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Abstract: Climbing stairs is a fundamental part of daily life, adding additional demands on the
postural control system compared to level walking. Although real-world gait analysis studies likely
contain stair ambulation sequences, algorithms dedicated to the analysis of such activities are still
missing. Therefore, we propose a new gait analysis pipeline for foot-worn inertial sensors, which
can segment, parametrize, and classify strides from continuous gait sequences that include level
walking, stair ascending, and stair descending. For segmentation, an existing approach based on the
hidden Markov model and a feature-based gait event detection were extended, reaching an average
segmentation F1 score of 98.5% and gait event timing errors below ±10 ms for all conditions. Stride
types were classified with an accuracy of 98.2% using spatial features derived from a Kalman filter-
based trajectory reconstruction. The evaluation was performed on a dataset of 20 healthy participants
walking on three different staircases at different speeds. The entire pipeline was additionally validated
end-to-end on an independent dataset of 13 Parkinson’s disease patients. The presented work aims
to extend real-world gait analysis by including stair ambulation parameters in order to gain new
insights into mobility impairments that can be linked to clinically relevant conditions such as a
patient’s fall risk and disease state or progression.

Keywords: HMM; IMU; segmentation; ascending; descending; classification; trajectory; ETKF; ZUPT;
free-living

1. Introduction

The ability to climb stairs is a fundamental part of independent daily living and
community participation [1]. In contrast to level walking, stair ambulation can be a
more challenging task as it puts increased emphasis on lower limb muscle strength [2],
requires a higher range of motion at lower limb joints [3], and increases demand on the
postural control system [4]. Furthermore, psychological factors such as the fear of falling
can additionally affect stair ambulation abilities [5]. Reasons for poor stair negotiation
abilities can include functional disabilities such as dyspnea, but also neurological disorders
which affect the motor system [2,6]. Conway et al. [2] found that PD patients showed a
significantly slower gait speed while ascending and descending an instrumented staircase,
which is likely to be related to an increased risk of falling during stair negotiation. At the
same time, stairway falls may result in disproportionately worse injuries or even death
compared to level-walking falls [4]. Hence, for patients who are already at a higher risk of
falling due to PD, multiple sclerosis, or stroke [7], an objective assessment of stair climbing
performance could be of great interest, providing support in disease management.
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Several technologies and methods have been proposed in the past to analyse and
quantify human gait. Measurement systems range from stationary vision-based systems,
pressure carpets, or force plates to body-worn mobile sensors such as inertial measurement
units (IMUs) or pressure insoles [8]. IMU-based, mobile gait analysis systems in particular
are gaining an increasing amount of interest for use in long-term and out-of-lab assessments
due to the advancements in sensor technology and signal-processing algorithms [9,10].
During such real-world studies, wearable IMUs can extend the snapshot assessments
of laboratory measurements with continuous and more natural insights into a person’s
mobility and health status, or even details about disease progression or fluctuations [11].

However, even though objective stair-climbing performance is evidently a clinically
meaningful parameter and a fundamental part of daily life activities, recent continuous
real-world gait analysis studies [12,13] did not include stair ambulation parameters into
their analysis. This emphasises the need for adapted algorithms and gait analysis pipelines
that are able to simultaneously segment, parametrize, and classify different stride types
such as level walking, stair ascent, and stair descent using continuous inertial sensor data.
New solutions should enable an individual analysis of these daily life activities in terms of
macro gait parameters such as the number of strides or bout length, but also micro gait
parameters, including gait velocity or swing and stance phase variations.

To extract objective stride parameters from continuous IMU data streams, the first part
of most foot-worn sensor-based gait analysis systems is the segmentation of individual
strides. Stride segmentation approaches range from peak detection [14] and template
matching [15] to probabilistic data-driven approaches such as the hidden Markov models
(HMMs) [16–18] or the deep learning-based models [19,20]. However, although some of the
mentioned studies included stair-walking sequences in their datasets, stair-ascending and
descending strides were not included within the evaluation of segmentation performance
or were rejected as non-walking sequences by the algorithms on purpose. While those
methods might be valid for laboratory assessments where only level walking strides occur,
improved and more flexible segmentation methods are required for continuous real-world
IMU data. During daily life recordings, gait sequences are likely to contain a mixture of
different stride types, including stair ambulation sequences, which need to be segmented
along with level-walking strides for a subsequent parametrization.

To enable a more detailed insight into gait performance, temporal parameters such
as swing and support times can be extracted from the identified strides, which contain
clinically relevant information about balance or asymmetry. Respective gait events such
as the initial contact (IC) and the terminal contact (TC) are of particular interest for the
calculation of these parameters [21]. Several studies have presented different signal features
from foot-worn IMU data that detect those events [22–24]. Still, those approaches were
often only evaluated in controlled level walking, a limited number of stair strides and
stair configurations, or only in a single activity, either ascending or descending. Therefore,
new and adapted algorithms for gait event detection are necessary, which will enable an
accurate gait event detection independent of gait activities such as level walking, stair
ascending, or stair descending. Furthermore, new methods must prove their reliability
across varying environmental conditions such as changing walking speeds or different
stair geometries, as expected in real-world studies.

In order to allow an individual analysis of gait performance for level walking as well
as for stair ascent and descent, the respective stride types need to be classified. While
human activity classification is a wide research field on its own, these approaches are often
based on sliding windows with fixed length and focus primarily on macro parameters such
as the time spent in individual classes [25]. In the literature, abstract signal features such
as the wavelet transform [26] or the phase variable approach [27] as well as spatial trajec-
tory features [28] were proposed for individual stride-typeclassification. Song et al. [28]
successfully classified level walking, ramp walking, and stair walking during an outdoor
walking course based on spatial stride features. They showed good classification accuracy
for steady-state stair strides but reported limitations, especially for transitions between
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activities when single-step height strides occurred. While using spatial features to distin-
guish stair strides from level-walking strides might be an obvious approach, improved
and accurate trajectory-tracking methods are required to tackle the limitations during
transitions and to enable a robust classification even for single-step stair strides.

Although a wide range of research articles and studies in the field of mobile IMU-
based gait assessment exists, respective analysis pipelines are often restricted to level-
walking gait and do not enable an individual analysis of other gait-related activities.
Especially for continuous real-world gait studies where stair ascending and descending
sequences are likely to be expected during specific walking bouts, adapted algorithms
and novel combined analysis pipelines assessing digital mobility outcomes (DMOs) are
required. New DMOs in terms of detailed stair ambulation parameters such as stance or
swing time variability during stair ascent or descent are still missing from real-world gait
analysis studies.

To address these limitations, we present the following contributions:

• We present a new algorithmic pipeline that can extract stride-level temporal pa-
rameters from continuous IMU data, including level-walking and, specifically, stair-
ambulation sequences.

• To enable a robust detection of individual strides within mixed gait-related activities,
we extended an HMM-based segmentation approach by adding additional stride
models to detect stair strides along with level-walking strides in continuous IMU data.

• The stride segmentation was combined with an adapted gait event detection algorithm
to reliably estimate terminal and initial contact in the absence of a heel strike, which is
often missing during stair walking.

• Stride-type classification was achieved through spatial features derived from a Kalman
filter-based walking bout trajectory reconstruction and a subsequent walking bout
assembly to ensure the high precision of the classification.

• Each individual pipeline step was evaluated on a new recorded dataset of 20 healthy
participants walking on various stair configurations and at different speeds to enable a
wide variety of strides, as expected during real-world studies. In total, around 16,000
stair strides and 13,000 level-walking strides, including pressure insole reference and
video annotations, were available for evaluation.

• The entire pipeline was additionally validated end-to-end on the 20 healthy partici-
pants and additionally on an independent dataset of 13 PD patients.

The presented work aims to complement existing sensor-based gait analysis systems,
to address clinically motivated questions such as the assessment of patients’ fall risk [29] or
disease state [30] for upcoming studies involving continuous real-world gait analysis.

2. Materials and Methods
2.1. Dataset

For the evaluation and validation of the proposed analysis pipeline, two individual
datasets were recorded. All participants gave written informed consent prior to the record-
ing. The study was approved by the local ethics committee (Friedrich-Alexander-University
Erlangen-Nuremberg, Germany) Re-No. 106_13B.

