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Purpose: To describe an Australian pedigree of European descent with a variable autosomal dominant phenotype of:
pediatric cortical cataract (CC), asymmetric myopia with astigmatism, familial exudative vitreoretinopathy (FEVR), and
primary open-angle glaucoma (POAG).
Methods: Probands with CC, FEVR, and POAG were enrolled in three independent genetic eye studies in Tasmania.
Genealogy confirmed these individuals were closely related and subsequent examination revealed 11 other family
members with some or all of the associated disorders.
Results: Twelve individuals had CC thought to be of childhood onset, with one child demonstrating progressive lenticular
opacification. One individual had severe retinal detachment while five others had dragged retinal vessels. Seven
individuals had POAG. Seven individuals had myopia in at least one eye ≤-3 Diopters. DNA testing excluded mutations
in myocilin, trabecular meshwork inducible glucocorticoid response (MYOC) and tetraspanin 12 (TSPAN12). Haplotype
analysis excluded frizzled family receptor 4 (FZD4) and low density lipoprotein receptor-related protein 5 (LRP5), but
only partly excluded EVR3. Multipoint linkage analysis revealed multiple chromosomal single-nucleotide polymorphisms
(SNPs) of interest, but no statistically significant focal localization.
Conclusions: This unusual clustering of ophthalmic diseases suggests a possible single genetic cause for an apparently
new cataract syndrome. This family’s clinical ocular features may reflect the interplay between retinal disease with
lenticular changes and axial length in the development of myopia and glaucoma.

In this study, we describe the novel overlapping
phenotype of congenital cataract (CC), familial exudative
vitreoretinopathy (FEVR), myopia, and primary open-angle
glaucoma (POAG) segregating in an apparently autosomal-
dominant fashion.

In Australia, myopia affects approximately 15% of the
population [1], POAG affects approximately 3% of the
population [2], CC occurs in approximately 2.2 out of every
10,000 births [3], and FEVR affects an estimated 7 out of
every 1000,000 people (derived from comparing 13 indexed
FEVR cases [4] to 420 CC cases [3]). If we were to consider
these diseases as completely independent clinical entities, the
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highly unlikely probability of a patient having all four diseases
simultaneously, or of the four diseases co-segregating, would
be approximately 1 in 148 billion. This denominator is more
than 20 times the total population of earth today.

Interestingly, to some extent these clinical entities can be
associated with each other. Many investigators have reported
the association of high myopia with cataract, glaucoma, and
retinal detachment [5]. Other associations are less common:

•anterior polar cataracts, seen in aniridia, are often
associated with glaucoma [6];

•rubella embryopathy is associated with both
congenital glaucoma and CC [6];

•aphakic glaucoma is observed very frequently, and
cataract can develop as a complication of POAG-filtering
surgery [6];
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•retinal detachment is a feature of Stickler syndrome
and is associated often with cortical lens opacities [7];

•retinal detachment from retinopathy of prematurity
(ROP) is associated with myopia and cataract [8].

•Retinal dystrophies are associated with myopia and
posterior subcapsular cataracts [9].

Although researchers have identified genes associated
with each of these disorders, the genetic mechanisms and their
interactions still are not fully understood.

METHODS
We identified three closely-related index cases from three
genetic-eye-disease studies: VI:7 from the Glaucoma
Inheritance Study in Tasmania (GIST) [10], VIII:7 from the
Cataract Inheritance Study in South Eastern Australia
(CISSEA) [3], and VIII:8 from the Familial Retinal

Detachment Study (FRDA) [4]. The GIST study had ethical
approval from the Royal Hobart Hospital; the CISSEA and
FRDA studies had ethical approval from the Royal Victorian
Eye and Ear Hospital. In each case, the work was conducted
in accordance with the tenets of the Declaration of Helsinki.

When we realized that the index cases were a
grandmother and two of her grandchildren who were genetic
first cousins, we decided to examine the entire pedigree in
detail to characterize a potentially novel phenotype. Our
ultimate aim was to identify the gene responsible for this
apparently-autosomal-dominant disorder.

