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Tumor-Treating Fields Induce RAW264.7
Macrophage Activation Via NK-kB/MAPK
Signaling Pathways
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Abstract
Objective: Tumor-treating fields are currently used to successfully treat various cancers; however, the specific pathways
associated with its efficacy remain unknown in the immune responses. Here, we evaluated tumor-treating fields–mediated
initiation of the macrophage-specific immune response. Materials and Methods: We subjected RAW 264.7 mouse macro-
phages to clinically relevant levels of tumor-treating fields (0.9 V/cm, 150 kHz) and evaluated alterations in cytokine expression
and release, as well as cell viability. Additionally, we investigated the status of immunomodulatory pathways to determine their
roles in tumor-treating fields–mediated immune activation. Results and Discussion: Our results indicated that tumor-treating
fields treatment at 0.9 V/cm decreased cell viability and increased cytokine messenger RNA/protein levels, as well as levels of
nitric oxide and reactive oxygen species, relative to controls. The levels of tumor necrosis factor a, interleukin 1b, and interleukin
6 were markedly increased in tumor-treating fields–treated RAW 264.7 cells cocultured with 4T1 murine mammary carcinoma
cells compared with those in 4T1 or RAW 264.7 cells with or without tumor-treating fields treatment. Moreover, the viability of
4T1 cells treated with the conditioned medium of tumor-treating fields–stimulated RAW 264.7 cells decreased, indicating that
macrophage activation by tumor-treating fields effectively killed the tumor cells. Moreover, tumor-treating fields treatment
activated the nuclear factor kB and mitogen-activated protein kinase pathways involved in immunomodulatory signaling.
Conclusion: These results provide critical insights into the mechanisms through which tumor-treating fields affect macrophage-
specific immune responses and the efficacy of this method for cancer treatment.
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Introduction

Tumor-treating fields (TTFs) therapy, in which small electric

fields are pulsed through the skin to disturb mitosis, represents

a noninvasive, regional treatment modality that was recently

approved for the therapy of recurrent glioblastoma (GBM)

by the US Food and Drug Administration and gained a CE
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mark in Europe.1-3 The clinical concept is that TTFs therapy

delivers low-intensity (0.9-3 V/cm), intermediate-frequency

(100-300 kHz), and alternating electric fields to the tumor

using transducer arrays placed on the skin around the tumor

site.4 The proposed mechanisms of action involve disruption of

the metaphase of tumor cells by interfering with mitotic spindle

formation and disruption of anaphase by the dielectrophoretic

dislocation of intracellular constituents, resulting in an overall

effect of apoptosis.3 The antimitotic effect of TTFs treatment

has been showed in various cell lines as well as in GBM by tuning

the appropriate frequency to specific cancer cell types.5-7 A phase

III trial of TTFs combined with temozolomide established that

this treatment protocol led to minimal toxicity, increased the

overall survival rate, and improved patient quality of life with

equivalent therapeutic efficacy to chemotherapy. Moreover, in

addition to its combination with chemotherapy, synergistic

enhancement of the cellular response was reported when TTFs

were administered in combination with radiation therapy.

Thus, with these merits, ongoing and future trials will evaluate

TTFs to treat various cancer types, including newly diagnosed

GBM, solid tumor brain metastases, nonsmall cell lung cancer,

ovarian cancer, and pancreatic cancer.

Emerging evidence has demonstrated that the tumor micro-

environment may greatly contribute to the final outcome of

cancer treatment modalities. Several types of cells including

leukocytes, fibroblasts, and vascular endothelial cells form the

tumor microenvironment, which has immune cells as its major

component.8 These immune cells interact with tumor cells to

influence the initiation, proliferation, elimination, invasion,

and metastasis of tumors.9 In particular, tumor-associated

macrophages are immune cells that orchestrate various factors

in the tumor microenvironment through the polarization of M1

or M2 macrophages.8,10,11 Tumor-associated macrophages

play a crucial role in the link between inflammation and cancer

to produce inflammatory cytokines, such as interleukin (IL) 1b,

interferon g, IL-12, and IL-23, along with anti-inflammatory

mediators (IL-4, IL-10, and IL-13).12-15

Despite increasing studies of the effect of TTFs on cancers,

the influence of TTFs on immune cells has not yet been deter-

mined. Therefore, to further understand the mechanism under-

lying the beneficial effects of TTFs therapy and further

improve this treatment modality, we investigated the influence

of TTFs exposure on the function of murine macrophage RAW

264.7 cells, a frequently used in vitro model to investigate the

immune response and inflammation.

