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Abstract: Photodynamic therapy (PDT) works through photoactivation of a specific photosensitizer
(PS) in a tumor in the presence of oxygen. PDT is widely applied in oncology to treat various cancers
as it has a minimally invasive procedure and high selectivity, does not interfere with other treatments,
and can be repeated as needed. A large amount of reactive oxygen species (ROS) and singlet oxygen
is generated in a cancer cell during PDT, which destroys the tumor effectively. However, the efficacy
of PDT in treating a deep-seated tumor is limited due to three main reasons: Limited light penetration
depth, low oxygen concentration in the hypoxic core, and poor PS accumulation inside a tumor.
Thus, PDT treatments are only approved for superficial and thin tumors. With the advancement
of nanotechnology, PDT to treat deep-seated or thick tumors is becoming a reachable goal. In this
review, we provide an update on the strategies for improving PDT with nanomedicine using different
sophisticated-design nanoparticles, including two-photon excitation, X-ray activation, targeting
tumor cells with surface modification, alteration of tumor cell metabolism pathways, release of
therapeutic gases, improvement of tumor hypoxia, and stimulation of host immunity. We focus
on the difficult-to-treat pancreatic cancer as a model to demonstrate the influence of advanced
nanomedicine in PDT. A bright future of PDT application in the treatment of deep-seated tumors
is expected.

Keywords: photodynamic therapy (PDT); photosensitizer; hypoxia; metal–organic framework
(MOF); pancreatic cancer

1. Introduction

The earliest light therapy for various skin diseases can be traced back to ancient
Greece, Egypt, and India [1,2]. In 1907, Professor Hermann von Tappeiner coined the
term photodynamic therapy (PDT) after incidental findings observed by his student Oscar
Raab that fluorescence, a product of light and acridine together, was toxic to paramecium.
Von Tappeiner and his partner, Dr. Jesionek, treated skin cancers, lupus of the skin, and
condyloma with eosin dye with PDT, as reported in their book. This was probably the
first human report of PDT. In 1841, a plant dye hematoporphyrin (Hp) showed more
clinically satisfactory results and a higher level of biosafety than early photosensitizers
(PSs) such as eosin, chinidine, and acridine [1]. In 1955, Samuel Schwartz successfully
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purified hematoporphyrin derivative (HpD), which shows a higher efficacy for tumors
than Hp [1].

The modern era of PDT began in the 1970s in theUSA, after the first human report
using HpD, later known as Photofrin, as a photosensitizer (PS) to treat skin cancers by Dr
Thomas Dougherty working at Roswell Park Cancer Institute in Buffalo, NY [3]. Today,
Photofrin is still the most commonly used PS globally. However, it has many disadvantages,
including a long half-life lasting for weeks to months that leads to skin photosensitivity,
and a small absorbance peak at 630 nm making it difficult to penetrate bulky tumors [3].
Since then, several hundred PSs have been developed to improve the efficacy of PDT to
tackle cancer and many other diseases and infections.

The advantages of PDT include high selectivity to cancer cells and a high safety profile
without long-term side effects. It can also be performed as an outpatient procedure, can be
repeated if necessary, is less expensive than other treatments, and can be used as a curative
or an adjuvant therapy. However, a successful PDT requires three essential factors, namely
a well-designed PS, irradiation with an adequate wavelength covering the absorption
peaks of the PS, and sufficient oxygen supply in the tumor microenvironment (TME) [4].
The currently available PSs have different unmet needs for clinical applications including
most, if not all, absorption peaks being within the visible to near-infrared (NIR) wavelength
of light, which limits the penetration depth to a few mm of the tissue. Therefore, PDT is
only approved for the treatment of superficial and thin tumors [5]. Tumor hypoxia is a
common phenomenon in the majority of malignant tumors due to rapid growth of cancer
cells, which outgrows the blood supply and eventually leads to tumor resistance to PDT.

Pancreatic cancer is the fourth highest cause of cancer-related death in the United
States. The prognosis of pancreatic cancer is extremely poor, with almost all of the patients
expected to die from the disease. One of the reasons is that the tumor is usually diagnosed
at a late stage because it does not cause symptoms at the early stage. The only curable
treatment is surgical resection. Unfortunately, only 15%–20% of patients are candidates
for pancreatectomy at diagnosis. Even after a complete resection, the 5-year survival
after margin-negative (R0) pancreaticoduodenectomy is approximately 30% for node-
negative and 10% for node-positive disease. The global 5-year survival rate for pancreatic
cancer patients is approximately 6% [6] despite the advancements in surgical technique,
chemotherapy regimens, and the introduction of neo-adjuvant chemoradiotherapy.

Bown et al. initiated the first clinical trial of pancreatic cancer PDT in 2002. Sixteen pa-
tients with locally advanced pancreatic cancer were treated with percutaneous ultrasound
and computed tomography (CT)-guided interstitial meso-tetrahydroxyphenylchlorin
(mTHPC)-PDT with a prolonged median survival of 9.5 months (range 4 to 30, one patient
alive at 31 months). Some novel photosensitizers have been developed and are under
development to overcome the limitations of pancreatic cancer PDT [7].

Over the last two decades, the study and application of systems and manipulation
of matter on the nanometric scale has become a mainstream academic field of interest [8].
Multifunctional nanoparticles (NPs) have been used as drug carriers for better targeting
in cancer therapy via the enhanced permeability and retention (EPR) effect, enhancing
imaging for diagnosis, additional functions in combination therapy, and their remotely
controllable trigger of drug releases [9]. The concept and principle of nanotechnology
has been recently utilized to overcome the limitation of PDT [10]. In this review, we use
pancreatic cancer, a deep-seated tumor that is very challenging to treat, as a model to
demonstrate how nanomedicine can be used as a potential tool to improve PDT.

