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Objective : To evaluate the interactions among differentially expressed autophagy and mitophagy markers in subarachnoid 
hemorrhage (SAH) patients with delayed cerebral ischemia (DCI).
Methods : The expression data of autophagy and mitophagy-related makers in the cerebrospinal fluid (CSF) cells was analyzed by 
real-time reverse transcription-polymerase chain reaction and Western blotting. The markers included death-associated protein 
kinase (DAPK)-1, BCL2 interacting protein 3 like (BNIP3L), Bcl-1 antagonist X, phosphatase and tensin homolog-induced kinase (PINK), 
Unc-51 like autophagy activating kinase 1, nuclear dot protein 52, and p62. In silico functional analyses including gene ontology 
enrichment and the protein-protein interaction network were performed.
Results : A total of 56 SAH patients were included and 22 (38.6%) of them experienced DCI. The DCI patients had significantly 
increased mRNA levels of DAPK1, BNIP3L, and PINK1, and increased expression of BECN1 compared to the non-DCI patients. 
The most enriched biological process was the positive regulation of autophagy, followed by the response to mitochondrial 
depolarization. The molecular functions ubiquitin-like protein ligase binding and ubiquitin-protein ligase binding were enriched. In 
the cluster of cellular components, Lewy bodies and the phagophore assembly site were enriched. BECN1 was the most connected 
gene among the differentially expressed markers related to autophagy and mitophagy in the development of DCI.
Conclusion : Our study may provide novel insight into mitochondrial dysfunction in DCI pathogenesis.
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INTRODUCTION

Delayed cerebral ischemia (DCI) is still a significant risk 

factor for poor neurologic outcomes in patients with SAH21). 

Previous reports on the relationship with DCI mainly studied 

three mechanisms including cerebral vasospasm, cortical 
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spreading depolarization, and microthrombosis18). Neverthe-

less, the exact mechanism is still unknown, and thus, efforts 

are ongoing to identify other mechanisms of the pathogenesis 

of DCI.

Autophagy refers to a homeostatic cellular process by the 

degradation of dysfunctional organelles and superfluous pro-

teins11,25). In the SAH research area, the main focus of autopha-

gy has been its possible association with early brain injury (EBI) 

in rodent models. Lee et al.15) reported that autophagosomes 

and autolysosomes in neurons increased markedly from the 

first day of an SAH. In addition, the high conversion of micro-

tubule-associated protein light chain-3 (LC3)-I to LC3-II and 

increased expression of BECN1 and cathepsin-D were ob-

served. During the acute phase, rapamycin, which is an au-

tophagy activator, decreased in brain edema, cortical apoptosis, 

and blood-brain barrier impairment compared to vehicle-treat-

ed SAH rats26). Mitophagy is selective autophagy that maintains 

health mitochondria by the selective removal of dysfunctional 

or damaged mitochondria16,28). Wu et al.28) reported that the 

knockdown of phosphatase and tensin homolog-induced ki-

nase 1 (PINK1) and parkin was associated with the intracellular 

accumulation of mitochondrial fragments and damaged mito-

chondria via reduced mitophagy in endothelial cells. Cao et al.1) 

also showed the neuroprotective effect of inhibiting mitophagy-

associated nod-like receptor protein 3 inflammasomes against 

EBI after SAH. Compared to EBI, few studies have investigated 

the possible role of mitophagy in the development of DCI. 

Chou et al.4) reported that higher mitochondrial membrane po-

tential was associated with favorable functional outcomes in 

SAH patients. Youn et al.30) reported that DCI patients had sig-

nificantly decreased mitochondria membrane potential in CSF 

cells than non-DCI patients. These results suggest a possible as-

sociation of mitochondrial dysfunction with DCI pathogenesis. 

A follow-up investigation showed that mitochondrial dysfunc-

tion associated with autophagy and mitophagy might have a 

role in DCI development31). The DCI patients showed a higher 

expression of death-associated protein kinase (DAPK)-1, BCL2 

interacting protein 3 like (BNIP3L), and PINK1 than the non-

DCI patients. In particular, DAPK1 was the most significant 

one among markers differentially expressed between those with 

DCI and those without DCI.

Bioinformatics analysis has been increasingly reported in 

various medical conditions in anticipation of suggesting new 

insight into the disease pathogenesis. An epigenome-wide asso-

ciation study found that hypermethylation of the INSR gene 

(cg00441765) and the CDHR5 gene (cg11464053) was closely re-

lated to DCI13). This result indicated a simple difference in the 

methylation frequencies of CpG sites according to DCI. Subse-

Fig. 1. Transmission electron microscopy showing damaged 
mitochondria, autophagic vacuoles, lysosomes, and 
peroxisomes in the cerebrospinal fluid cells of patients with 
subarachnoid hemorrhage. Scale bar, 2 μm.
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quent bioinformatics analysis revealed additional information 

on various biological processes (BP) and hub genes associated 

with DCI, which existing analysis methods do not provide. 