Materials and Methods

Experimental Setup of the Electric Fields

Tumor-treating fields were generated using a pair of insulated

wires connected to a functional generator and a high-voltage

amplifier, which generated sine-wave signals ranging from 0 to

800 V12 and resulted in an applied electric field intensity and

frequency of 0.9 V/cm and 150 kHz, respectively. We used

0.9 V/cm as the field intensity to match the application in

clinical settings. For irradiation treatment, the cells were plated

in 100-mm dishes and incubated at 37�C under humidified

conditions in a 5% CO2 atmosphere until reaching 70% to

80% confluence.

Cell Culture and Preparation of Conditioned Medium

RAW 264.7 mouse macrophages and 4T1 murine mammary

carcinoma cells were purchased from American Type Culture

Collection (Manassas, Virginia) and cultured in Dulbecco

modified Eagle medium (DMEM; Welgene, Seoul, Korea) sup-

plemented with 10% heat-inactivated fetal bovine serum (FBS)

and antibiotics (100 U/mL penicillin and 100 mg/mL strepto-

mycin; Welgene) at 37�C in a humidified 5% CO2 incubator.

For the preparation of conditioned medium (CM), RAW

264.7 cells were treated with 1 ng/mL of lipopolysaccharide

(LPS; Sigma, St Louis, Missouri) as an inflammatory stimulator

control or TTFs; nontreated cells were used as the control group.

After 24 and 48 hours, the supernatants were harvested and

filtered through 0.45 mm membrane (Millipore, Massachusetts).

Coculture of RAW 264.7 and 4T1 Cells

4T1 cells (5 � 104 cells/mL) were plated in 12-well plates, and

the 24-hour TTFs-treated RAW 264.7 cells were added to the

wells for coculture at different densities: 5 � 104 cells/mL,

25 � 104 cells/mL, or 50 � 104 cells/mL. The cells were

cocultured in DMEM supplemented with 10% FBS and 1%
antibiotics for 48 hours at 37�C with 5% CO2.

Measurement of Cytokines

Cell-free supernatants derived from the coculture of

RAW264.7 and 4T1 cells were stored at �70�C prior to

measurement of cytokine production. The amounts of IL-6

(Invitrogen, Carlsbad, California), IL-1b (BD Science, San

Diego, California), and tumor necrosis factor a (TNF-a;

R&D System, Minneapolis, Minnesota) produced in the CM

were determined with commercial enzyme-linked immunoas-

say kits according to the manufacturer’s protocol. The absor-

bance at 450 nm was obtained using a 96-well microplate

reader (Thermo Scientific, Rockford, Illinois).

Cell Viability Assay

Cell viability was determined by a trypan blue exclusion assay

and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bro-

mide (MTT; Amresco Life Science, Philadeplhia, Pennsylva-

nia) assay. An equal volume of trypan blue reagent was added

to the cell suspension, and the percentage of viable cells was

evaluated by microscopy. 4T1 cells were plated in 24-well

plates (1 � 104 cells/well) for various times after treatment

of the RAW 264.7 cell CM. Then, MTT (5 mg/mL) reagent

was added to each well for 3 hours, and absorbance was mea-

sured at 540 nm using a microplate reader (Multiskan EX,

Thermo LabSystems, Waltham, Massachusetts). Assays were

performed in triplicate.
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Detection of Intracellular Reactive Oxygen Species

Reactive oxygen species (ROS) levels in macrophages were

monitored using the fluorescent ROS indicator C20,70-dichlor-

odihydrofluorescein diacetate (5 mmol/L; Molecular Probes,

Eugene, Oregon). Cell-associated fluorescence was detected

by fluorescence-activated cell signaling (FACS) using a

FACS-Calibur flow cytometer (BD Biosciences, San Diego,

California) with FlowJo software V 7.2.5 (Tree Star Inc, Ash-

land, Orogen). Images of fluorescent cells were acquired under

a 710 confocal microscope (Carl-Zeiss, Germany).