2.1.1. Evaluation Dataset

The dataset for the development and evaluation of the presented pipeline was recorded
in a real-world outdoor environment with 20 healthy participants (Table 1). The study
took place in a public area next to the Erlangen University Hospital where different stair
configurations were present. To enable a variety of stair strides as found in real-world
applications, three different staircases with diverse geometries (inclinations of 7.6°, 22.5°,
and 33.4°) and a ramp were included in the dataset (Figure 1).

To further increase the heterogeneity of the dataset, the participants were asked to walk
each staircase at self-selected normal, slow, and fast speeds. To enable a natural transition
between stair and level walking, the participants were asked to take approximately three
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strides of level walking before and after the stairs. An additional trial was recorded where
the participants started with continuous level walking, passed the staircase on their way
as they would in their everyday life, and continued walking to some previously defined
landmarks. Afterwards, they returned to the starting point on the same way, passing
the stairs again in the opposite direction. In total, each participant completed 21 tasks
(three staircases × up and down × three speeds + three staircases during continuous
walking in preferred speed, including up and down), which involve around 20 min of
combined walking activities. Throughout the manuscript, this dataset is referred to as the
evaluation dataset.

2.1.2. Validation Dataset

The second dataset was recorded to validate the proposed analysis pipeline and to test
its performance on elderly patients with impaired gait. Therefore, 13 PD patients (Table 1)
were included in the study as the second independent dataset. The PD patients, who had
been diagnosed according to the guidelines of the German Society for Neurology (Hoehn
and Yahr stage I-III), were required to be able to walk 4×10 m without support and the
need for walking aids during their daily life. The PD patients were asked to walk one
transition of floors (up and down) on a staircase inside the University hospital (Figure 1),
starting and ending with two to three level-walking strides. Due to the presence of gait
impairments, PD patients performed the stair-walking task only at their preferred speed.
The usage of the handrail was explicitly allowed to ensure a safe transition between floors.
Throughout the manuscript, this dataset is referred to as the validation dataset and was not
included in the training or optimization process.

Table 1. Participant characteristics: healthy participants (N = 20) and PD patients (N = 13). Parameters
are given by class or by mean ± standard deviation.

Characteristic Healthy Participants PD Patients

Gender [f/m] 10/10 3/10
Age [years] 27.1 ± 11.3 61.1 ± 9.0
Height [cm] 173.4 ± 7.1 174.1 ± 8.6
Weight [kg] 68.1 ± 8.6 82.3 ± 15.1
UPDRS-III - 16.3 ± 7.8

Hoehn & Yahr - 2.1 ± 0.7

13 cm

97 cm

7.6°

14.5 cm

35 cm

22.5°

17.5 cm

26.5 cm

33.4°

16.5 cm

29.5 cm

29.2°

1.9°

1.2 m

35 m

Healthy Participants (Evaluation) PD Patients (Validation)

17.5 cm

35 cm

Nsteps= 27Nsteps= 29

Nsteps= 9

Nsteps= 3x16A B

C

Figure 1. Illustration of the different stair configurations within the presented dataset, including the
respective step geometries. (A) staircase over four floors including 90° turns; (B) straight staircase;
(C) flat staircase with elongated landings.
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2.2. Sensor System and Measurement Setup

The IMU sensor units (Portabiles GmbH, Erlangen, Germany) featured a 3D accelerom-
eter (range ±16 g), a 3D gyroscope (range ±2000 degree per second (dps)) (BMI160, Bosch
Sensortec GmbH, Reutlingen, Germany) with Bluetooth Low Energy connectivity, and an
internal flash memory for stand-alone operation. Data were recorded with a sampling
frequency of 204.8 Hz. IMU sensors were calibrated prior to the recordings using the
method described by Ferraris et al. [31]. To enable an additional reference for foot ground
contact, a custom force-sensitive resistor (FSR)-based insole and signal-conditioning circuit
(non-inverting amplifier) were developed, which were connected via an extension ribbon
cable to an available three-channel, 16-bit analog-to-digital converter (ADC) of the sensor
units. Two sensor units were attached to the left and right shoe instep position using
3D-printed clips, while the insole conditioning circuit was fixed via a second clip on the
lateral side of each shoe (see Figure 2). As an additional reference, all gait sequences were
filmed during the study with a hand-held video camera by the study coordinator, with the
permission of each participant.

VRef

VOut

RRef
RFSR

GND

FSR locations
(sandwitched between commercial foam insoles)

IMU sensor units
(3D Acc + 3D Gyro)

Z

Y
X

FSR conditioning
(non-inverting amplifier per FSR)

Figure 2. Example of the used sensor setup attached to the left shoe, and the second sensor setup
(for the right foot) without the shoe. All participants wore the same Adidas sports shoe model, either
in size EU 43 or EU 39.

2.3. Coordinate Transformation

Due to the attachment of the sensor to the shoe’s instep position, a rough alignment
between sensor and shoe was given. However, to ensure a constant alignment between the
sensor and the body coordinate system, across participants and datasets or even between
studies, a coordinate transformation of the recorded IMU data was performed, as illustrated
in Figure 3. To enable a comparable sensor orientation, the sensor coordinate system was
aligned to the gravity vector ~eg direction for each gait sequence. Therefore, the orientation
of the sensor with respect to gravity was estimated by averaging all acceleration vectors
during static periods ~as. Static sequences between walking bouts (where participants were
standing before the first or after the last stride) were defined as windows of minimum
1 s where the angular velocity of the foot was below 2.5 dps. The rotation vector~r for the
sensor-to-gravity alignment was defined by the rotation angle α around the vector~θ:
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~as =

ax
ay
az

, ~eg =

0
0
1

 (1)

~θ = ~as × ~eg, α = arccos
(

~as · ~eg

‖~as‖ ∗ ‖~eg‖

)
(2)

~r = ~θα (3)

Furthermore, in order to handle the left and right foot sensor data with the same
pipeline, sensor axes were transformed into a shared body coordinate system. Therefore,
sensor axes will be referred to as ml (medial to lateral), pa (posterior to anterior), and
si (superior to inferior), which correspond to the body coordinate system after gravity
alignment (see Figure 3).

Z

Y

X
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si
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pa

g

Alignment to 
gravity

0 1 2 3 4 5
Time [s]

4

2

0
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g
]

Sensor frame

x
y
z

0 1 2 3 4 5
Time [s]

Body frame
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si

Figure 3. Transformation from sensor frame to body frame by the alignment of the sensor’s z-axis to
gravity. During static periods, the si-axis of the body frame measures approx. 1 g while the ml- and
pa-axes measure approx. 0 g.

2.4. Reference Labels
2.4.1. Stride Borders

Although stair ascending and descending strides follow similar repetitive swing-
and stance phase patterns compared to level walking, the angular velocity within the
mediolateral axis (gyrml) follows inherently different and stride type-specific patterns
(Figure 4), which corresponds to the foot’s flexion during the gait cycle. While ascending,
participants tended to show a forefoot walking behaviour, sometimes with no heel contact
at all. Likewise, while descending, the foot rolling behaviour was often missing, resulting
in the initial contact with toes first or the complete flat foot [32]. Nevertheless, all three
stride types showed a prominent negative peak in the gyrml axis, which refers to the
foot lift or terminal contact (TC) [23]. This negative peak was used for manual stride
border annotation (along with the video recordings of the feet), as suggested by previous
literature [15,17,18]. To enable a consistent annotation process, the following criteria were
applied: to ensure a stable minimum for the TC label, the negative peak had to have a
minimum dip of −20 dps, and a stride was only considered valid if the swing maximum
was at least 50 dps.

2.4.2. Stride Class Labels

For each annotated stride, a stride-type label was added—level walking (which also
included the ramp strides), stair ascending, or stair descending (Figure 4). Based on the
video data, additional reference elevation levels were added that corresponded to the



Sensors 2021, 21, 6559 7 of 28

respective stair step height, which was known due to the specific stair configurations
(Figure 1). During steady-state stair climbing, this value mostly corresponded to twice
the stair step height. Therefore, these strides will be referred to as double stair step strides.
During transitions between stair and level walking or on stair landings, single stair step
height strides occurred, which will be referred to as single stair step strides. For level walking,
the height difference was annotated to be zero, and for the ramp, a constant stride elevation
of the ramp height divided by the number of ramp strides was assumed.