From the genealogy of the index cases [11] we identified
the living members of five lineal generations, as well as
surviving more-distant relatives. We invited these family
members for a comprehensive ophthalmic examination [12],
including:

TABLE 1. MICROSATELLITE PRIMERS AND CONDITIONS.

Marker Primer names and sequences (5’-3’) Size (bp) Annealing
temperature

Amplification conditions

D11S4187 F TCTTGAACCCGGGAAG 273-289 55 °C Invitrogen Taq & buffer
 R CTGGTGCTGTGCTTGG    

D11S896 F ATCTCCCCTAGCTGTTTTGGA 169-183 60 °C Invitrogen Taq & buffer
 R AGTTCATATCCACCTCACACA    

D11S1367 F GCTGACATTTATTCACATGGC 224-244 60 °C Invitrogen Taq & buffer
 R ACAGTGTTATCTCCCTGGCA    

D11S2006 F CTTGTGGGCTGTAGTTTGCT ~325 55 °C Invitrogen Taq & buffer
 R AAAGAGTAAACTCAATGAAAGATGC    

D11S4095 F TCCCTGGCTATCTTGAATC 173-205 55 °C Invitrogen Taq & buffer
 R CTTGACTGGGTCCACG    

D11S937 F CTAATAAACAAATCCCTCTACCTCC 230-264 60 °C Invitrogen Taq & buffer
 R TAGTCAGTCAGGGACCCAAGT    

D11S929 F AGGCCCTTCCAAGATCAG 218-240 60 °C Invitrogen Taq & buffer
 R CCCAGTTGCCGAACTACC    

D11S4115 F TGGCATGTAAATNTAAGAGACTCAC 185-199 50 °C Invitrogen Taq & buffer
 R CTGCTACCTCAGAAGTATCTCAA    

D11S4154 F ATCCCTTGGCTTTCTCAGAGCAC 146-158 65 °C Invitrogen Taq & buffer
 R GGTGCCCCTAACCTCCATGT    

D11S4203 F GAATAGCCACTGACTTCAGG 218-278 60 °C Invitrogen Taq & buffer
 R CAGGATGCTGGAATAGAGAA    

D11S4083 F TTTAACCCAAGGGCAGGAC 178-206 55 °C Invitrogen Taq & buffer
 R CATGTGTACCCAAGGGCAG    

D11S4102 F CACCACTGGGTACTGCCATC 142-174 60 °C Invitrogen Taq & buffer
 R GCTAAATCCTGGAAAGCCCTG    

TABLE 2. TSPAN12 PRIMERS AND PCR CONDITIONS.

Exon Primer names and sequences (5’-3’) Size (bp) Annealing temperature Amplification conditions
2 TSPAN12-ex2-F ATGTCCCGTGTTCTCTCTCC 382 60 °C Invitrogen Taq & buffer
 TSPAN12-ex2-R CCAGGGGTGGATTTCTTTGT    
3 TSPAN12-ex3-F TGGTAATTGGGAAAGATATTATGTAAC 291 60 °C Invitrogen Taq & buffer
 TSPAN12-ex3-R CCAAAAGATCAAGGAAGAGCA    
4 TSPAN12-ex4-F TGAGGCATCATGATTGAAAGAA 346 60 °C Invitrogen Taq & buffer
 TSPAN12-ex4-R GCTATCACTGCTCCCTAATCTTGT    
5 TSPAN12-ex5-F GGTCCCCTTTCTTGGAGAAC 947 60 °C Invitrogen Taq & buffer
 TSPAN12-ex5-R TGGAAATGTGCTTTAGACACAGA    
6 TSPAN12-ex6-F GTACAAAATACCTCTTCATTTATCACA 529 60 °C Hot shot master mix
 TSPAN12-ex6-R GAAGAAAAGCAGGCCATGAA    
7 TSPAN12-ex7-F TGATGACAGATATAGCTCTGGGT 376 60 °C Hot shot master mix
 TSPAN12-ex7-R TTTTAAGGCCTTTTACATTTAGACA    
8 TSPAN12-ex8-F GCTTTCCCTGAGAACCACTG 605 60 °C Hot shot master mix
 TSPAN12-ex8-R CCATCCTCATTTTAAAGCATAGA    
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•a LogMAR visual acuity test,