Determination of Nitric Oxide Production

RAW 264.7 cells at a density of 1� 105 cells/well were treated

with TTFs or 1 ng/mL of LPS from Escherichia coli 055:B5

(L2880; Merck KGaA, Darmstadt, Germany) as a positive con-

trol for the activation of macrophages. After incubation, the

culture supernatants of RAW 264.7 cells were collected, and

each culture supernatant was mixed with the same amount of

Griess reagent and incubated at room temperature for 10 min-

utes. The absorbance of the mixture was determined at 540 nm

using a microplate reader (Multiskan EX, Thermo Fisher Sci-

entific, Waltham, Massachusetts). All measurements were per-

formed in triplicate. The amounts of nitrites were determined

using a standard curve established with NaNO2.

Quantitative Reverse Transcription Polymerase Chain
Reaction

Total RNA was extracted from RAW 264.7 cells using TRIzol

reagent (Invitrogen) and reverse transcribed using EcoDry Pre-

mix (Clontech Laboratories, Mountain View, California)

according to the manufacturer’s recommendations. Quantita-

tive reverse transcription polymerase chain reaction experi-

ments were performed using Maxima SYBR Green qPCR

Master Mix (Thermo Scientific) in LightCycler 96 Real-time

PCR system (Roche Diagnostics, Mannheim, Germany). Using

GAPDH as an internal reference, the relative gene expression

was calculated based on the DDCt method. The following

primer pairs were used: inducible nitric oxide synthase (iNOS),

50-CGA AAC GCT TCA CTT CCA A-30 (forward)

and 50-TGA GCC TAT ATT GCT GTG GCT-30 (reverse);

IL-1b, 50-TGA AGG GCT GCT TCC AAA CCT TTG ACC-

30 (forward) and 50-TCT CCA TTG AGG TGG AGA GCT

TTC AGC-30 (reverse); TNF-a, 50-ATG AGC ACA GAA AGC

ATG ATC CGC-30 (forward) and 50-CCA AAG TAG ACC

TGC CCG GAC TC-30 (reverse); and GAPDH, 50-ACC ACA

GTC CAT GCC ATC AC-30 (forward) and 50-TCC ACC ACC

CTG TTG CTG TA-30 (reverse). Experiments were repeated at

least 3 times.

Western Blot Analysis

Total proteins from RAW 264.7 cells were extracted in TNN

buffer (50 mM Tris–Cl, pH 7.4; 1% NP-40; 150 mM NaCl, and

1 mM EDTA) supplemented with protease inhibitors (1 mmol/

L phenylmethylsulfonyl fluoride [PMSF], 1 mg/mL aprotinin, 1

mg/mL leupeptin, and 1 mmol/L Na3VO4) and quantified using

the Bradford method. Protein samples (15 mg) were separated

by sodium dodecyl sulfate/polyacrylamide gel electrophoresis

and transferred to a nitrocellulose membrane. After blocking

nonspecific antibody binding sites, the membrane was incu-

bated overnight at 4�C with mouse monoclonal antibodies

against iNOS, extracellular signal-regulated kinase (ERK),

phosphorylated ERK (pERK), c-Jun N-terminal kinase (JNK),

pJNK, p38, p-p38, IkB-a, pIkB-a, and GAPDH. After incuba-

tion with peroxidase-conjugated secondary antibodies at 37�C
for 1 hour, the protein bands were visualized using enhanced

chemiluminescence reagent (GE Healthcare Biosciences, Pitts-

burgh, Pennsylvania) and detected using the Amersham Imager

680 (GE Healthcare Biosciences). The relative levels of protein

expression were calculated with reference to the levels of

GAPDH.