0 2 4 6 8 10
Time [s]

600

400

200

0

200

400

An
gu

la
r V

el
oc

ity
 [d

eg
/s

]

0.0 0.0 17.5 35.0 35.0 35.0 17.5 35.0 35.0

Stair Ascending

0 2 4 6 8 10
Time [s]

0.0 0.0 -35.0
-35.0

-35.0
-35.0

-17.5
-35.0

-35.0
-35.0

Stair Descending

gyrml (left)
gyrml (right)
Annotated
stride borders
Level walking
Ascending
Descending

Figure 4. Example of ground truth stride borders and stride class labels. Strides were divided into level-walking, stair-
ascending, and stair-descending strides. The numbers for each stride correspond to the respective annotated stair step
heights in cm, including single and double stair step strides.

2.4.3. Pressure Insole Reference

Using FSR sensors is a common approach to evaluate gait events and respective
temporal gait parameters such as the swing and the stance time without the need for
stationary equipment [33–35]. Gait events, including IC and TC, can be extracted from
pressure sensor data by using thresholding methods [35,36]. Therefore, FSR sensors are
commonly integrated into insoles or directly attached to the feet. Although the number
and exact placement of FSRs can vary between studies, the most common positions include
the heel and forefoot (toes or ball of the foot) to reliably detect IC and TC [21].

In our study, an insole with a custom pressure sensor was developed. Each insole was
equipped with three FSR sensors (40 mm × 40 mm, RP-S40-ST). The sensors were placed at
the heel, the first metatarsal head (MTH), and at the location of the big toe. As FSR sensors
show an exponential change in resistance when linear force is applied, a non-inverting
amplifier conditioning circuit was used:

VOut = VRe f ·
(

1 +
( RRe f

RFSR

))
(4)

VRe f was fixed at 0.1 V and RRe f was selected individually for each FSR during a
calibration procedure prior to the study. Therefore, each FSR was loaded from 0.5 kg to
20 kg in 0.5 kg steps, using a load cell as reference. Although the conditioning circuit
improved the linearity of the FSR sensor output, an individual calibration function was
added to the measured voltage signal, which corresponded to a 6th order polynomial fit
across the 0–20 kg calibration measurement.

2.4.4. Reference Gait Events

To convert the measured pressure data into reference gait events, the sum of all three
pressure sensors at a given sample was considered to enable a robust event detection
invariant of individual foot rolling behaviour (Figure 5). Therefore, TC and IC could be
detected reliably independent of the heel or toes touching or leaving the ground first.

Total weight (n) =
N

∑
n=0

FSRtoe(n) + FSRMTH(n) + FSRheel(n) (5)
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Time [s]
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10
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30
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]

Total weight FSRtoe FSRMTH FSRheel

Figure 5. Exemplary FSR data of a gait sequence of level walking with a transition to stair decent. The individual FSR
signals from toe, metatarsal head, and heel are combined to a total weight signal for robust event detection. Sensors show a
saturation at 20 kg according to the respective calibrated measurement range. During stair descent, a clear forefoot walking
behaviour can be seen, with the toes contacting ground first.

To remove baseline offsets within the pressure signal (e.g., due to the lacing of the
shoes), the minimum pressure was subtracted from between the manually annotated
stride borders. Finally, a threshold-based approach similar to [35] was applied to the total
weight signal in order to define the time points of the reference IC and TC. For our work,
an individual threshold of 7.5% of the participant’s body weight was chosen empirically, as
shown in Figure 6.

0 1 2 3 4 5 6 7 8
Time [s]

20

0

20

40

W
ei

gh
t [

kg
]

Total weight gyrml [a. u. ] 7.5% body weight threshold IC TC

Figure 6. Exemplary gait sequence of level walking with a transition to stair decent. The plot shows the derived total weight
signal and the mediolateral angular velocity as reference. Reference gait events were derived by an individual threshold
related to the participant’s body weight.

2.5. Multiclass Hidden Markov Model
2.5.1. Model Architecture

To detect level walking and stair strides and to extract spatio-temporal parameters,
respective stride borders must be segmented from the continuous IMU data streams.
For this work, a previously published HMM based approach [18], which was already
evaluated on continuous real-world walking data, was extended for the purpose of stair-
stride segmentation. Therefore, the previous HMM architecture and model parameters
were extended to a multi-stride class segmentation model. Since stair strides follow a
strict and repeating biomechanical pattern (repeating swing and stance phase) similar
to level walking strides, the same left-to-right Markov chain structure could be used to
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model stair ascending and descending strides. Hence, the respective stride sub-models
allow only self-transitions pn,n and transitions to the next hidden state pn,n+1. Similar
to the previously published HMM, a transition model was defined, which allowed non-
walking activities to be included in the final segmentation model. For the transition model,
additional transitions within the model were allowed as transitions might not follow a strict
repetitive pattern. The resulting transition matrices for strides Wi ∈ RNi×Ni ∀ i ∈ {L, A, D}
with L = Level walking, A = Ascending, D = Descending, and T ∈ RNT×NT for Transitions
were defined as follows:

Wi =



pi
0,0 pi

0,1 0 . . . 0

0 pi
1,1 pi

1,2
. . .

...
...

. . . . . . . . . 0
...

. . . pi
n−1,n−1 pi

n−1,n
0 . . . . . . 0 pi

n,n


, T =



pt
0,0 pt

0,1 . . . pt
0,n−1 pt

0,n
pt

1,0 pt
1,1 pt

1,2 0 0
... 0

. . . . . . 0

pt
n−1,0

...
. . . pt

n−1,n−1 pt
n−1,n

pt
n,0 0 . . . 0 pt

n,n


(6)

Together with the transition model, the final multiclass segmentation HMM was built
from four individual trained sub-models: transition model, level walking stride model, stair
ascending stride model, and stair descending stride model, as illustrated in Figure 7.

Level	Walking	&	Stair	Ambulation	Bouts
Strides

Transitions

s0

s2

s1sm
s0

sn

s3 s2

s1

s0

sn

s3 s2

s1
s0

sn

s3 s2

s1

Segmentation	model

Figure 7. Overview of the multiclass HMM: Three individual stride models (level walking, stair
ascending, stair descending), as well as a transition model, are trained based on the annotated
walking bouts. Finally, all four models are combined in a final segmentation model by adding
missing edges between the sub-models.

To combine the three individual stride models and the transition model in a connected
segmentation model, the respective transition matrices were joined and missing edges
connecting the sub-models were added. These missing edges (Table 2) correspond to the
annotated stride borders and include, for example, self-transitions within a stride model
for repeating strides of the same type or between a stride model and the transition model
before gait initiation or gait termination. The final Segmentation model transition matrix
S ∈ RNS×NS had a dimension of NS = (NT + NL + NA + ND):
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S =


T 0 0 0
0 WL 0 0
0 0 WA 0
0 0 0 WD

 (7)

Table 2. Possible transitions between sub-models indicate stride borders. sT corresponds to any
transition state, while sL0 , sA0 , sD0 correspond to the first and sLn , sAn , sDn to the last states of the
respective level-walking, ascending, and descending stride models.

Stride Type Label State Transitions

Level walking start sT → sL0 sAn → sL0 sDn → sL0 sLn → sL0

Level walking end sLn → sT sLn → sA0 sLn → sD0 sLn → sL0

Ascending start sT → sA0 sLn → sA0 sAn → sA0

Ascending end sAn → sT sAn → sL0 sAn → sA0

Descending start sT → sD0 sLn → sD0 sDn → sD0

Descending end sDn → sT sDn → sL0 sDn → sD0

2.5.2. Model Training

Model training was performed as a two-step process: first, each sub-model was
trained individually; second, the trained sub-models were combined to create the final
segmentation model by adding missing edges, as described in the previous section. As an
input for the HMMs, the respective sensor data was first transformed into a feature space.
First, the angular velocity in the mediolateral direction (gyrml) was considered since this
axis describes the characteristic flexion of the foot during level walking and stair ambulation.
Additionally, the acceleration in the superior-to-inferior direction (accsi) was added to better
distinguish different stride types, with the si-axis being aligned to gravity during the sensor-
to-body-frame transformation. Other tunable hyperparameters were directly derived from
previous work [18], where feature and model parameters were thoroughly grid-searched
within a cross-validation. Hence, for the feature space transformation, the data of the gyrml
and accsi axes were downsampled to 51.2 Hz (factor 4) and low-pass filtered with a 4th
order Butterworth filter with a cut-off frequency of 10 Hz. As features, the raw data itself
as well as a sliding centred-window linear gradient with a window size of 200 ms were
calculated per axis. The resulting 4D feature input was finally z-score standardized per
axis of each walking bout/task within the dataset. Each state of the HMM was modelled
by an individual Gaussian Mixture Model with eight components. The number of states
were chosen to NT = 5 and NL = NA = ND = 20. Each sub-model was solely trained on
the data of its respective class and annotated reference stride borders using ten iterations
of the Baum–Welch algorithm.