2. The Principle of PDT and Limitations
2.1. Principle of PDT

Figure 1 depicts the mechanism of PDT. A ground state of PS absorbs photons and is
transformed into its excited state (PS*), followed by the photophysical pathways of internal
conversion and intersystem crossing to the lowest excited singlet state or lowest excited
triplet state. These lowest excited states of PS* can directly revert to the ground state by
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radiation emission. The lowest excited triplet state PS* has a longer lifetime for energy
transfer to biological substrates to form reactive oxygen species (ROS) (type I reaction) or
electron transfer to oxygen to form the singlet oxygen (1O2) (type II reaction) (Figure 1) [11].
Type II reaction is the major mechanism in PDT in cancer therapy. Nevertheless, the
proportion of type I/type II reaction is dependent on the PS used in PDT [5].
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2.2. Limitations of PDT Application in Oncology

An ideal PS should contain some intrinsic features such as minimal toxicity to normal
tissue at a therapeutic dose, a properly metabolizable rate from the body, defined accumu-
lation in target cells, activation by a longer wavelength of light, which is usually above
550 nm; and high yield of reactive oxygen species (ROS) after irradiation [1]. A successful
PDT treatment requires optimal light energy to destroy tumor cells with sufficient PS
distribution and plenty of oxygen in the TME (Figure 1) [12–14].

In conventional PDT, visible and near-infrared light are usually used as excitation
wavelengths depending on the absorption peaks of a PS. These wavelengths of light
penetrate only few mm of the skin (or tumor), which is one of the major drawbacks of PDT
in treating a bulky tumor or a tumor inside the body such as pancreatic cancer [12].

The presence of oxygen in the TME directly affects the ROS generation level in PDT.
However, tumor hypoxia is common in solid tumors, especially in the core of the tumor [13].
The tumor core contains the cancer stem cells and resistant cancer cells with a lower level
of oxygen and nutrients due to limited vascular supply. These cells have a poor response
to radiation, chemotherapy, and especially to the PDT, which requires oxygen [13]. The low
efficacy of PDT in solid tumor treatment causes the resurgence of malignant stem cells [15].
Dose–effect is a vital pharmacokinetic consideration when evaluating the dose-response
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related to efficacy and toxicity [16]. In designing an ideal PS, it is necessary to consider the
intrinsic physicochemical properties, drug internalization to a cancer cell, PS accumulation
in the tumor site, lowest effective dose, harmless metabolism pathway, reasonable half-life,
and the potential cytotoxicity to normal cells [14].

3. Innovative Nanotechnologies to Improve PDT Treatments

With the advancement of nanotechnology, the application of PDT in deep-seated
tumors has become possible. New novel NPs can serve as better PS carriers, shift the PS to
a higher absorption peak, and work better in a hypoxic TME. Figure 2 shows how NPs can
help to improve modern PDT in different ways. Table 1 reveals the various nanomaterials
with particular properties providing helpful functions to relieve these limitations of PDT in
treating deep-seated tumors in clinical condition.

Table 1. Summary of recent strategies using nanocarriers to resolve the limitations of practical photodynamic therapy
(PDT) application.

Types of Nanomaterials Particular Features Functions Reference

Au clusters Two-photon absorption Improving light penetration [22,31,32]

ZnTPyP@TiO2 nanocomposites Two-photon absorption Improving light penetration [33]

CaWO4 NPs, SrAl2O4:Eu2+ NPs and
Cu NPs

X-ray-triggered persistent
luminescence Overcoming light penetration [48–50]

ZnGa2O4:Cr Persistent luminescence Internal light in tumor site [41–44]

Luciferase-exposed PLGA NPs Bioluminescence Internal light in tumor site [40]

SPION MR imaging and magnetic targeting Imaging-guided PDT [117–121]

Holmium(III)/iridium(III) bimetallic
complex NPs US imaging Imaging-guided PDT [128]

Zn-porphyrin-based nanoassemblies NO release NO-involved sensitized PDT [155]

CORM-loaded FADP nanocarriers CO release Killing bacteria and ablation
of biofilms [152]

GOx-modified HMSNs Decomposition of glucose Starvation therapy [148,149]

N-doped carbon-silica nanocomposites Immunoadjuvant properties Enhancing immunogenicity [143]

TF-exposed RBC membrane-coated
PLGA NPs

Targeting to TF
receptor-overexpressed cancer cells Enhancing PS concentration [116]

Gemini iridium(III) complex-based
nanovesicles Mitochondria targeting Enhancing PSs concentration [104]

PpIX-conjugated peptide NPs Plasma membrane targeting Enhancing PSs concentration [98]

Fe3O4@m-MnO2 NPs Oxygen modulation and magnetic
targeting Hypoxia relief in TME [83]

Carbon nitride (C3N4) Water-splitting Hypoxia relief in TME [87]

V2O5 NPs Peroxidase-like activity Hypoxia relief in TME [80]

pH-sensitive PFC-modified
nanoparticles Loading oxygen Hypoxia relief in TME [69]
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3.1. Feasible Strategies to Initiate PSs in Deep-Seated Tumors
3.1.1. Improve the Light Penetration and Activation via Two-Photon Absorption

The Achilles’ heel of all photoactivated therapies is the light penetration of the target
tissue [12]. Biological windows I and II of NIR ranges from 750 to 950 and 1000 to 1350 nm,
respectively, with a better tissue penetration and biosafety than the light at the UV and
visible range below 650 nm [17,18]. NIR light emitted from an 830 nm LED can penetrate
formalin fixed soft tissue, bone, and the brain [19]. Recently, the third NIR biological
window signifying the range of wavelengths from 1550 to 1870 nm has been developed
and can achieve a superb light penetration depth into the human body [20].