•the Goldmann applanation intraocular pressure
(IOP) measurement,

•refraction using a HARK-598 autorefractor (Carl
Zeiss Meditec, Miami, FL),

•axial length measurement using an Ocuscan®

(Alcon, Inc., Ft Worth, TX),

•corneal pachymetry using an IOPac (Heidelberg
Instruments, Heidelberg, Germany),

•lens photographs,

•stereoscopic optic disc photography using a Nidek
3Dx camera (Nidek, Gamagori, Japan), and

•examination of the peripheral retina.

All participants provided venous blood or saliva
specimens for DNA extraction and genetic analysis.

Genotyping was performed using fluorescently-tagged
microsatellite markers as described previously [13]. Briefly,
standard PCR reactions were carried out in a 25 μl volume
containing 50 ng of genomic DNA using Invitrogen Taq DNA
polymerase and buffers (Invitrogen). Microsatellite markers
(including primer details; Table 1) surrounding EVR1
(D11S4187, D11S896, and D11S1367), EVR4 (D11S2006,
D11S4095, and D11S937) and EVR3 (D11S929, D11S4115,
D11S4154, D11S4203, D11S4083, and D11S4102) were
selected from the genome browser. Following amplification,
PCR products were resolved using an ABI 3730 DNA
sequencer and analyzed using GeneMapper® software from
the same manufacturer (Applied Biosystems, Carlsbad, CA).
The coding sequence and surrounding exons of myocilin,
trabecular meshwork inducible glucocorticoid response
(MYOC) and tetraspanin 12 (TSPAN12; primers and
conditions are listed in Table 2) were screened using standard
direct sequencing protocols as described previously (see
above) [14,15].

For the genotyping platform, we used Linkage Panel IVb
of 6008 genome-wide single-nucleotide polymorphisms
(SNPs; Illumina, San Diego, CA), and ran the analysis at the
Center for Inherited Disease Research (CIDR) of Johns
Hopkins University (Baltimore, MD). The results for the
pedigree were analyzed with Fastlink using a 2-point analysis
(under a dominant model); multipoint results (both parametric
and non-parametric) were analyzed using MERLIN. Merlin
(Multipoint Engine for Rapid Likelihood Inference) is a
software package that uses sparse inheritance trees for
pedigree analysis [16].

RESULTS
Genealogical information was available for nine generations
of the participants’ family; the individuals examined for this
study came from the five most recent generations.

•Figure 1 shows the relevant portions of the full
pedigree. A consanguineous loop enriched the pedigree
with similar genes (RELPAIR [17] analysis suggested a
grandparent-grandchild relationship when they were
actually great-grandparent and great-grandchild). 

•Table 3 displays the participants’ ophthalmic
phenotypes with autorefraction sphere and cylinder,
Keratometry readings, and axial length.

•Figure 2 and Figure 3A-N show photos of the optic
disc, retina, and lens.  

•Figure 4A-E show visual field defects. 

Excluding the married-in spouses, we examined eight
female and six male family members aged 3–86 years who
apparently were affected.

•Visual acuity ranged from 6/5 to perception of light.

•Spherical-equivalent refractive error in Diopters
(D) ranged from +0.25 D to −11.0 D, with five individuals
having myopia in at least one eye of <-3D.

•Astigmatism varied from 0 to −7.25 D with the rule
or −5 D against the rule.

•Axial length varied from 23.75 mm to 26.77 mm.

•Keratometry readings in eyes that had not been
operated on ranged from 40.0 D to 48.62 D, with the
largest corneal astigmatism measuring only 3.12 D.

•Maximum recorded IOP ranged from 13 mmHg to
36 mmHg.

•Central corneal thickness ranged from 510 μm to
590 μm.

•One male (VIII:6) was found to have a distance
exotropia of 25 D.