2.5.3. Stride Border Prediction

To segment strides from unseen IMU data, the hidden state sequence had to be
predicted based on the combined and finalized multiclass segmentation HMM using
the Viterbi algorithm. From the predicted hidden-state sequence, stride borders were
extracted (Figure 8), which correspond to the previously defined state transitions between
the sub-models (Table 2), as mentioned before.
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Figure 8. Predicted hidden-state sequence and extracted stride borders using the proposed multiclass HMM. For better
visualisation, only the two input streams (raw data, downsampled and low-pass filtered) are displayed.

To transform the predicted stride borders from the downsampled feature space back
into the original IMU data, the respective borders were multiplied with the downsampling
factor during the feature transformation. To refine the stride borders, each border was set
to the respective minimum in the original gyrml axis in a window of ±150 ms around each
detected stride border.

After stride-border prediction using the multiclass HMM, the same post-processing
rules as those for the manual stride annotations were applied to eliminate explicit false-
positive stride candidates (min TC dip and min swing peak; refer to Section 2.4.1). Addi-
tionally, a valid stride must have a duration between a minimum of 0.4 s and a maximum
of 2.5 s. This range includes the shortest (during fast speeds) and the longest stride times
(during slow speeds) within the evaluation dataset, as extracted from the reference labels.

Although the multiclass HMM could already provide stride class labels (level, ascend-
ing, and descending) according to the respective hidden-state sequence and sub-models
(Figure 8), usage of those labels was omitted, and only the stride borders without any class
information were used as an input for the subsequent pipeline steps. The HMM-based
classification failed in particular for staircase C, and reached an overall accuracy of 91.2%
on the evaluation dataset. In order to maintain readability and the overall structure of the
paper, this manuscript does not provide a detailed assessment of HMM-based classification,
but only evaluates its segmentation performance. The actual classification task was finally
performed based on spatial trajectory features, which is described in Section 2.7.

2.6. Event Detection and Parameter Extraction

After the segmentation of individual stride borders, respective gait events such as
initial contact (IC) and terminal contact (TC) were extracted by detecting unique signal
features within the foot-worn IMU signals between the segmentation borders. Therefore,
a strict sequence of events for each stride was assumed. The swing phase starts with the
TC (or foot lift), followed by a swing maximum and the maximum forward acceleration,
and ends with the IC (ground contact). The subsequent stance phase starts with the IC,
followed by the mid-stance (MS) event (Section 2.6.2), and ends with the next TC when the
cycle repeats with the next stride. Gait parameters such as the swing, stance, and stride
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times were directly calculated from those events with t(ICi) and t(TCi) corresponding to
the point in time of the respective i-th gait event:

Stride time(i) = t(ICi)− t(ICi−1) (8)

Swing time(i) = t(ICi)− t(TCi) (9)

Stance time(i) = t(TCi)− t(ICi−1) (10)

Although the sequence of events is the same for level walking and stair ambulation,
event-detection algorithms—which were initially developed only for level-walking gait
similar to the algorithms presented by Rampp et al. [37]—could not be directly applied to
stair strides as those expect a present heel strike during IC, which is often missing during
stair climbing. Therefore, existing event detection methods were adapted for the purpose
of robust gait event detection, which also works during the absence of a heel strike and a
first ground contact with toes or a flat foot.

2.6.1. Terminal Contact (TC)

TC events correspond to the minimum peak within the mediolateral angular velocity
(gyrml) before the prominent swing peak. This peak is basically the location of the predicted
stride borders of the multiclass HMM. However, as the respective minimum might be
superimposed by high-frequency noise, the TC label was refined to the respective minimum
within a low-pass filtered representative of the gyrml signal in a ±150 ms window around
the initial HMM stride border. For filtering, a forward-backwards Butterworth low-pass
filter with a cut-off frequency of 10 Hz (order = 5) was used.

2.6.2. Mid Stance (MS)

As MS is usually a region rather than a specific event within the gait cycle, the MS
event was defined as the centre of the window with the lowest total energy within the
3D gyroscope signal [37]. Therefore, a sample-by-sample, sliding-window, 3D angular
velocity energy-detector approach (sliding window size = 200 ms) between the max of the
raw gyrml signal and the next TC was applied. The centre of the window with the lowest
signal energy within the search region was defined as MS.

2.6.3. Swing and Forward Acceleration Maximum

To define the swing and forward acceleration maximum, a low-pass filtered repre-
sentative of the mediolateral angular velocity gyrml,low and posterior-anterior acceleration
accpa,low were considered. Therefore, a Butterworth filter fc = 5 Hz, order = 5, was applied
to constrain the signal information to the locomotion band of gait [38]. Within the low-
pass filtered signals, the swing maximum corresponded to the first prominent peak in the
gyrml,low signal between two consecutive TCs. The maximum forward acceleration was
then defined as the maximum within the accpa,low signal, after the swing maximum and
before the MS event per stride.

2.6.4. Initial Contact (IC)

For the IC detection, a search region (highlighted region in Figure 9) was defined as
the first 60% of the window, between the maximum forward acceleration and the MS event.
The IC was then defined as the maximum peak of the squared accpa signal to enable a
sign-invariant detection of the IC.

Since the impact peak during the IC within the accpa was not always present for every
stride (see the last stride in the ascending example in Figure 9), a fallback condition based
on the maximum of the derivative of the accpa,low signal within the IC search window was
used. As a condition for a valid peak, a minimum amplitude of 4 g2 was defined to ensure
a clear differentiation between the impact and forward acceleration peak.
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Figure 9. Example strides and corresponding gait-event detection procedure. The first row illustrates the extraction of the
swing and forward-acceleration maximum to consecutively refine search regions for the actual gait events. The second row
shows the detection of the IC within a previously refined search window.

2.7. Stride-Type Classification

A simple but robust approach to differentiate between level walking, stair ascending,
and descending constitutes the use of the trajectory features of a respective stride, as pre-
sented by Song et al. [28]. During stair ambulation, a stride should end with a positive or
negative change in height for ascending or descending, respectively. During level walking,
the change in height is expected to be roughly equal to zero between ground contact phases.
Therefore, the change in the height of the stride is a prominent feature in the classification
of stair strides. Furthermore, the travelled trajectory’s inclination is considered a second
feature. The inclination incorporates the stride length, which is usually shorter for stair
strides compared to level walking due to the constraints given by the geometry of the stairs,
as illustrated for an ascending sequence in Figure 10.

Level walking 
stride

Ascending stride
(single step)

Ascending 
stride

(double step)

Ascending stride
(single step)

Δh = 2xhstep

Δh = hstep

Δh = hstep

Δh ≈ 0
Z

Y X

φφ≈0

φ

Level walking 
stride

Figure 10. Example of the principle for stride-type classification using trajectory features such as
stride height and stride inclination. Both single/transition as well as double stair step strides should
be classified as stair strides.

2.8. Walking Bout Trajectory Reconstruction

To extract the desired spatial stride parameters from the foot-worn IMU data, a strap-
down double integration of the 3D acceleration after the compensation of the gravitational
acceleration is usually applied. In this case, the gyroscope data serve primarily for orien-
tation estimation [28,37,39]. However, due to the imperfections of low-cost IMU sensors
such as noise, bias, scaling error, sampling imperfections, and others, errors accumulate
rapidly during the double-integration process [39]. To counteract these errors, so-called
zero velocity updates (ZUPTs) are usually utilized where the foot has near-zero velocity
during ground contact. During the respective ZUPT periods, the accumulated drift in
velocity can be effectively compensated.
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2.8.1. Zero Velocity Update

For the presented pipeline, ZUPT updates were implemented as a combination of
a literature-based sliding window acceleration magnitude (ZUPTacc) and a gyroscope
energy detector (ZUPTgyr), with a window size of 150 ms [40]. Threshold values of
10 dps for the ZUPTgyr and 0.1 g for the ZUPTacc detector were chosen empirically for
the evaluation dataset.