Here, using bioinformatics analysis of the raw data, we further 

evaluated the interactions among the differentially expressed 

autophagy and mitophagy biomarkers of CSF cells associated 

with DCI. 

Table 1. Gene ontology enrichment analysis of differentially expressed autophagy and mitophagy biomarkers in the cSF cells associated with delayed 
cerebral ischemia in patients with subarachnoid hemorrhage

ID GO term p-value Gene

Biological process

GO:0010508 Positive regulation of autophagy 6.40E-09 BECN1, BNIP3L, DAPK1, PINK1

GO:0098780 Response to mitochondrial depolarization 7.50E-09 BECN1, PINK1, SQSTM1*

GO:0043065 Positive regulation of apoptotic process 3.36E-08 BECN1, BNIP3L, DAPK1, PINK1, SQSTM1

GO:0000422 Autophagy of mitochondrion 7.07E-08 BECN1, PINK1, SQSTM1

GO:0043066 Negative regulation of apoptotic process 1.68E-07 BECN1, BNIP3L, DAPK1, PINK1, SQSTM1

GO:0016239 Positive regulation of macroautophagy 3.70E-07 BECN1, BNIP3L, PINK1

GO:0000423 Mitophagy 7.67E-07 BECN1, SQSTM1

GO:0007005 Mitochondrion organization 1.17E-06 BECN1, BNIP3L, PINK1, SQSTM1

GO:1902902 Negative regulation of autophagosome assembly 3.99E-06 BECN1, PINK1

GO:0033554 Cellular response to stress 4.36E-06 BECN1, BNIP3L, DAPK1, PINK1, SQSTM1

GO:0016236 Macroautophagy 5.14E-06 BECN1, PINK1, SQSTM1

GO:0010821 Regulation of mitochondrion organization 7.32E-06 BNIP3L, PINK1, SQSTM1

GO:0034599 Cellular response to oxidative stress 1.65E-05 BECN1, DAPK1, PINK1

GO:0006915 Apoptotic process 2.07E-05 BECN1, BNIP3L, DAPK1, SQSTM1

GO:0060341 Regulation of cellular localization 2.07E-05 BECN1, BNIP3L, PINK1, SQSTM1

GO:2000310 Regulation of NMDA receptor activity 3.21E-05 DAPK1, PINK1

GO:0009057 Macromolecule catabolic process 3.63E-05 BECN1, BNIP3L, PINK1, SQSTM1

GO:1903146 Regulation of autophagy of mitochondrion 4.39E-05 BNIP3L, PINK1

GO:1903214 Regulation of protein targeting to mitochondrion 4.82E-05 BNIP3L, PINK1

GO:0001666 Response to hypoxia 4.91E-05 BECN1, BNIP3L, PINK1

GO:0002931 Response to ischemia 5.99E-05 PINK1, SQSTM1

GO:0070887 Cellular response to chemical stimulus 6.57E-05 BECN1, BNIP3L, DAPK1, PINK1, SQSTM1

GO:2000378 Negative regulation of reactive oxygen species metabolic process 7.28E-05 BECN1, PINK1

GO:0051881 Regulation of mitochondrial membrane potential 1.23E-04 BNIP3L, PINK1

GO:0031325 Positive regulation of cellular metabolic process 1.25E-04 BECN1, BNIP3L, DAPK1, PINK1, SQSTM1

GO:1903827 Regulation of cellular protein localization 1.86E-04 BNIP3L, PINK1, SQSTM1

GO:0044267 Cellular protein metabolic process 2.35E-04 BECN1, BNIP3L, DAPK1, PINK1, SQSTM1

GO:0044257 Cellular protein catabolic process 2.87E-04 BNIP3L, PINK1, SQSTM1

Molecular function

GO:0044389 Ubiquitin-like protein ligase binding 3.62E-05 BECN1, PINK1, SQSTM1

GO:0031625 Ubiquitin protein ligase binding 3.02E-05 BECN1, PINK1, SQSTM1

Cellular component

GO:0097413 Lewy body 1.43E-06 PINK1, SQSTM1

GO:0000407 Phagophore assembly site 2.53E-05 BECN1, SQSTM1

*p62 is also named SQSTM1. CSF : cerebrospinal fluid, GO : gene ontology, DAPK : death-associated protein kinase, BNIP3L : BCL2 interacting protein 3 
like, PINK1 : phosphatase and tensin homolog-induced kinase 1, SQSTM1 : sequestosome 1
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MATERIALS AND METHODS

This study was approved by the Institutional Review Board 

(No. 2017-9, 2018-6, and 2019-6) of the hospital and informed 

consent was obtained from the patients or their relatives.