Another feasible technique is two-photon excitation (TPE) which allows the use of a
lower energy irradiation to activate PSs with two-photon absorption (TPA), resulting in a
significant improvement in the light penetration depth throughout the body and reducing
the additional photodamage to healthy tissue (Figure 3) [21]. A high TPA cross-section (σ2)
is the most crucial requirement for two-photon-activated PDT [22]. Qiu et al. reported that
fluorinated ruthenium (II) PSs activated by a low power NIR light were highly effective
in TPA for PDT ablation of cell membranes and mitochondria in cancer cells [23]. When
a common porphyrin PS is conjugated with an AceDAN donor, it accepts the energy to
form a fluorescence resonance energy transfer (FRET) system, which exhibits remarkable
two-photon-activated PDT performance [24]. Several PS-based self-assembly NPs showed
larger TPA σ2, revealing the advantage of PSs nanoization in TPA and, together with an
additional function of the EPR effect for tumor accumulation, an enhancement of PDT
efficacy [25,26].
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Aggregation-induced emission (AIE) refers to a class of luminescent materials, which
are weakly or non-emissive in the form of isolated molecular species but emit strong
fluorescence in the aggregated and solid states [27]. NP-modified PSs with the AIE effect
showed potential for use in two-photon-activated PDT with the fluorescence imaging
function [28–30]. Sun et al. used polyethylene glycol (PEG)-modified nanographene oxides
to embed AIE NPs, presenting good stability in buffer solution and a typical feature of
TPA [28]. Zhuang et al. designed and synthesized two new two-photon AIE luminogens
with a stiff D−π−A skeleton, termed the TPPM and TTPM, showing augmented properties
in AIE with a high fluorescence quantum yield up to 290-fold [29]. Outstanding TPA-PDT
polymer dots with AIE were reported by Wang et al. [30]. The Au cluster AIE PS also
has significant TPA properties and a strong type I reaction, thereby showing potential for
two-photon-activated PDT application [22,31,32]. An ultrahigh TPA PS was observed from
dihydrolipoic acid-coated gold nanoclusters [22]. Semiconductor material ZnTPyP@TiO2
nanocomposites were synthesized by Liu et al. with strong TPA ability under 800 nm
irradiation [33].

3.1.2. Direct Implantation of a Mini Light Source into a Tumor

Directly implanting a lamp or illuminator at the solid tumor site seems to be a promis-
ing approach to overcome light penetration depth from an external light source. Liu et al.
implanted micro light-emitting diodes (LEDs) into tumors for PDT driven by body mo-
tion [34]. An implantable ultrasonically charged micro light source for PDT was reported
by Kim et al. [35]. The molecular or nanoscale illuminators exhibit multiple benefits
compared to micro-implants, including the non-invasive procedure, increased comfort
during treatment, accumulation of illuminators in tumors with long-term retention, and
the ability to equip illuminators with a PS or drug. Heptamethine aminocyanine dye and
the nanocrystallized organometallic phosphorescent have demonstrated excellent perfor-
mance with a long-lived excited triplet state, thus revealing the potential use of ultralong
phosphorescence for afterglow imaging and activating PS to PS* [36,37].
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3.1.3. Self-Lighting PDT

Another strategy to overcome light penetration in PDT is through the creation of
self-exciting nanoplatforms, which do not need an external light source for PS activation.
These platforms are driven either from a specific chemical reaction or enzyme catalytic
biochemical reaction in a tumor [38]. Wu et al. formulated a chemiluminescence res-
onance energy transfer (CRET) strategy for solid tumor PDT by using a nanoreactor
in which the NP encapsulated bis[3,4,6-trichloro-2-(pentyloxycarbonyl) phenyl] oxalate
(CPPO), poly[(9,9’-dioctyl-2,7-divinylene-fluorenylene)-alt-2-methoxy5-(2-ethyl-hexyloxy)-
1,4-phenylene] (PFPV) and the tetraphenylporphyrin (TPP) as a PS. The self-lighting took
place using CPPO oxidation which catalyzed endogenous H2O2 in the TME. The interme-
diate chemical was unstable, which transferred energy to excite PFPV (Cerenkov resonance
energy transfer, CRET) [39]. Yang et al. utilized luciferase-exposed PS-loaded poly(lactic-
coglycolic acid) (PLGA) nanoparticles to activate the bioluminescence resonance energy
transfer (BRET)-mediated PDT for tumor treatment [40].

In recent years, persistent luminescence nanoparticles (PLNPs) composed of
ZnGa2O4:Cr (ZGC) have shown promising results in PDT. This material is referred to
as Night Pearl because the bulk luminous material is as bright as an illuminating pearl
at night in an ancient Chinese legend. These NPs have a better EPR effect and emit
NIR (~700 nm) in the tumor site over the course of a few minutes to a few hours [41,42].
PLNPs have been embedded in the biocompatible alginate-Ca2+ hydrogel [43] and PLGA
oleosol [44] as injectable implants used for long-lasting light supply in tumors.