Based on the segmented stride borders and extracted gait events, an additional ZUPT
condition was introduced, corresponding to a 50 ms window around the detected MS event
(ZUPTMS-event). Therefore, a minimum ZUPT period was enforced for each segmented
stride even if the literature-based ZUPT detectors did not indicate a respective ZUPT
window. This was especially the case during fast stair ambulation, where only minimal
ground contact phases were present. Finally, all ZUPT phases (boolean arrays) were simply
added together (=logic OR operation).

ZUPT = ZUPTacc + ZUPTgyr + ZUPTMS-event (11)

2.8.2. Error-Tracking Kalman Filter

The sensor/foot trajectory (Figure 11) was then reconstructed using an error-tracking
Kalman Filter (ETKF). The ETKF implementation was based on the work of Tunca et al. [39].
After the initialization of the filter using an accelerometer-based orientation update dur-
ing a static period, the 3D trajectory was calculated by applying the inertial strapdown
navigation equations. During this part, the Kalman filter tracked the nominal state (posi-
tion, velocity, and orientation) without any corrections and only updated the respective
error-state covariance at each time step based on the process noise. When complementary
measurements were available during the ZUPT phase, the difference between the nominal
state and the measurement was calculated and the error-state was updated accordingly.
Note that the nominal state was not corrected using the updated error state; instead, the
filter was run open-loop [41]. To counteract any trajectory discontinuities during the ZUPT
update, a Rauch–Tung–Striebel (RTS) smoothing was used to adjust the error state and
the respective covariance. The final "smoothed" error state was then used to correct the
nominal state and derive the final estimates for the position, velocity, and orientation of
the sensor. The level walking/zero-z update of the original work by Tunca et al. was not
included in our approach as a zero-z assumption would obviously be violated during stair
ambulation. Because the z-direction is independent of the sensor heading and only relative
stride length values were required, no heading correction was needed for our approach.
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Figure 11. Reconstructed sensor trajectory in the z-direction (parallel to gravity) within the world frame. (Left) stair-
ascending; (Right) stair-descending sequence of one foot-worn IMU sensor. Both stair sequences start and end with
level-walking strides.
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Although the ETKF-based trajectory reconstruction did not require a valid orientation
update during each MS event, some initialization updates were still required. Therefore,
a walking bout was split into smaller subsequences where a reliable orientation update
was possible based on static accelerometer readings. To ensure the validity of respective
orientation updates, windows with a minimum of 300 ms were considered where the
accelerometer variance was below a predefined threshold (0.015 g2) for each individual
axis. The orientation was then derived from a low-pass filtered acceleration signal at
the centre of the respective window. To ensure a stable trajectory before the first and
after the last stride, an orientation update was enforced at the beginning and end of each
walking sequence. Finally, all trajectory sub-sequences were added together to form the
final walking bout trajectory (Figure 11).

2.8.3. Spatial Stride Features

Spatial stride parameters were derived directly from the change within the recon-
structed trajectory between two consecutive MS events. During MS, the foot’s trajectory can
be assumed to be static for a short period of time, with Sd,i ∀ d ∈ {x, y, z} corresponding
to the respective 2D projection of each world frame direction (x-, y-, and z-axes) for the
i-th stride:

Sd, i = Trajectoryd(MSi)− Trajectoryd(MSi−1) ∀ d ∈ {x, y, z} (12)

Based on the individual world frame trajectory parameters, stride parameters can be
reconstructed, with i corresponding to the respective stride index.

Stride heighti = Sz,i (13)

Stride lengthi =
√

Sx,i
2 + Sy,i

2 (14)

Stride inclinationi = arctan
(

Stride heighti
Stride lengthi

)
(15)

2.9. Walking Bout Assembly

As a final step of the proposed analysis pipeline, the parametrized and classified
strides were combined into walking bouts. From such walking bouts, final DMOs such as
average gait characteristics or variability parameters can be extracted to quantify real-world
walking behaviour [42]. Kluge et al. [42] defined a valid walking bout as a sequence of at
least two consecutive strides of the left and right feet, respectively (e.g., L-R-L-R or R-L-R-L,
with L/R being parametrized strides from the left (L) and right (R) feet). We extended the
proposed walking bout definition from Kluge et al. for stair ambulation, adding the rule
that for a valid stair walking bout, a minimum number of consecutive strides must have the
same type (A = Ascending, D = Descending, and LW = Level Walking). Therefore, given
a stride sequence of LA-RA-LA-RLW-LLW-RA-LA, only the ascending strides RA/LA fulfill
the requirements to form a valid walking bout and the intermediate level walking strides
LLW/RLW are not included within the final DMOs. In the opposite case . . .-RLW-LLW-RD-
LD-RLW-LLW-. . ., which might occur when making a single-step transition such as at a
curbstone, or when ascending/descending a two-step staircase at a house entrance, these
strides do not form a valid stair-walking bout and will therefore be treated as level-walking
strides. Thus, a high precision for the classification of stair strides can be guaranteed,
as those need to fulfil the individual requirements for stride height and inclination, and
additionally need to be included within a valid stair bout.

3. Evaluation
3.1. Stride Segmentation

For the evaluation of the HMM stride segmentation performance, a leave-one-participant-
out cross-validation on the evaluation dataset was performed to avoid any train-test leakage.
Hence, a new model was trained for each participant, considering all annotated strides (all



Sensors 2021, 21, 6559 16 of 28

21 tasks in all speeds) from the remaining 19 participants. Using this model, stride borders
were predicted on the unseen IMU data of the respective participant under evaluation. The
segmentation performance was evaluated in terms of precision, recall, and the F1-score.
A stride was considered true positive (TP) if the segmented start and end borders of the
stride were within a window of ±100 ms compared to the ground truth borders. If one of
the two borders were not within this margin, the stride was considered a false positive (FP).
Each stride from the manually annotated ground truth labels, where no matching stride was
predicted by the HMM, was considered a false negative (FN). The final scores were then
calculated for each participant of the evaluation dataset as follows:

Precision =
TP

TP + FP
, Recall =

TP
TP + FN

(16)

F1-score = 2 · precision · recall
precision + recall

(17)

3.2. Event Detection

To evaluate the accuracy of the proposed event detection, the ground truth stride
borders together with the raw IMU data were considered an input to ensure that for each
stride, a valid reference existed since for a potential FP-segmented stride of the HMM
output, no timing error for respective events can be calculated. As an evaluation criterion,
the timing error of the predicted IC and TC events from the IMU data as compared to the
pressure insole events was assessed. Additionally, respective temporal gait parameters
(swing, stance, and stride times) were evaluated, which were derived from the respective
events. An additional post-processing step was added to exclude potential technical
outliers. Such outliers were defined as strides which resulted in biomechanically unrealistic
values and should therefore be excluded from any final parameter assessment. A stride was
considered valid if the predicted absolute swing and stance times (Tswing, Tstance) as well
as the relative swing time proportion (Rswing = Tstride/Tswing) were within biomechanically
reasonable ranges: 0.2 s ≤ Tswing ≥ 1.0 s, 0.2 s ≤ Tstance ≤ 1.5 s and 25% ≤ Rswing ≤ 60%.

3.3. Stride-Type Classification

The thresholds for the stride-type classification were chosen according to the stair step
geometries (refer to Figure 1) to include single and double stair step strides. Based on those
requirements, the thresholds were a minimum stride height of ±10 cm and a minimum
inclination of ±6° for ascending and descending strides, respectively.

Likewise, to evaluate the ability of the trajectory-based approach in rejecting potential
FP strides due to biomechanically unreasonable trajectory values (e.g., a stride length of less
than 25 cm or more than 200 cm), the predicted stride borders of the HMM segmentation
block and respective MS events were considered for the evaluation. As no class reference for
the FP or FN segmented strides was available, those strides were assigned to a respective
null class.

After the classification, the previously mentioned walking bout assembly was also
applied, which ensures a high precision for the detection of stair strides as a minimum
of five consecutive ascending or descending strides (e.g., LA-RA-LA-RA-LA) need to be
classified correctly to form a valid stair bout. In order to be considered consecutive strides,
stair strides must not extend a distance of more than one maximum stride time (2.5 s).
This condition should avoid splitting stair sequences due to single-level walking strides,
which might appear, for example, during short plateaus (like present in staircase A and B)
or single misclassifications.