Data acquisition and process
The original dataset was derived from an ongoing study en-

titled “The First Korean Stroke Genetics Association Re-

search” of the five university hospitals that prospectively col-

lected the genome and protein databank of patients with 

various cerebrovascular diseases since March 201512,17). In this 

databank, the CSF samples of SAH patients were investigated 

to determine whether mitochondrial dysfunction associated 

with autophagy and mitophagy may be related to DCI follow-

ing SAH (Fig. 1). The expression of the markers was measured 

using real-time reverse transcription-polymerase chain reac-

tion (qRT-PCR) and Western blotting. The markers measured 

Fig. 2. Gene ontology network of biological processes (A), molecular function (B), cellular components (c), and the protein-protein interaction network 
(d) of differentially expressed markers of autophagy and mitophagy associated with delayed cerebral ischemia following subarachnoid hemorrhage. 
p62 is also called SQSTM1. BNIP3L : BcL2 interacting protein 3 like, PINK1 : phosphatase and tensin homolog-induced kinase 1, SQSTM1 : sequestosome 
1, dAPK : death-associated protein kinase.
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Fig. 3. Kyoto Encyclopedia of Genes and Genomes pathway analysis of autophagy (A) and mitophagy (B). differentially expressed autophagy and 
mitophagy markers associated with delayed cerebral ischemia are marked in red. p62 is also designated sequestosome 1 (SQSTM1).
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by qRT-PCR were 1) DAPK-1; 2) BNIP3L; 3) Bcl-1 antagonist 

X (BAX); 4) PINK1; 5) Unc-51 like autophagy activating ki-

nase 1 (ULK1); and 6) nuclear dot protein 52 (NDP52). The 

markers measured by Western blotting were 1) BECN1 (au-

tophagy executor gene); and 2) p62 (autophagy adaptor pro-

tein)5,24,31).

Bioinformatics analyses
Gene ontology (GO) enrichment (https://tools.dice-database.

org/GOnet) and Kyoto Encyclopedia of Genes and Genomes 

pathway (https://www.genome.jp/kegg/mapper/color.html) 

analyses were carried out using the visualization tools32). GO 

terms with a p-value of less than 0.05 were defined as signifi-

cantly enriched. Protein-protein interaction (PPI) network 

analysis was performed using the Search Tool for the Retrieval 

of Interacting Genes/Proteins (STRING). The minimum re-

quired interaction score was set to the highest confidence of 

0.719,23).

RESULTS

Identification of autophagy and mitophagy mark-
ers

Data on CSF cells obtained from 56 SAH patients were se-

lected for the analysis. Among them, DCI was observed in 22 

patients (38.6%). A flow chart of the study is presented in Sup-

plementary Fig. 1. Transmission electron microscopy showed 

various mitochondrial conditions in DCI such as damaged 

mitochondria and disarrayed cristae with autophagic vacuoles 

and lysosomes (Fig. 1). Among the various markers, DCI pa-

tients exhibited signif icantly increased mRNA levels of 

DAPK1, BNIP3L, and PINK1, and protein expression of 

BECN1 with p62 degradation than compared to the non-DCI 

patients. 

In silico functional analysis
GO enrichment analysis was performed for BP, molecular 

function (MF), and cellular components (CC). The most en-

riched BP functions were the positive regulation of autophagy, 

followed by the response to mitochondrial depolarization, the 

positive regulation of apoptosis, and mitochondrial autophagy 

in the development of DCI (Table 1 and Fig. 2A). In MF, DCI 

was associated with ubiquitin-like protein ligase binding and 

ubiquitin-protein ligase binding (Fig. 2B). In the cluster of 

CCs, Lewy bodies and the phagophore assembly site were the 

most enriched in DCI patients (Fig. 2C). Three and four of the 

differentially expressed genes are marked in red in the au-

tophagy and mitophagy pathways in DCI development in Fig. 

3, respectively. PPI analysis revealed that BECN1 was the most 

connected gene among the differentially expressed markers 

associated with autophagy and mitophagy in SAH patients 

with DCI (Fig. 2D).