Statistical Analysis

All results are expressed as the mean (standard deviation).

Significant differences among groups were determined by anal-

ysis of variance and Tukey post hoc comparisons using Graph-

Pad software version 5 (GraphPad, La Jolla, California).

Statistical significance was defined as P values <.05, and the

individual P values in the figures denoted by asterisks

(*P < .05; **P < .01; ***P < .001).

Results

Effect of TTFs on RAW 264.7 Cell Viability

To investigate the effect of TTFs on macrophages, RAW 264.7

cells were treated with TTFs (0.9 V/cm) or LPS, which is a

representative activator of macrophages.13 The morphological

changes were observed under a phase contrast microscope

(Figure 1A). The normal morphology of RAW 264.7 cells was

round in the control group. In contrast, LPS-treated cells

showed polygonal and dendritic-like morphology, indicating

that LPS effectively activated RAW 264.7 cells.14 In TTFs-

treated cells, the dendritic-like shape was observed in a portion

of the population, but the number of cells seemed to be

decreased at 48 hours compared to that in other groups. There-

fore, the cell viability was determined by a trypan blue dye

exclusion assay. As shown in Figure 1B, LPS-stimulated and

unstimulated control cells continuously proliferated, whereas

RAW 264.7 cells treated with TTFs exhibited cell growth

inhibition but without a statistically significant influence on

cell viability.

Effect of TTFs on the Production of NO and ROS by
RAW 264.7 Cells

Nitric oxide (NO) is an important inflammatory mediator that

can be produced by activated macrophages to kill tumors and

pathogens as well as convey intracellular signals.15 As shown

in Figure 2A, LPS- or TTFs-treated cells increased the
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messenger RNA (mRNA) and protein expression of iNOS

compared with those of the control. The production of NO in

TTFs-treated RAW 264.7 cells was slightly increased, whereas

LPS stimulation significantly enhanced NO production (Figure

2B). It has been demonstrated that activated macrophages exhi-

bit increased ROS accumulation under inflammatory condi-

tions; therefore, we evaluated whether TTFs affect the

generation of ROS. As shown in Figure 2C, ROS levels were

increased in RAW 264.7 cells when exposed to TTFs for

24 hours. Concomitantly, LPS-induced ROS generation was also

evident. These results indicate that TTFs increased the produc-

tion of NO and ROS in activated RAW 264.7 macrophages.

Effect of TTFs on the Production of Proinflammatory
Cytokines by RAW 264.7 Cells

Among the various cytokines, TNF-a can activate macro-

phages in an autocrine manner to induce the expression of other

inflammatory and immunomodulatory mediators.16 RAW

264.7 cells were treated with TTFs or LPS for 24 hours, and

the mRNA expression levels of proinflammatory cytokines

such as IL-1b and TNF-a were determined (Figure 3A). The

mRNA levels of IL-1b and TNF-a were significantly upregu-

lated by the administration of TTFs, and further increase was

observed in LPS-activated RAW 264.7 cells. We further

investigated the release of some key proinflammatory cyto-

kines in the coculture medium. Compared with that in other

groups, IL-1b, TNF-a, and IL-6 levels in the coculture of

TTFs-treated RAW 264.7 cells with 4T1 cells were signifi-

cantly increased at 48 hours in a manner dependent on the ratio

of the 2 cells (Figure 3B). To evaluate the cytotoxic activity of

the CM of TTFs-treated RAW 264.7 cells against 4T1 cells, an

MTT assay was performed. As shown in Figure 3C, 4T1 cells

exposed to the CM of unstimulated RAW 264.7 cells did not

show statistically significant decrease in viability, whereas 4T1

cells exposed to CM from TTFs-treated RAW 264.7 cells

exhibited decreased viability after 24 or 48 hours contact with

the CM. As expected, the CM of LPS-treated RAW 264.7 cells

also significantly decreased the viability of 4T1 cells. These

results suggested that TTFs activate macrophages and promote

the expression of proinflammatory cytokines.