3.1.4. Activation with X-ray

X-ray photons are considered a powerful light source, with superb penetration in
solid tumor treatment [45]. It is well recognized that the heavy elements (high-Z elements)
are sensitive to X-ray photons due to larger overall photoabsorption cross-sections and
a significant photoelectric effect compared to low-Z elements, named the high-Z effect.
After exposing high-Z NPs to X-ray, scattered X-rays, photoelectrons, and fluorescence
photons were generated, which in turn triggered the surrounding PS to form abundant
ROS [46]. Song et al. proposed that W(VI)-doped ZGC nanocrystals were activated by
low-dose X-ray irradiation (0.8 Gy) to form persistent NIR light emission [47].

Diverse radiation-sensitive materials, including CaWO4 NPs, SrAl2O4:Eu2+ NPs, Cu
NPs, Au nanorods, and Au8 nanocrystals, constructed by mid- or high-Z elements showed
potential in X-ray-triggered persistent luminescence-mediated PDT [48–52]. Deng et al.
proposed a platform using PLGA vesicles to carry PS verteporfin and gold NPs (2–5 nm)
together for efficient energy transfer between the PS and Au NPs. The NPs showed excellent
results in PDT with a low dose of radiation (4 Gy) [53]. PS-modified α-Zn2SiO4-doped
silica NPs were also used to emit X-ray-excited optical luminescence (XEOL). The activation
was achieved by very-low-dose radiation (1 Gy). The combination of radiotherapy and
X-ray-induced PDT showed significant efficacy in inhibiting deep-seated tumors [54].

Sun et al. designed AIE gold clustoluminogens to achieve a low-dose X-ray-induced
PDT with generation of abundant ROS and with almost no side effects [55]. Lanthanide-
doped nanoparticles also revealed the potential for use in X-ray-induced PDT [56–58].
Synergistic effects in tumors were found for activatable NPs with radiation and reactive
oxygen species-releasing nanostructures designed by Cheng et al. [59].

Radionuclide activation is able to emit Cherenkov radiation (CR), the intense blue
light of which is applied as an endogenous light source in CR-induced PDT to the deep-
seated tumor. Water-soluble sulfonato-aryloxy-Zn (II)-phthalocyanine NPs receive the
CR by four aryloxys (radio antenna), leading to an energy transfer to initiate the Zn (II)-
phthalocyanines (which serve as a PS) for further 1O2 production [60]. Ni et al. used
magnetic nanoparticles (MNPs) to carry radionuclides to activate 89Zr and PS molecules,
which showed a 5-fold accumulation of MNPs at the tumor site by magnetic targeting [61].
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3.2. Modulation of Oxygen Concentration in Tumor Microenvironment

The oxygen level at the tumor microenvironment is a significant factor affecting
the sufficient singlet oxygen production during PDT [13]. Many scientists are developing
different feasible strategies to modulate the oxygen supply in cancer cells for tumor hypoxia
relief, thus boosting the 1O2 generation in TEM during PDT.

3.2.1. Applying the Metal–Organic Framework for Oxygen Delivery

The porous metal–organic framework (MOF) nanomaterial constructed by metal com-
plexes and organic ligands under an orderly arrangement has emerged as a candidate in the
field of nanomedicine, showing various applications such as gas loading, photo-catalysis,
and drug delivery, as well as exhibiting good biocompatibility and biodegradability [62].
Various MOFs assembled by different metal clusters and bridging molecules offer unique
characteristics, and the MOF is thus one of the perfect candidates in PDT application.

In 2018, Gao et al. applied a zirconium (IV)-based MOF to store oxygen after loading
oxygen and anchoring the indocyanine green (ICG, an NIR organic dye) on the MOF.
This as-prepared material was encapsulated inside the cell membrane to form a biomimetic
nanoplatform releasing NIR light-responsive oxygen [63]. Ren et al. indicated that the
zeolitic imidazolate framework-67 (ZIF-67)-based MOF has a high reactivity and can
produce endogenous hydrogen peroxide (H2O2) inside cancer cells [64].

Some PSs have been used as the organic ligands in MOF preparation to form the
photosensitizable MOF [65–68]. Integrating tetrakis(4-carboxyphenyl) porphyrin (TCPP)
into a Zr-based MOF gives the ability to generate 1O2 with a low power laser at 650 nm
(0.1 W/cm2) [66]. Wang et al. prepared ultrasmall porphyrinic MOF nanodots (4 nm),
which not only showed a significant photoresponsive cell-killing effect but also led to an
efficient elimination from the body through renal clearance [68].

3.2.2. Fluorine-Contained Nanocarrier for Oxygen Delivery

Perfluorocarbon (PFC) consists of a carbon skeleton and high electronegative fluorine
and exhibits an excellent oxygen affinity, representing a suitable material for oxygen
transport [69–71]. A case using pH-sensitive PFC-modified nanoparticles to load oxygen
and a PS, IR780, has been reported by Ma et al. [69]. An amphiphilic/fluorous random
copolymer was used to construct micelles showing good O2 carrying ability, thereby
revealing satisfactory photocytotoxicity [70]. Likewise, Hu et al. indicated that PFC and
oxygen co-loaded hyaluronic acid (HA) vesicles grafted with chlorin e6 (Ce6) by reducible
disulfide bonds revealed excellent performance in carrying oxygen. These vesicles could
be destroyed by glutathione (GSH), which is enriched inside cancer cells to release oxygen
in the hypoxia TEM [71].