DISCUSSION

Few studies have investigated mitophagy associated with 

DCI in SAH patients, although mitophagy research has been 

actively conducted in other brain diseases. Conventional mi-

tophagy is regulated by the PINK1/parkin pathway6). In the 

damaged mitochondria of patients with autosomal recessive 

Parkinson’s disease, PINK1 is expressed on the outer mem-

brane during activated E3 ubiquitin ligase activity, which re-

cruits parkin. This selective lysosomal removal was followed 

by parkin-mediated polyubiquitination6,20). Parkin-mediated 

mitophagy was also involved in the cardiac stress-response 

mechanism7). Kubli et al.14) reported that parkin-deficient mice 

showed increased mitochondrial dysfunction associated with 

decreased mitophagy myocardial infarction. However, alter-

native parkin-independent mitophagy or autophagy adapter 

proteins are also involved in mitophagy6). Phosphorylated 

Unc-51-like kinase 1, which interacts with Ras-related protein 

9 at serine 179 followed by complex formation with Rip 1 and 

dynamic-related protein (Drp) 1 were observed in the heart in 

ischemic and glucose-deprived states. After phosphorylated 

Drp1 was sequestrated, the lysosomal degradation of mito-

chondria was observed6,22). In SAH patients, a higher expres-

sion of PINK1 seemed to be associated with DCI. And DAPK1 

and BNIP3L were significantly higher in DCI patients than in 

non-DCI patients. Our additional bioinformatics analysis 

showed that the positive regulation of autophagy was mostly 

enriched, followed by the response to mitochondrial depolar-

ization in BP in DCI development. DAPK1, BNIP3L, BECN1, 

and PINK1 were involved in the positive regulation of autoph-

agy, and BECN1, PINK1, and p62 in the response to mito-

chondrial depolarization. PPI analysis also demonstrated that 

BECN1 was the most connected gene among the highly ex-
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pressed biomarkers in DCI development. BECN1 is expressed 

within cytoplasmic structures such as mitochondria and the 

endoplasmic reticulum and contains three domains including 

the Bcl-2 homology motif, the coiled-coil domain, and the 

evolutionarily conserved domain (ECD)8). BECN1 interacted 

with PI3KCIII/Vps34 via ECD and positively regulated the 

autophagy reaction8). Diabetic mice showed increased au-

tophagosome formation and autophagic f lux with a higher 

expression of BECN1, microtubule-associated protein LC3-II, 

and a lower expression of p6227). BECN1 has been suggested as 

a cancer target for anti-tumor agents that enhance BECN1 ac-

tivity. Based on these findings, it is necessary to investigate 

which specific mechanisms and proteins can be therapeutic 

targets for DCI in the future.

Several clinical variables such as hypertension and sex dif-

ferences may affect autophagy and mitophagy in DCI. In DCI 

patients, blood pressure was maintained at high levels to in-

crease blood flow to the brain. Hypertension itself may affect 

autophagy and mitophagy, although the exact mechanism re-

mains undetermined. Increased BNIP3 expression was corre-

lated with pressure overload in heart failure2). Givvimani et 

al.10) reported that mitophagy inhibitor ameliorated heart fail-

ure by decreasing pressure overload concomitant with the de-

creased expression of LC3 and p62. Gender can influence not 

only DCI occurrence but also autophagy and the mitophagy 

process. The rate of DCI was significantly higher in females 

compared to males9). Chen et al.3) reported that female rats ex-

hibited a higher ratio of LC3B to LC3A in a cardiac ischemia-

reperfusion model. Regarding the two pro-apoptotic proteins 

of phosphor-p38 and Bax, male rats showed higher levels of 

phosphor-p38, and female rats showed lower levels of Bax af-

ter ischemic-reperfusion. Female ovariectomized rats exhibit-

ed an increased expression of LC3 and BECN1 with decreased 

p6229), suggesting that autophagy and mitophagy may vary 

depending upon sex hormones. Although, there were no sig-

nificant differences in hypertension and gender between the 

DCI and non-DCI groups in the original dataset, additional 

bioinformatics analysis adjusting for possible clinical variables 

that may affect the results is required in a large SAH population. 

This study had some limitations. First, the relatively small 

number of enrolled patients in the original data is a concern, 

although this was the first bioinformatics analysis of autopha-

gy and mitophagy markers related to DCI. Second, we used 

some representative biomarkers of autophagy and mitophagy. 

Thus, in addition to the biomarkers we studied, follow-up 

studies are needed, including many biomarkers to get more 

accurate results. Third, bioinformatics results are largely de-

pendent upon the quality of the raw data. To address this is-

sue, it is necessary to perform the study considering various 

medical conditions that may affect the outcomes.

CONCLUSION

We comprehensively analyzed autophagy and mitophagy 

markers associated with DCI using bioinformatics analysis. 

These attempts can be helpful for understating DCI patho-

genesis. We also identified a hub gene of BECN1, which is ex-

pected to be a therapeutic target for future DCI treatment in 

patients with SAH. 
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