p38 Mitogen-Activated Protein Kinase and Nuclear
Factor-kB Signaling Pathways in TTFs-Administered
RAW 264.7 Cells

To investigate the signaling pathways involved in the activa-

tion of RAW 264.7 cells by TTFs, mitogen-activated protein

kinase (MAPK) and nuclear factor-kB (NF-kB) signaling path-

ways, which are vital targets for regulating inflammatory

Figure 1. Effect of TTFs on the viability of RAW 264.7 cells. A, RAW 264.7 cells were treated with TTFs (0.9 V/cm) for the indicated times and

monitored morphological changes by phase contrast microscopy (magnification �200, scale bar ¼ 50 mm). The bar graph represents the

percentages of activated cells from a total of 500 counted cells. B, The cell viability was determined by a trypan blue exclusion assay. Data

represent the mean (standard deviation) of triplicate samples. *P < .05, ***P < .001 compared with the control group. TTFs indicates tumor-

treating fields.
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responses, were examined using Western blot analysis. The

expression of 3 MAP kinase family members, namely, ERK,

JNK, and p38 MAPK, was determined. The phosphorylation

levels of p38 MAPK were significantly increased in TTFs-

administered RAW 264.7 cells at 24 hours after treatment.

However, activation of MAPK in LPS-treated RAW 264.7 cells

was not observed at that time point as LPS treatment activated

RAW 264.7 cells more quickly and much more strongly than

TTFs treatment. Under normal cell conditions, NF-kB exists as

an inactive cytoplasmic complex with its inhibitor IkB-a.17

Tumor-treating fields–administered RAW 264.7 cells showed

increased phosphorylation of IkB-a and p65, indicating that the

p65 subunit of NF-kB was released from IkB-a, allowing for

its translocation to the nucleus to regulate the transcription of

many genes that activate macrophages (Figure 4).

Discussion

Tumor-treating fields have recently been reported as a promis-

ing and noninvasive therapeutic approach for cancer therapy

with good clinical results. The underlying mechanical mechan-

isms include the disruption of mitosis and selective killing of

rapidly proliferating cells by delivering continuous (>18 h/d)

low-intensity, intermediate-frequency, alternating electric

fields to the tumor site. Tumor-treating fields ultimately lead

to caspase-dependent or caspase-independent–induced apopto-

sis.18-20 Tumor-treating fields have been shown to apply its

antimitotic effects in preclinical systems of various cancers,

including GBM through the similar molecular mechanisms of

activity.5,6,21,22 Furthermore, TTFs have been tried in preclini-

cal systems combined with cytotoxic, chemotherapeutic agents

in order to enhance the general antitumor effects. Combined

treatment of TTFs with these chemotherapeutic agents (micro-

tubule inhibitors, nucleoside analogues, folate antimetabolites,

alkylating agents, and immune checkpoint inhibitors) demon-

strated an additive cytotoxic effect. Taxanes and TTFs showed

a synergistic effect against cancer cells.23 In addition, in

in vitro preclinical models, TTFs were shown to expose calre-

ticulin to the cell surface, which ultimately significantly

decreased the tumor volume in vitro and to considerably

Figure 2. Oxidative molecule induction by TTFs treatment in RAW 264.7 cells. A, The mRNA and protein expression levels of iNOS were

evaluated by qRT-PCR and Western blotting 24 hours after treatment, respectively. B, The total amount of nitric oxide (NO) was measured using