3.2.3. Decomposition of Endogenous Hydrogen Peroxide into Oxygen

Decomposing endogenous hydrogen peroxide in cancer cells through the enzyme-
induced catalytic reaction is a reliable way to raise the oxygen level. Various nanomaterials,
such as MOF, black phosphorus (BP), HA-based NPs, and fluorinated polyethyleneimine (F-
PEI) NPs, were used to load catalase (CAT), by which H2O2 could be decomposed into O2,
thus showing an outstanding PDT efficacy [72–75]. Some strategies using nanomaterials
with CAT-like catalysis activity were developed and revealed excellent performance in the
decomposition of hydrogen peroxide and oxygen generation in cancer cells [76–78]. A 2D
MOF nanosheet assembled by transition metal ions (Sm3+), platinum, and TCPP presented
catalase-like activity for sufficient oxygen supply during PDT [79]. V2O5 nanoparticles
exhibited their potential to regulate the oxygen amount in the TME through their intrinsic
peroxidase-like activity to decompose H2O2 to O2 [80].

Recently, manganese oxide (MnO2) has been observed to be a critical candidate for
hypoxia relief in the TME through its reaction with endogenous H2O2, in which the MnO2
can be decomposed into Mn2+ and oxygen under an acidic microenvironment. Various
nanoparticles, such as gold nanocages, BP-based nanocomposites, semiconducting polymer



Biomedicines 2021, 9, 69 9 of 21

nanoparticles (SPNs), and poly(amidoamine) (PAMAM) dendrimer-based NPs, integrated
with MnO2, were applied to sustain the oxygen inside cancer cells [81–83]. Magnetic Fe3O4
NPs coated with mesoporous MnO2 nanosheets were used to form magnetic manganese
oxide sweetgum-ball nanospheres (MMOSs), which showed remarkable material accumu-
lation at the hypoxia tumor by magnetic field attraction and provided oxygen evolution
through the self-decomposition of the MnO2 shell at the TME [83].

Carbon dots (CDs) have been reported as a suitable candidate for PDT due to their
excellent ability to efficiently produce singlet oxygen. Jia et al. used manganese (II) ph-
thalocyanine as a precursor to prepare the Mn-CDs, revealing its capability to be an acidic
H2O2-driven oxygenator to further boost the PDT effect on the solid hypoxic tumor [84].
A photothermal material using Au@m-SiO2 nanocube-loaded doxorubicin (DOX) as the
chemotherapeutic drug grafted with Mn-CDs shows multiple applications for hyperther-
mia, chemotherapy, and oxygen-evolving in situ PDT under bi-irradiation at 635 and
808 nm [85].

3.2.4. The Water-Splitting System for Anti-Hypoxia Effect

Water-splitting materials used in the biomedicine field have attracted widespread
attention. Jiang et al. developed graphdiyne oxide (GDYO) nanosheets that are able to
split water for sufficient oxygen generation in the TME upon irradiation at 660 nm [86].
Coating the mesoporous carbon nitride (C3N4) nanoparticle shells showed excellent perfor-
mance in intracellular water splitting, thereby raising the O2 level for attenuation of the
hypoxic state [87].

3.3. Enhancing Targeting on Cancer Cells

Abnormal angiogenesis around the solid tumor causes the large gaps (~100 nm)
between endothelial cells in blood vessels, thus resulting in a higher permeability of
nanoparticles into the tumor site. The quick growth of the tumor leads to loss of lymphatic
reflux, thus making those trapped nanoparticles stay in the tumor. Therefore, nanoparticles
reveal a great ability to target the solid tumor due to the enhanced permeability and
retention (EPR) effect.

Maximizing the PS concentration in a solid tumor and controlling the 1O2 production
within the cancer cells is a daunting challenge. NPs act as a promising PS carrier to the
tumor through the passive EPR effect. Thus, a lower dose is required, which lessens side
effects and provides a better therapeutic outcome compared to free PS treatment [88].
PEGylation of the surface of NPs with polyethylene glycol (PEG) to mask the NPs from the
host immune system and increase their hydrodynamic size, which reduces renal clearance,
is the most frequently used method to prolong NPs in blood circulation and increase
drug accumulation at the tumor site [89]. Recently, surface modification by zwitterionic
polymers has shown improved NP stabilization, longer retention in blood, and enhanced
retention in the tumor compared to standard PEGylation, due to the super-hydrophilic
nature and responsive properties of the pH [90–92]. Surface-modified nanocarriers with the
EPR effect benefit PS delivery into tumors; however, only around 0.7% injected dose (ID)
of nanocarriers are accumulated at the tumor site at the end [93]. Therefore, developing
active targeting strategies has become an important direction to improve the efficiency of
PS delivery.

3.3.1. Antibodies on Nanocarriers for Specific Bioconjugation

As a general thought regarding active targeting, particular antibodies grafting onto the
surface of NPs are able to facilitate the specific targeting to cancer cells and work toward
increasing the nanodrug accumulation. Erlotinib, cyclic cRGDfK (cRGD) peptides, and
aptamer-conjugated PSs showed specific targeting to epidermal growth factor receptor
(EGFR)-positive cells, αvβ3 integrin receptor-overexpressed cell lines, and protein tyrosine
kinase 7 (PTK7) overexpressed tumor, respectively [94–96]. Tsai et al. (2018) used curcumin-
encapsulated EGF-conjugated chitosan nanoparticles to recognize the EGFR-overexpressed
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MKN45 cells to kill in PDT [97]. In 2019, Zhang and coworkers developed photosensitizer
protoporphyrin IX (PpIX)-conjugated peptide nanoparticles, which showed an excellent
plasma membrane targeting capability [98]. Cho et al. (2020) developed a fucoidan-based
nanocarrier that exhibits an excellent ability to conjugate with P-selectin-overexpressed neo-
vascular endothelial cells around the tumor region, by which many PSs were transported
into the tumor site for enhanced PDT [99].