3.4. Full Pipeline Validation

To fully validate the proposed pipeline, respective DMOs, which are of interest for
clinical analysis, were assessed. Therefore, all of the aforementioned and individually
evaluated steps of the pipeline were combined, including segmentation, event detection,



Sensors 2021, 21, 6559 17 of 28

trajectory reconstruction, trajectory feature-based classification, and walking bout assembly.
A full evaluation of the pipeline is necessary as respective pipeline steps build upon each
other. Therefore, errors might be propagated throughout the whole pipeline, for example,
when a falsely segmented stride candidate gets parametrized and included in the final
DMO. On the other hand, an FP stride might also be excluded during parametrization,
resulting in biomechanically unrealistic parameters, which were derived by the subsequent
steps of the pipeline.

Therefore, the pipeline was validated end-to-end, taking raw IMU sequences as input,
(e.g., from future real-world gait analysis studies) and providing clinically relevant DMOs
as an output. The entire, pipeline including individual processing blocks, is illustrated
in Figure 12. In this work, respective DMOs were the mean and standard deviation of
temporal stride parameters (stride, swing, and stance times) per individual gait activity
(stair ascending, stair descending, and level walking).

Multiclass HMM
Stride Segmentation

TC IC MS

Event Detection

Classification
based on trajectory features - Strides

Walking Bout 
Assembly

Digital Mobility 
Outcomes

Z

XY

Trajectory Reconstruction
ZUPT guided error tracking 

Kalman filter

φasc. > 0 / ∆h ≥ hstep

Z

XY

Parametrized Strides

φlevel ≈ 0 / ∆h ≈ 0 

Continuous Gait 
Sequences

φdesc. < 0 / ∆h ≤ hstep

Descending model

Ascending model

Level-walking

Level-walking
model

Transition
model

AscendingDescending

Foot worn IMU data

- Strides

- Strides

• Initial contact (IC)
• Terminal contact (TC)
• Stride-, swing-,

stance time
• Stride length, -height
• Trajectory 

inclination (φ)

Min. 5 consecutive ascending/
descending strides to form valid
stair sequence

else level walking default

Figure 12. Structure of the final end-to-end validation of the entire proposed pipeline. The pipeline takes raw IMU data
sequences as an input (e.g., a real-world walking sequence) and provides DMOs as an output per respective gait activity.
A more detailed flow chart is available in the Supplementary Figure S1.

For the final validation, the combined task for each of the three staircases in the
evaluation dataset was considered. The task was chosen because it resembled the most
realistic real-world scenario where participants went up and down the staircases within
continuous walking sequences and at their preferred walking speed. Therefore, all three
gait activities were present in one continuous recording.

Additionally, the pipeline was validated on the PD patient validation dataset to test
the validity of the proposed pipeline on the data of elderly patients with potential gait
impairments. For this dataset, one combined task per participant was available, which
resembled one transition between floors within the hospital.

4. Results
4.1. Stride Segmentation

Segmentation results were assessed per task within the evaluation dataset. Therefore,
each task (ascending or descending) contained some additional level walking strides due
to the transition phase before and after the stair walking, or even all three stride types for
the combined task, which included level walking, ascending, and descending within one
continuous walking sequence. Tasks were grouped according to walking speed and stair
direction, with every group containing the results of all three recorded stair configurations.
The results are summarized in Figure 13.
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Figure 13. Boxplots of the stride segmentation performance of the multiclass HMM; circles denote
the mean performance. Values for every participant of the evaluation dataset (N = 20) are given and
grouped according to the respective direction and speed. The combined task includes both stair
ascending and descending as well as continuous level walking.

Overall, the proposed HMM achieved an average segmentation F1 score of 98.5% for
the complete dataset and all tasks. The ascending and descending tasks showed slightly
better segmentation results during the preferred gait speed as compared to the slow and
fast speeds. While the performance in average segmentation results between gait speeds
was comparable for the descending tasks, reaching values between 98.2% (fast) and 99.0%
(preferred), some differences related to speed were found during stair ascending. Here, the
worst performance was found in the slow ascending task, with a mean F1 score of 95.1%
and a 4.9% interquartile range (IRQ), compared to 98.6% with 1.8% IRQ for preferred speed.
These differences were mainly related to three individual participants (hence, the increased
IRQ of 4.9%), where the TC peak was no longer clearly defined during slow ascending,
showing two neighbouring minima with a distance of slightly more than the accepted
tolerance of ±100 ms. Here, the HMM sometimes detected the wrong peak compared to
the manual labels, and the stride was consequently considered an FP. The performance at
the preferred gait speed showed the best results across all tasks as participants presumably
walked more naturally and were therefore more consistent compared to their performance
at the slow or fast speeds. The adapted speeds (individually interpreted by each participant)
also strongly varied between participants, with some walking either extremely slow or
reaching almost running speed during the fast task. The leading performance in terms
of the average F1 score of 99.6% during the combined task was certainly related to the
presence of long, mostly straight level walking sequences between the actual stairs, which
the HMM reliably segmented. Overall, the proposed multiclass HMM was able to robustly
segment strides within varying gait activities (including transitions) on different stair
geometries at varying gait speeds.

4.2. Event Detection

The event detection block reached a detection rate of 99.0%. Accordingly, only 1.0% of
the strides had to be excluded during the post-processing due to biomechanically unrealistic
values, as previously described.

The TC and IC timings, as well as the temporal gait parameters extracted from the IMU
data, were in good agreement with the pressure sensor reference (Table 3 and Figure 14).
All gait events could be extracted with a mean timing error of below ±10 ms, a standard
deviation of below 29 ms, and mean absolute errors below 20 ms. The largest error of
9.8± 26.9 ms was found for the IC event during stair ascending. However, considering
the maximum temporal resolution of the proposed system (4.9 ms at 204.8 Hz sampling
frequency), this error corresponds to only two samples on average.

The extracted temporal parameters showed a similar error range, as those parameters
are directly derived from the respective gait events. The stride time (IC to IC) could
be reconstructed with a mean error below ±0.4 ms for all three stride types. The minor
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systematic errors for IC and TC timings were also reflected in the swing and stance times,
with the worst results for stair ascending showing mean errors of 11.2 ms and −11.0 ms
for swing and stance times, respectively, with the highest standard deviation found at
approximately 40 ms. All timing errors were in an acceptable range, close to the overall
temporal resolution of the system.

Table 3. Event detection and timing error characteristics for the evaluation dataset.

Stride Type
Level Ascending Descending

Mean Error Mean Abs. Error Mean Error Mean Abs. Error Mean Error Mean Abs. Error

IC [ms] −0.5 ± 28.3 15.1 ± 26.4 9.8 ± 26.9 19.5 ± 22.0 1.9 ± 23.6 14.9 ± 20.5
TC [ms] −4.0 ± 25.9 11.2 ± 23.7 −0.8 ± 26.2 17.8 ± 19.2 6.4 ± 14.6 12.0 ± 10.4

Swing time [ms] 1.4 ± 28.4 19.6 ± 20.7 11.2 ± 39.2 28.9 ± 28.7 −4.5 ± 26.3 18.6 ± 19.1
Stance time [ms] −1.8 ± 29.5 19.3 ± 22.3 −11.0 ± 39.6 28.7 ± 29.3 4.4 ± 26.9 19.1 ± 19.5
Stride time [ms] −0.3 ± 31.7 17.5 ± 26.4 0.3 ± 28.6 18.3 ± 22.0 −0.1 ± 25.0 14.2 ± 20.5

Figure 14. Predicted temporal stride parameters from foot-worn IMUs compared to the ground truth
pressure sensor reference. Each scatter plot shows one temporal parameter for one stride type (level
walking, ascending, and descending), grouped according to the respective walking speed (slow,
normal, and fast). R corresponds to the Spearman correlation coefficient.

First, a good agreement between the extracted parameters and reference values was
found for all parameters and gait activities (Figure 14). Second, the direct correlation
between temporal parameters and stair-walking velocity is clearly visible for ascending
and descending strides. This is related to the fact that a given stair geometry constrains
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specific spatial parameters such as stride length and stride height. Hence, the gait velocity
on the stairs is mainly modulated by extended or shortened swing and stance times, while
for level walking, the stride length is also adapted in addition to the stride time. Therefore,
differences in temporal parameters between speeds are not as pronounced for level walking
as compared to stair ambulation.