Griess assay at the indicated times. C, ROS generation was determined by DCF-DA fluorescence 24 hours after treatment using a fluorescence

microscope and FACS. Data represent the mean (standard deviation) of triplicate samples. *P < .05, ***P < .001 compared with the control

group. DCF-DA indicates C20,70-dichlorodihydrofluorescein diacetate; FACS, fluorescence-activated cell signaling; iNOS, inducible nitric

oxide synthase; mRNA, messenger RNA; qRT-PCR, quantitative reverse transcription polymerase chain reaction; ROS, reactive oxygen

species; TTFs, tumor-treating fields.
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decrease the tumor volume in combination with antipro-

grammed T-cell death 1 to significantly increase antigen-

presenting cell infiltration of the tumor.24 These events show

the potentiation of immunogenic cell death by the treatment of

TTFs,25 which needs further investigation. Although a large

number of studies using TTFs as an anticancer therapy are

ongoing, the influence of TTFs on normal tissues in the tumor

microenvironment remains largely unknown. Thus, in the cur-

rent study, we demonstrated that TTFs exert potential immu-

nostimulatory activity via regulation of NF-kB/MAPK

signaling pathways in RAW 264.7 macrophages.

Macrophages are crucial for host defense against infections

and in inflammatory processes through the release of mole-

cules, such as NO, TNF-a, and IL-6.26 On the basis of our

results, the study showed that TTFs increase macrophage acti-

vation in RAW 264.7 cells. Furthermore, TTFs significantly

enhanced the production of NO in RAW 264.7 cells in vitro.

After its release from macrophages, NO acts as an intracellular

messenger to mediate the nonspecific immune response27 and

has also been suggested to be a critical factor in the immune

response.28 Nitric oxide is a gaseous, free radical and acts as a

signaling molecule in biological systems, recruiting leukocytes

to affected tissues.29,30 Inducible NOS is the inducible enzyme

for NO production and is responsible for increased levels of

NO. Accumulating evidence indicates that intracellular ROS

also serves as a second messenger in inflammatory signal trans-

duction by modulating the release of other inflammatory med-

iators and stimulating MAPK activity.31-33 In our result, we

observed that the stimulation of RAW 264.7 cells by TTFs

increases iNOS expression as well as the production of NO and

ROS, although the increase was much lower than that observed

in LPS-treated cells. Therefore, TTFs may have immune med-

iating/modulating effects, including activation of macrophages

and mediating their biological functions such as tumoricidal

activity through NO-dependent pathways.34

Once activated, macrophages release abundant cytokines that

act as signals to control homeostasis via regulating cell differ-

entiation, proliferation, apoptosis, and immune responses.35

Figure 3. Upregulation of inflammatory cytokines in TTFs-treated RAW 264.7 cells. A, Cells were treated with TTFs (0.9 V/cm) or LPS

(1 ng/mL) for 24 hours, and mRNA levels of IL-1b and TNF-a were evaluated by qRT-PCR. B, RAW 264.7 cells were treated with TTFs

(0.9 V/cm) for 24 hours, and the cells were cocultured with 4T1 cells at the indicated ratios (4T1:TTFs-RAW 264.7). 4T1 cells, untreated- or

TTFs-treated RAW 264.7 cells were designated as 4T1, Ct, and TTF, respectively. Co-cultivations were performed for 48 hours, and the levels

of proinflammatory cytokines (IL-1b, TNF-a, and IL-6) were determined by ELISA. **P < .01, ***P < .001 compared with the TTF group. C,

RAW 264.7 cells were treated with TTFs (0.9 V/cm) or LPS (1 ng/mL) for 24 hours, and the culture medium (CM) of RAW 264.7 cells was used

to treat 4T1 cells for 24 and 48 hours. The untreated RAW 264.7 cells were designated as Ct. The percentage of cell viability was determined by

the MTT assay and calculated relative to that of untreated 4T1 cells (none). Data represent the mean (standard deviation) of triplicate samples.

**P < .01, ***P < .001 compared with the 24 hours none group. yyP < .01 compared with the 48 hours none group. ELISA indicates enzyme-linked

immunoassay; IL, interleukin; LPS, lipopolysaccharide; mRNA, messenger RNA; MTT, 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium

bromide; TNF, tumor necrosis factor; TTFs, tumor-treating fields; qRT-PCR, quantitative reverse transcription polymerase chain reaction.
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Some of these key cytokines that play critical roles in immune