3.3.2. Mitochondria Targeting

Due to the short lifetime of ROS with a limited diffusion distance (<20 nm), and
since mitochondria are critical intracellular organelles that generate energy to keep the cell
alive and maintain growth, a promising strategy in PDT is to directly target mitochondria
with nanocarriers and then destroy them with ROS. Triphenylphosphonium (TPP) is the
most common mitochondrial-targeted agent. TPP has been modified onto the surface of
numerous nanomaterials to achieve the aim of mitochondria-mediated apoptosis for cancer
treatment [100,101]. Tetramethylrhodamine-5-isothiocyanate (TRITC) has been grafted
onto upconversion nanoparticles (UCNPs) with graphene quantum dots (GQDs), which
have the photosensitization feature, resulting in a good performance in mitochondria-
targeted PDT [102]. The organic nanoparticles composed of chlorin derivatives developed
by Liu et al. show an intrinsic ability of mitochondria targeting [103]. Yi et al. demonstrated
that amphiphilic gemini iridium (III) complex-based nanovesicles are able to specifically
target mitochondria for further PDT [104].

3.3.3. Activation of Silent PSs

Aggregation-induced silencing of PSs could significantly reduce cytotoxicity during
delivery, and their photoactivity could be switched on through an additional trigger, in-
cluding H+, heat, enzymes, and remote interferences (microwave and ultrasound (US)).
This approach not only shows enhanced efficacy in specific malignant cells but also restricts
the area of ROS action to reduce the potential side effects. Li et al. showed that the aggre-
gated zinc (II) phthalocyanine derivative entrapped on mesoporous silica nanoparticles
(MSNs) could be dispersed through the trigger of albumin to enable photoactivity inside
the cancer cell [105]. Typical thermal-responsive polymers were used to prepare activatable
PS-loaded NPs, showing that the polymer’s physical expansion dramatically turns on the
photoactivity of PSs at above 42 ◦C [106,107]. Yao et al. designed vesicular composite
assemblies using block co-polymers with quinone linkage and PS moiety, which could be
degraded by cytosolic NAD (P) H: quinone oxidoreductase isozyme 1 (NQO1) to exhibit
the ability to specifically target NQO1-overexpressed cancer cells [108]. Several nanoplat-
forms have been developed, indicating that the silent state of PSs can be turned into an
activated state under an acidic microenvironment [109–111]. The photoactivity of C3N4
quantum dots (QDs) producing vast amounts of 1O2 was triggered by microwave, showing
an obvious benefit of limiting the area of efficacious treatment in a tumor in areas reached
by the irradiation [112]. Zhang et al. showed a new strategy using US to collapse protein-
based nanocarriers for further liberation of PSs and chemotherapeutic drugs for enhanced
tumor-targeting PDT and chemotherapy [113].

3.3.4. Cell Membrane-Camouflaged Nanocarriers

Surface engineering of nanomaterials by modifying aptamers, peptides, folic acid,
and antibodies has the advantage of specifically targeting cancer cells to promote dose
accumulation. Recently, as a progressive approach based on surface modification, coating
cell membrane onto the nanomaterial to deliver PSs not only provides the active targeting
function to cancer cells but also perfectly camouflages the PS as an innate biological
substrate to reduce the recognition by macrophages, resulting in the maximum cumulative
dose and minimum dose use and dark cytotoxicity [114–116]. Bidkar et al. (2020) developed
transferrin (TF)-exposed cell membrane-coated PLGA NPs to co-carry DOX and PSs,
showing excellent efficacy in TF receptor-overexpressed cancer cells in chemotherapy
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and PDT [116]. The cell membrane fragments from cancer cells were utilized to coat the
PS-loaded nanocarriers that exhibited a distinct ability to target homologous cells [115].

3.3.5. Magnetic Targeting

Co, Fe, Ni, iron oxide, and some ferrites are the most common materials to be widely
used for the preparation of superparamagnetic nanoparticles. Recent reports demonstrated
that using superparamagnetic NPs as PSs carriers provided the ability to specifically target
the cancer cell through magnetic field attraction, and these NPs have potential use as
contrast agents for magnetic resonance imaging (MRI) [117–121]. Talmoud et al. used
γ-Fe2O3 NPs to load mTHPC, leading to a remarkably increased cumulative dose of PSs
inside the tumor through the magnetic targeting [119]. Yan et al. (2018) directly applied
PpIX to coat magnetic nanoclusters, revealing a high accumulation at the tumor, thus
significantly enhancing the T2-weighted signals in MRI [120]. Wang et al. created magnetic
nanobullets, composed of a body of disulfide-bridged m-SiO2 with Ce6 loading and a
magnetic Fe3O4 head, which were used to conduct the combination therapy of PDT and
alternating current magnetic-field-induced hyperthermia [121].

3.4. Additional Functions of Applying Nanocarriers in PDT

With the advantages of functional NPs, the efficiency and efficacy of PDT have been
further improved through additional actions from nanocarriers. Figure 4 summarizes
additional functions from various NPs that improve the modern PDT applications in
different ways.