4.3. Spatial Stride Features

The extracted spatial parameters per stride show a good separability between indi-
vidual stride types, as illustrated in Figure 15. Double stair step strides on staircase A and
B form visible clusters according to the specific stair geometries, while double stair step
strides of staircase C are scattered across a greater range due to the unique stair geometry
of long and flat steps. Single stair step strides show a reduced stride height (as those
correspond to only a single step) and a wider spread in length (as for transitions, the stride
length is no longer constrained by the fixed stair geometry).

Figure 15. Feature space for stride-type classification. The colours represent ground truth class
labels according to the manual video annotations. Visible clusters correspond to the double stair step
strides on staircase A (height = 2 × 17.5 cm = 35 cm, length = 2 × 26.5 cm = 53 cm), and staircase B
(height = 2 × 14.5 cm = 29 cm, length = 2 × 35 cm = 70 cm). Double stair step strides on staircase C
are scattered across the range ≥ 100 cm due to the specific dimensions and comparably long steps.

4.4. Stride-Type Classification

Figure 16 shows the confusion matrix for the classification of level walking, stair
ascending, and stair descending strides for the spatial stride feature threshold-based classi-
fication approach. An additional null class contains FP and FN-segmented strides where no
reference stride-type label could be assigned. Detailed results in terms of precision, recall,
and F1 score are summarized in Table 4. Overall, the classification block using trajectory
features (stride elevation and inclination) and the simple threshold-based decision rules
achieved a total balanced accuracy of 98.2%.
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Figure 16. Confusion matrix of the stride-type classification results from the evaluation dataset.
Stride types were classified into level walking, stair ascending, and stair descending strides. The
null class corresponds to false negative and false positive segmented strides from the HMM-based
segmentation output.

Table 4. Stride-type classification results in terms of precision, recall, and F1-score for the classi-
fication block using trajectory features (stride height and inclination) and simple threshold-based
decision rules.

Stride-Type Class
Metric Level Walking Ascending Descending

Precision 96.8% 100.0% 100.0%
Recall 100.0% 97.3% 97.4%
F1 score 98.4% 98.6% 98.7%

The combined HMM + trajectory approach reached a precision of 100% for detecting
stair strides with only a single misclassification of a level walking stride as an ascending
and a descending stride. Furthermore, not a single ascending stride was confused with a
descending stride in all three stair configurations and walking speeds, which was addi-
tionally ensured by the subsequent walking bout assembly requirements. Although some
stair strides were confused with level walking strides, the misclassification rate was below
3% for ascending and descending strides. Misclassifications happened mostly during
transition strides as well as on staircase C due to the unique step dimensions, which were
closest to the classification thresholds (height = 13 cm and inclination = 7.6°).

The number of FP segmented strides could be reduced by 26%, from a total of 419 to
310 strides, when adding trajectory features to the HMM output by utilizing basic biome-
chanical exclusion criteria such as unrealistic spatial or temporal parameters.

4.5. Full Pipeline Validation

Overall, the pipeline was in good agreement with the ground truth reference (Figure 17),
with a mean difference of parameters for the mean and the standard deviation of walking
bouts below 0.01 s. The 95% limits of agreement were below±0.05 s for the evaluation dataset
and only marginally higher with ±0.06 s for the PD validation dataset. The results indicate
good generalization and robustness of the proposed pipeline, with similar error ranges for
both datasets and potential application on the data of patients with gait impairments, as in PD.



Sensors 2021, 21, 6559 22 of 28

tstride (ascending)
tstride (level walking)
tstride (descending)

tswing (ascending)

tswing (level walking)

tswing (descending)

tstance (ascending)
tstance (level walking)
tstance (descending)

0.4 0.6 0.8 1.0 1.2 1.4 1.6
Mean [s] (Ground Truth /Proposed Pipeline)

0.10

0.05

0.00

0.05

0.10

D
iff

er
en

ce
 [

s]
(G

ro
un

d 
Tr

ut
h 

- 
Pr

op
os

ed
 P

ip
el

in
e)

mean diff:
0.0

-SD1.96: -0.04

+SD1.96: 0.04

Walking Bout Mean (Healthy)

0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200
Mean [s] (Ground Truth /Proposed Pipeline)

mean diff:
-0.01

-SD1.96: -0.04

+SD1.96: 0.02

Walking Bout STD (Healthy)

0.4 0.6 0.8 1.0 1.2 1.4 1.6
Mean [s] (Ground Truth /Proposed Pipeline)

0.10

0.05

0.00

0.05

0.10

D
iff

er
en

ce
 [

s]
(G

ro
un

d 
Tr

ut
h 

- 
Pr

op
os

ed
 P

ip
el

in
e)

mean diff:
0.01

-SD1.96: -0.04

+SD1.96: 0.06

Walking Bout Mean (PD)

0.05 0.10 0.15 0.20 0.25 0.30
Mean [s] (Ground Truth /Proposed Pipeline)

mean diff:
0.0

-SD1.96: -0.04

+SD1.96: 0.04

Walking Bout STD (PD)

Figure 17. Bland–Altman plots of the full pipeline results in terms of final DMOs. In this case, the mean and standard
deviations of respective walking bouts. The y-axis shows the difference between the ground truth parameters and the
results of the proposed pipeline, while the x-axis shows the mean of both methods. Final validation was performed for the
healthy (upper plots) and the PD datasets (lower plots).

5. Discussion

Extracting objective and clinically relevant parameters from continuous IMU data
is not a trivial task. Several algorithmic steps are necessary and depend on each other
to form a complete gait analysis pipeline. The aim of the presented work was to extend
state-of-the-art gait analysis systems to real-world assessments where additional gait-
related activities such as stair ascending and stair descending are a fundamental part
of daily living. As stair ambulation adds unique challenges compared to level-walking
gait, respective objective stair ambulation parameters should be included in future clinical
analyses, which would then require adapted algorithms for segmentation, parametrization,
and classification. To address the lack of stair ambulation analyses in continuous real-world
studies, a new analysis pipeline targeting foot-worn IMUs was presented. Each pipeline
step was adapted to enable the simultaneous parametrization and classification of gait-
related activities, including level walking, stair ascending, and stair descending. Therefore,
an extended multiclass HMM for robust level walking and stair-stride segmentation, an
adapted event detection block to extract temporal stride parameters independent of the
gait activity, and precise spatial parameter extraction for stride-type classification using an
ETKF-based approach were presented and individually evaluated. Finally, the full pipeline
was validated end-to-end with respect to extracted DMOs on 20 healthy participants and
13 PD patients in order to prove its applicability in continuous real-world applications.

5.1. Datasets

Although the dataset was still part of a supervised study to enable the required ground
truth data for a technical evaluation of the presented methods, we tried to include a wide
variety of strides within the dataset in order to resemble real-world gait data as close
as possible. Therefore, we collected data from 20 healthy participants as well as 13 PD
patients walking on an outdoor course with three very different stair configurations at
different speeds for validation. A total of approximately 16,000 stair strides and 13,000
level walking strides were included during the evaluation (including transition strides
between activities), while other studies often only recorded data of a single staircase with a
limited number of strides or participants [22–24].
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Since such out of lab studies cannot make use of external reference measurements such
as motion capture or force plates, a mobile reference system consisting of pressure insoles
and video reference was used. Although using FSR sensors and thresholding methods
might be less precise than external reference systems (e.g., motion capture or force plates),
an accurate synchronisation of respective data streams was guaranteed due to the direct
integration of the pressure sensors and the IMU sensor. Furthermore, each FSR sensor was
individually calibrated to ensure the linearity of the pressure data.