and inflammatory processes include TNF-a, which is also pro-

duced by T-lymphocytes and natural killer cells, and IL-1b,

which facilitates the release of activated macrophages.35,36 In

the present study, TTFs markedly treated RAW 264.7 cells to

release TNF-a and IL-1b, indicating that TTFs-stimulated

macrophages contribute to provoking an inflammatory

response. The levels of TNF-a, IL-1b, and IL-6 were markedly

higher in TTFs-treated RAW 264.7 cells cocultured with 4T1

murine mammary carcinoma cells than in 4T1 or RAW 264.7

cells with or without TTFs. Moreover, the viability of 4T1 cells

treated with the CM of TTFs-stimulated RAW 264.7 cells

decreased, indicating that macrophage activation by TTFs

effectively killed the tumor cells.

As essential pathways of inflammation, we therefore eval-

uated the effect of TTFs on NF-kB and MAPKs activation in

RAW 264.7 cells. Nuclear factor-kB is a ubiquitous transcrip-

tion factor that plays a crucial role in inflammatory processes

via the induction of a wide variety of genes, including inflam-

matory cytokines, mediators, and chemokines.37 The

phosphorylation-induced degradation of IkBs activates and

dissociates from NF-kB. As demonstrated in the present result,

TTFs significantly increased the phosphorylation of IkB-a in

RAW 264.7 cells, thereby inducing nuclear translocation and

transcriptional activation of NF-kB in macrophages. Moreover,

MAPKs regulate various inflammatory mediators, including

TNF-a, IL-1b, IL-2, IL-6, cyclooxygenase 2, and iNOS,38-40

suggesting that the inflammatory activity of TTFs is associated

with its effect on the MAPK signaling pathway, a key upstream

signaling pathway in the regulation of inflammatory media-

tors.41 Mitogen-activated protein kinases, including ERK,

p38, and JNK, participate in the activation of NF-kB to regulate

the gene expression and protein synthesis of inflammatory

mediators.41 Interleukin 1b, a major proinflammatory cytokine,

can easily activate MAPK pathways.42,43 Thus, we investigated

whether the inflammatory effects of TTFs involved the MAPK

regulation. Indeed, p38 MAPK signaling pathways were obvi-

ously activated in TTFs-treated macrophages. Therefore, our

results indicate that TTFs may increase inflammatory

responses by inducing p38 MAPK pathways in macrophages.

Administration of TTFs did not cause cell death in RAW

264.7 cells; however, cell growth inhibition was clearly

observed, suggesting that highly proliferating cancer cells are

selectively targeted by TTFs therapy. Lipopolysaccharide-

treated cells were morphologically changed from a round-

shape to dendritic-like shape, and the number of cells was

Figure 4. Activation of RAW 264.7 cells via MAPK and NF-kB signaling pathways. A, RAW 264.7 cells were treated with TTFs (0.9 V/cm) or

LPS (1 ng/mL) for 24 hours. Levels of the indicated proteins were determined with Western blotting, and GAPDH was used as the internal

control. A representative result of 3 independent experiments is shown. B, Band intensities corresponding to the indicated proteins were

quantified by densitometry using Image J software, normalized to the GAPDH, and expressed as the fold-change from each control. Data

represent the mean (standard deviation) of triplicate samples. *P < .05 compared with the control group. LPS indicates lipopolysaccharide;

MAPK, mitogen-activated protein kinase; NF-kB, nuclear factor-kB; TTFs, tumor-treating fields.
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decreased at the early stages but was subsequently recovered.

Therefore, the effect of TTFs on various types of normal cells

should be further investigated, and in vivo assays are also

needed. Although this study cannot be extrapolated to in vivo

conditions, it may provide a theoretical and experimental basis

for immune responses specific to TTF treatments in the future.

In conclusion, this is our first result to demonstrate the role

of the p38 MAPK/NF-kB pathway in the TTFs-induced inflam-

matory action in RAW 264.7 cells. A clearer biological under-

standing of the functional significance of this treatment may

constitute a potential new therapeutic option. Thus, these

results can provide a preclinical basis for TTFs therapy and

expand research geared toward the development of novel

anticancer modalities.
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