3.4.1. Imaging-Guided PDT Using Multifunctional Nanocarriers

Nanocarriers provide imaging functions as a means of monitoring PSs to ensure that
they have been delivered into the cancer cells, ensuring not only excellent spatiotemporal
selectivity to kill the cancer cells specifically but also minimal dark toxicity to normal
cells during the drug transport. In recent years, numerous nanomaterials were developed
to conduct imaging-guided PDT. Various nanocarriers containing the MnOx component
showed the capability of T1-weighted contrast imaging through Mn2+ release, which was
obtained by MnOx dissociation under the GHS or H2O2-mediated catalysis reaction in the
TME [122,123]. Wang et al. (2020) designed fibronectin-targeting iron oxide nanocarriers to
carry PSs, showing an excellent homing feature in triple-negative breast cancer (TNBC)
treatment and an intrinsic ability in T2-weighted MRI [124]. Some particular nanoparticles
with a high X-ray attenuation coefficient are suitable carriers to deliver PSs in computed
tomography (CT) imaging-guided PDT [125]. The hyperthermia caused by photother-
mal nanomaterials upon light irradiation not only inflicts heat damage to the tumor but
also produces sonic waves visualized in photoacoustic (PA) imaging. Two PA-guided
PDT platforms using molybdenum oxide nanorings and iridium (III)-cyanine-based NPs
have been established by the teams of Li and Yang [126,127]. Holmium (III)/ iridium(III)
bimetallic complex NPs with a hollow structure exhibited distinct characteristics in the
generation of singlet oxygen and typical US imaging owing to their cavity features [128].
PS-loaded nanocarriers with the properties of AIE or luminescence at the NIR range pro-
vided high-quality fluorescent imaging with the features of high spatial resolution and
minimal interference by autofluorescence [129,130]. Xu et al. used mesoporous silica NPs
to load PSs and incorporate with 64Cu-labeled peptides, and this technique may be feasible
in positron emission tomography (PET) imaging-guided PDT [131]. Lee et al. showed that
diethylenetriaminepentaacetic acid chelated Eu3+ and PSs-co-embedded liposomes with
64Cu-labeling, exhibiting an ultra-bright radioluminescence (RL) after ionizing radiation,
by which good consequent imaging and PS activation was obtained [132]. Multimodal
imaging-guided PDT has been achieved using some particular nanomaterials and combin-
ing various ideal imaging techniques such as US, PET, CT, MRI, PA, and luminescence,
revealing perfect and precise tracking of PS-loaded nanocarriers [133–135].
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3.4.2. Enhancing Immunogenicity

In recent years, immunotherapy has attracted enormous attention due to its huge
potential in cancer treatment, especially for its surprising efficacy in late-stage patients
with distant or regrowing tumors [136,137]. A well-known medical strategy to conduct
immunotherapy is injecting monoclonal antibodies to block the particular immunosuppres-
sive pathways, thereby switching on the immune activity for tumor inhibition, a technique
named checkpoint blockade immunotherapy (CBI). In current CBI, inhibitors are used to
specifically block the expression of programmed cell death protein 1 (PD-1) on T-cells or its
receptor PD-L1 on cancer cells [136]. However, immunotherapy showed limited efficacy
for large primary tumors. Therefore, the combination strategy of a main PDT treatment for
primary tumors and aiding immune response to kill the residual, metastatic, and recurrent
cancer cells showed a potential improvement of pancreatic cancer treatment. Hu et al. used
HA-modified Cu-porphyrin NPs to kill the primary tumor and subsequently to activate
enhanced immunotherapy by using PD-L1 inhibitor [138]. Ce6-loaded immunoglobulin
G (IgG, a type of immunologic adjuvant) nanocomposites with dual checkpoint blockade
(PD-L1 and CTLA-4) have been used to treat solid tumors and prevent metastasis [139].

Several reports have shown the feasibility of PDT-induced immunotherapy. Chen et al.
applied Ce6 and O2-encapsulated protein nanocarriers to treat the primary tumor in
oxygen-supplied enhanced PDT under laser irradiation, resulting in the enhanced re-
lease of damage-associated antigens (TAAs) from dying cancer cells. These antigens,
such as CRT, HMGB1, and ATP, induced the maturation of dendritic cells (DCs) and fur-
ther elicited the action of T-lymphocytes and natural killer (NK) cells in lymph nodes as
well as against distant tumors and lung metastasis [140]. The reports demonstrated that
generating high amounts of ROS by PDT using PS-loaded nanocarriers not only led to
immunogenic cell death (ICD) in the primary tumor to release damage-associated molec-
ular patterns (DAMPs) but also induced proinflammatory M1-macrophage polarization
to secret cytokine, which tended to cause an intense immune activation for distant tu-
mor destruction [141,142]. Wang et al. developed new material N-doped carbon-silica
nanocomposites (CSNs) with intrinsic 1O2-produced features (PS-free) that show good per-
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formance in photothermal and photodynamic therapies under light irradiation at 808 nm
as well as provide immunoadjuvant properties to induce the TAAs and mature DCs [143].
Yu et al. tried to combine PDT and 3-MA as an autophagy inhibitor for the treatment
of osteosarcoma, by which the autophagy was inhibited, triggering the upregulationof
calreticulin (CRT) expression on the cancer cell membranes and reducing PD-L1 mono-
ubiquitination, resulting in a synergistic immune response [144]. T-lymphocyte-associated
protein 4 is a transmembrane receptor on T-lymphocytes with the functions of deactivation
of T-lymphocytes and suppression of tumor immune effects. Xu et al. and Lin et al. injected
anti-CTLA-4 after PDT, showing an effective inhibition of distant tumors [145,146].

