots.
(TXT)

Table S4.  Candidate genes per peak (for the phenotypes
with significant vQTL only).
(TXT)
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