•Twelve individuals (6 male and 6 female) had CC,
thought to be pediatric in onset. (V:2, V:4,VI:7, VI:12,
VII:3, VII:5, VII:3, VII:7, VIII:3, VIII:5, VIII:6, VIII:7,
IX:1). The youngest age of documented cataract was 3
years of age (IX:1).

•One member (VIII:7) had photographic evidence of
cataract progression (Figure 3J,K). In addition, iris
atrophy was noted at the 3 and 9 o’clock positions. This
atrophy possibly became more notable with age (Figure
3K).

•One female individual (VIII:8) had severe
spontaneous retinal detachment consistent with FEVR,
while five individuals (3 male and 2 female) had dragged
retinal vessels (V:4,VI:7, VII:5, VII:7, VIII:7).
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•Seven individuals (5 female and 2 male) had been
diagnosed with POAG (V:2, V:4, VI:7, VI:12, VI:13,
VII:5, VII:7).

Cataract extraction was performed on VII:7 after the
cortical wedge progressed to complete lenticular opacification
in the left eye and vision declined from 6/18 to 6/60. Post-
operatively, this member’s best-corrected visual acuity
improved to 6/6. Refraction in the left eye changed from
−6.25/-1.5x145 to +0.00/-0.50 X 98 following cataract
surgery. The brother of this individual (VII:5) had similar
surgery for cataract and astigmatism, but his visual acuity did
not improve from 6/60.

Systemic associations: None of the family members had
dysmorphia or an unusual stature consistent with the facial or
body habitus features of Stickler syndrome. One member,
who had not worn ear protection in his industrial employment,
had noise-related hearing loss (VII:7) and one (V:4) had age-
related hearing loss. Only one member (V:4) was found to
have a single café-au-lait spot.

One participant (VII:7) had previously been diagnosed
with pulmonary alveolar proteinosis (PAP) and treated with
repeated pulmonary lavage. PAP is a rare disorder related to
the receptor pathway of the granulocyte macrophage–colony
stimulating factor (GM-CSF); it was diagnosed after recurrent
bouts of pneumonia in adult life. No other family member has

Figure 1. Reduced pedigree showing affected individuals. Square=male, circle=female, Top Right filled=myopia, Bottom Right
filled=retinal detachment or dragged disc, Bottom Left filled=cataract, Top Left=primary open-angle glaucoma (POAG), n=examined
and normal.
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experienced similar medical problems; no individual reported
any renal problems.

MYOC screening of the index case revealed no mutation
[14]. Haplotype analysis of a central portion of the pedigree
excluded the EVR1 frizzled family receptor 4 (FZD4) and
EVR4 low density lipoprotein receptor-related protein 5
(LRP5) FEVR genes (Figure 4). Unfortunately, the EVR3

locus could be only partially excluded due to uninformative
markers. Given that this gene had not been identified, we
cannot exclude this locus fully. Direct screening of VIII:8
excluded the recently-identified FEVR gene TSPAN12.

The family was included in the International High
Myopia Consortium linkage analysis [16]; however, the
family was dropped from the multipoint analyses for

Figure 2. Lens, optic disc, and retina photos of individuals. In the figure, A indicates individual V:2; B indicates individual V:4;
C indicates individual VI:7; D indicates individual VII:3; E indicates individual VII:5; F indicates individual VII:7; G indicates individual
VIII:3; H indicates individual VIII:5; I indicates individual VIII:6; J indicates individual VIII:7; K indicates individual VIII:7 followup
lens photo five years after first photos; L indicates individual VIII:8; M indicates individual VIII:9; and N indicates individual IX:1.

Figure 3. 24–2 Humphrey Visual Fields of Individuals. A indicates individual V:2; B indicates individual V:4; C indicates individual
VI:7; D indicates individual VII:5; and E indicates individual VII:7.
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chromosomes 3, 4, 6, 7, 8, 11, and 12 due to the pedigree’s
complexity. Table 4 displays the two-point linkage results for
this family showing the highest scoring logarithm of odds
(LOD) scores above 1.5. There were multiple chromosomal
SNPs of interest, but no statistically significant focal
localization.