5.2. Stride Segmentation

The first contribution of the proposed pipeline was the identification and segmentation
of individual strides regardless of the underlying gait activity. Due to the changing foot
rolling behaviour during stair ambulation, the segmentation methods developed purely for
level walking strides were insufficient if stair sequences were included. Hence, an existing
HMM [18] for real-world stride segmentation was extended to a multiclass HMM in order
to also model respective stair ascending and descending strides. To enable the simultaneous
detection of stride borders of different gait activities, individual sub-HMMs per stride
type were trained using the annotated data and subsequently combined with the extended
segmentation model. The proposed multiclass HMM achieved a promising segmentation
performance, with an F1 score of 98.5± 1.1 % for the evaluation dataset. The worst F1 score
of 95.1± 5.0 % was found during slow stair ascending where the characteristic TC peak for
some participants was no longer clearly defined, and the evaluation criteria for valid stride
borders were not met. Compared to previous studies [17–19] (which only included level
walking gait during evaluation), our presented multiclass HMM segmentation approach
reached slightly improved segmentation performance across multiple gait activities. One
limitation of the presented study is certainly the lack of other cyclic activities, which might
lead to falsely segmented strides. However, due to the subsequent pipeline steps, such FPs
could be effectively rejected due to unrealistic temporal or spatial parameters.

5.3. Gait Event Detection

Respective gait events were subsequently extracted based on the IMU data and given
stride borders. Although gait event detection using IMU sensors is a widely addressed
challenge, many different approaches exist in the literature [22–24,37]. However, respective
algorithms are either only designed for specific gait activities (e.g., only level walking),
expect the presence of a heel strike, or are evaluated only in one stair direction—either
ascending or descending—and only on a single fixed stair geometry. Therefore, we adapted
the gait event detection block using specific signal features to robustly detect gait events
such as TC and IC independent of the gait activity or foot rolling behaviour. This was
especially necessary for the stair strides as here, the heel strike is often missing during IC, re-
sulting in toes touching first. IC and TC could be detected with mean errors below ±10 ms
in all conditions and mean absolute errors below 20 ms with standard deviations below
±30 ms, which is comparable to other state-of-the-art event detection studies [22–24,37].
Due to the availability of reference labels only for TP strides, potential errors due to
FP-segmented strides could not be considered during the evaluation of the event detec-
tion. Therefore, our proposed gait event detection is strongly dependent on the correct
segmentation of the HMM.

5.4. Spatial Features and Stride-Type Classification

To extract spatial features from the IMU signals, an existing ETKF-based approach [39]
was implemented. This approach enables the reconstruction of the trajectory across mul-
tiple strides without the necessity of estimating a new initial orientation for every single
stride as required by stride-based methods [28,37]. Furthermore, instead of employing
linear drift models, the Kalman filter can accurately track the accumulating errors and per-
form respective correction updates during the ZUPT periods. To ensure at least a minimum
ZUPT for each stride, a minimum ZUPT phase for each MS event from the previous event
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detection block was enforced in addition to state-of-the-art ZUPT detection methods. This
step was required especially for fast stair walking where literature-based ZUPT conditions
were not satisfied. Due to the limited spatial reference data within the dataset, only the
measured stair step height could serve as a reference to tune the respective parameters
of the Kalman filter. Although the spatial features showed a good separability between
the three stride types (Figure 15), hence proving their validity for the classification task,
those spatial parameters will require a separate validation for clinical analysis. Therefore,
additional studies should be conducted with a motion capture system to track the reference
trajectory in all dimensions and evaluate the accuracy of spatial parameters such as stride
length or foot clearance during stair ambulation. In particular, the clearance during stair
climbing might be an important spatial feature for gait safety while stair walking as low
foot clearance might result in tripping or falling, leading to severe injuries. This feature
could be easily extracted from the reconstructed trajectory (Figure 18).
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Figure 18. Reconstructed sensor trajectory and respective stair-stride clearance. The distance between
the trajectory maximum and the landing flat for each stride could give insights into stair ambulation
safety and the danger of tripping or falling.

Although the final classification was based on only two features and respective static
thresholds, the classification block reached promising results, with F1 scores of more
than 98 % for all three stride types and a balanced accuracy of 98.2%. For the presented
work, we even included single stair step strides, which usually happen during transitions
between level and stair walking or during stair landings, while double stair step strides
mostly correspond to steady-state stair walking. The feature-based approach enables
a flexible adaption of thresholds to include, for example, only a specific type of stair
strides. Especially in real-world studies where participants might face slightly different
stair geometries, respective thresholds could be adapted to include only strides of stairs
that share, for example, a similar slope in order to enable comparable conditions. The
presented approach might also be able to distinguish between single and double stair
step strides, which form an individual cluster within the derived feature space (as can be
seen in Figure 15), which could enable a separate analysis of respective transition strides
before and after stair walking. An extension of the stride-type classification differentiating
between single and double stair step strides should be evaluated in future studies. Still,
spatial features derived from inertial data are subject to errors due to bad sensor calibration,
unreliable zero velocity updates, or aliasing and sampling effects, which will lead to
classification errors if static thresholds are applied. Such issues might be avoided with the
use of more advanced classification methods such as deep learning-based approaches, as
proposed in the field of human activity recognition [43], which enable direct classification
based on raw IMU data without the need for expert features.
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5.5. Full Pipeline Validation

As a final step, the entire pipeline was validated end-to-end with respect to DMOs.
This step is often overlooked but very important for future real-world analysis applications
as reference labels are often missing; hence, retraining or optimizing parameters is difficult
or impossible. Furthermore, single pipeline blocks usually depend on each other, which
can lead to the propagation of errors but also to the possibility of being cancelled out by
subsequent pipeline blocks. Therefore, only an end-to-end validation of all combined steps
can capture the pipeline performance under realistic conditions. Especially for real-world
studies, which come more and more into the focus of clinical gait analysis [10], application-
driven pipelines that can robustly and automatically handle continuous input sequences
without manual intervention are required. Respective output parameters in the form of
objective and interpretable parameters could then be used to answer clinically relevant
questions such as the assessment of a patient’s fall risk and disease state or progression.
Because stair ambulation speed is primarily modulated by varying stance and swing times
due to the constrained stair geometry (as illustrated in Figure 14), respective parameters
were considered as primary DMOs for the final validation. The pipeline showed a good
agreement of temporal stride parameters for both the healthy-participant evaluation dataset
and the PD-patient validation dataset, with mean errors below 10 ms for average bout
parameters as well as their standard deviation. The overall performance was comparable
between both datasets and also proved the validity of the presented pipeline for elderly
patients suffering neurological conditions such as PD. Although the presented results
were promising, the respective datasets were collected under supervision following a
predefined protocol and a limited number of individual patients. Therefore, the proposed
pipeline will still need to prove its performance on unsupervised continuous real-world
data in future studies, where changing environments, underground, or stair geometries,
as well as unexpected movements and activities, might lower the accuracy of the extracted
gait parameters. Finally, extracted real-world stair ambulation DMOs must undergo
clinical validation and prove their applicability in supporting clinical questions such as the
assessment of fall risk, disease state, or therapeutic effects.

6. Conclusions

We presented a new gait analysis pipeline designed for simultaneous stride segmenta-
tion, parametrization, and classification for foot-worn IMU data. The proposed pipeline
extends state-of-the-art gait analysis systems by enabling a separate analysis of stair as-
cending and descending bouts embedded in continuous real-world gait sequences. Each
part of the pipeline was thoroughly evaluated on a new dataset of 20 healthy participants
containing roughly 29,000 annotated strides at different speeds on different staircases. Fi-
nally, the pipeline was validated with respect to DMOs on an independent dataset of 13 PD
patients. Our approach showed good agreement with the reference parameters, reaching
an average stride segmentation F1 score of 98.5%, with mean gait event timing errors below
±10 ms for all conditions. Stride types were classified with an accuracy of 98.2% based
on spatial features. The end-to-end validation proved the applicability of our proposed
pipeline for future real-world gait analysis studies, where different gait-related activities,
including stair ambulation, are expected. Here, our pipeline was able to predict temporal
DMOs with a mean difference below 0.01 s and ±0.06 s for the 95% limits of agreement on
unseen PD patient data. Thus, we can conclude that foot-worn inertial sensor-based gait
analysis systems can accurately measure stair ambulation parameters from continuous gait
sequences; therefore, such parameters should be considered in future real-world studies.
Due to the unique challenges that stair ambulation poses to the motor and balance control
system, the assessment of stair ambulation DMOs could add additional insights into a
patient’s mobility behaviour and potential impairments that might not be present during
level walking. Overall, the presented work can provide new insights into real-world gait
and mobility performance in order to improve clinically relevant outcomes such as fall risk
or the monitoring of disease state and progression.
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