3.4.3. Regulating Metabolism of Cancer Cells by Starvation

In general, the cancer cells need to consume a large amount of glucose, thereby obtain-
ing enough energy to sustain cell activity and proliferation. Some particular enzymes are
able to trigger the essential substances’ degradation inside cancer cells to block the nutrient
support through a method that has considerable potential in deep-seated tumor treatment
called starvation therapy (ST) [147]. A highly important concern in ST is maintaining the
enzyme’s natural activity after circulation in veins and internalization into cancer cells.
Delivery of active enzymes to cancer cells by the nanocarrier is a useful and efficient
approach to avoid the denaturation of these unstable proteins during the transport process
as well as increase their accumulation in the tumor. Excellent results for the combination
treatment of PDT and ST against tumors have been reported recently. Yu et al. applied
Ce6 and glucose oxidase (GOx)-modified hollow MSNs encapsulating CPPO to treat lung
cancer. In this system, GOx is able to decompose glucose into H2O2, and the CPPO is
activated by this H2O2 to trigger the CRET-based PDT [148]. Zhu et al. used the GOx-
loaded MSNs with PS-embedded lipid membrane shells to produce ROS and consume
glucose inside cancer cells under irradiation at 730 nm, resulting in a synergistic ST and
PDT treatment [149].

3.4.4. Gas-Releasing Nanoparticles

Various medical gases such as nitric oxide (NO), hydrogen (H2), sulfur dioxide (SO2),
hydrogen sulfide (H2S), carbon dioxide (CO2), and carbon monoxide (CO) are known to
have benefits and bio-toxicity properties in practical bio-application [150]. Administration
of medical gases in traditional gas therapy through gas exposure, directly inhalation, or
injection approaches showed a high-risk of harm and serious side effects. Using nanotech-
nology, medical gas or gas donors can be carried to precisely target an area. The com-
bination of gas therapy and PDT is a feasible strategy to augment the overall efficacy
(Figure 5). Generally, the high amount of CO shows significant toxicity to cells through the
anti-Warburg effect [151]. Ma et al. used fluorinated amphiphilic dendritic peptide (FADP)
nanocarrier loading of Ce6 and CO releasing molecules (CORMs) to kill bacteria with 1O2
and CO [152]. Releasing NO as a cell signaling molecule in a deep-seated tumor could
counteract the ROS scavenger activity of GSH, causing smooth muscle cell (SMC) relaxation
to raise the blood perfusion with abundant oxygen supply and reacting with ROS to form
cytotoxic reactive nitrogen species (RNS), thus resulting in multiple effects that improve
the overall efficacy [151,153,154]. Wan et al. used a porous Zn-porphyrin nanocarrier to
load L-arginine as a NO donor, presenting a feasible strategy of NO-sensitized PDT [155].
Yu et al. (2019) utilized PLGA vesicles to load hydrophobic TPP in polymer shells and
hydrophilic NO donor sodium nitroprusside (SNP) in cavities. The SNP could be activated
by glutathione and cysteine, which are rich in cancer cells, to generate NO that can inhibit
mitochondria respiration, thus leading to a much lower oxygen consumption compared
to no NO presence, consequently keeping more oxygen inside cells for 1O2 generation by
PDT [156]. Other medical gases such as H2, CO2, and SO2 that are yet to be studied also
play an important role in providing particular bio-functions, revealing high potential for
use in enhanced PDT-related applications in the future (Figure 5).
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4. Conclusions

In clinical trials, there is still a huge barrier to applying PDT to treat deep-seated
tumors due to these unresolved limitations, including no light reaching deep-seated tu-
mors, insufficient oxygen concentration in the TME, and insufficient PS accumulation in
tumors. The approach using individual nanoparticles to carry PSs in PDT application
has been developed and provides a potential opportunity to overcome these barriers in
PDT tumor treatment. Some new strategies and techniques such as two-photon excitation,
chemiluminescence (CL), lamp implantation, PLNPs, and use of X-rays for triggering
showed an excellent ability to activate PSs at the deep-seated tumor site. Many feasible
approaches, including oxygen delivery, endogenous H2O2 decomposition by enzymes
or MnO2-induced catalysis, and intracellular water splitting, exhibited hypoxia relief in
solid tumors and enhanced the efficacy of PDT. Surface-modified nanocarriers with the
capability of active cancer cell targeting or mitochondria targeting revealed improved PS ac-
cumulation at specific malignant cells. Visualization of nanocarriers in medical images can
help us to conduct imaging-guided PDT. Moreover, PDT combined with immunotherapy,
starvation therapy, and gas therapy is able to activate immune response, weaken the cancer
cells, and sensitize the ROS therapeutic effect, respectively. The next step and challenge of
PDT is to validate the in vitro and in vivo efficacy in clinical studies. The important issues
that need to be settled are the standardization the protocol of drug and light dosages in
different platforms and the safety of nanoparticles. How to integrate different functional
NPs into a single and simple system is another challenge. We believe a new platform that
provides in situ actions, either individually or in combination with effective photoactivity
of PSs, oxygen support, specific targeting and additional functions in imaging, enhancing
immunogenicity, ST, and gas therapy will exhibit powerful performance in the treatment
of deep-seated tumors in the future.
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