DISCUSSION
This Australian pedigree has a unique constellation of
ophthalmic features that do not appear to have been described
previously. Although we were unable to identify a similar
family reported in the literature, the subtle and relatively
common clinical features could be overlooked.

Many investigators have reported the association of high
myopia with ocular morbidities of early-onset cataract,
glaucoma and retinal detachment [5]. Pedigrees with myopia
are common, but pedigrees with so many members affected
with these early ocular issues along with myopic development
are extremely rare; we were not able to identify any in the
published literature.

Although we cannot discount that the associated ocular
features may be secondary in origin, this family raises the

possibility that the same gene may be responsible for all forms
of the pathology observed in the pedigree.

Retinal detachment is an uncommon disorder in young
people and is most commonly identified in patients with
FEVR. X-linked FEVR and Norrie disease arose from
mutations in Norrin (excluded by male-to-male transmission,
in this pedigree). Dominant FEVR is due to mutations in
FZD4 and LRP5, and has been linked to the EVR3 locus
[18]. We excluded these loci through linkage analysis. The
recently-described gene TSPAN12 (EVR5) was excluded by
sequence analysis. Nonetheless, despite a well characterized
FEVR mutation, there still can be considerable variation in
the expressivity of the phenotype and incomplete penetrance
[15,18,19] (Personal communication; T.L. Edwards, Centre
for Eye Research Australia, Melbourne, Australia [article in
press]).

Since the cataract is the most “easily characterized”
phenotype in this family’s pedigree, we compared it with other
cataract phenotypes described in the literature. Although CC
has been linked to or associated with many cataract loci and
many chromosomal deletions, the causative mutation has not

Figure 4. Haplotype analysis of FEVR genes. Only a subset of the pedigree is displayed; shaded individuals are those whose
phenotype suggests FEVR. EVR2 (Norrin) is excluded by the pedigree structure showing male to male transmission. For each locus
examined, the affected individuals do not share the same haplotype, indicating that the causative gene does not reside in this region of
the chromosomal. A: EVR1 (FZD4); B: EVR3 11p13-p12; C: EVR4 (LRP5).
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TABLE 4. SUMMARY OF THE JOHNS HOPKINS CENTER FOR INHERITED DISEASE RESEARCH (CIDR) RESULTS FOR THE FAMILY.

Chromosome Marker Position (cM) 2PT-parametric
(Fastlink)

MPT-non-
parametric

MPT-parametric

1 rs1981193 121.82 1.863 NS NS
1 rs1806753 160.34 1.079 NS NS
2 rs2053372 47.98 1.592 NS NS
2 rs2008535 54.9 1.128 NS NS
2 rs764464 65.31 1.328 NS NS
2 rs1022298 117.27 1.162 NS NS
2 rs264963 117.39 1.162 NS NS
3 rs2076993 46.5 1.166 NS NS
3 rs1348979 49.44 1.166 NS NS
3 rs1127732 59.51 1.097 NS NS
3 rs713144 60.4 1.477 NS NS
3 rs1382554 60.41 1.097 NS NS
3 rs1405793 64.61 1.159 NS NS
3 rs1495704 65.68 1.159 NS NS
3 rs1995137 66.29 1.159 NS NS
3 rs1351631 67.73 1.522 NS NS
3 rs737516 67.73 1.522 NS NS
3 rs1013758 67.81 1.522 NS NS
3 rs844438 78.91 1.123 NS NS
3 rs1447971 82.11 1.842 NS NS
3 rs935734 92.98 1.586 NS NS
3 rs1019374 95 1.069 NS NS
3 rs1388276 99.96 1.116 NS NS
4 rs751266 67.19 1.054 NS NS
4 rs896656 93.96 1.326 NS NS
8 rs2203837 23.58 1.615 NS NS
8 rs334206 32.33 1.241 NS NS
8 rs241202 48.58 1.849 NS NS
8 rs4107736 50.87 1.248 NS NS
8 rs1481747 53.13 1.103 NS NS
8 rs1955185 61.16 1.05 NS NS
8 rs716583 65.56 1.116 NS NS
8 rs344278 74.88 1.582 NS NS
8 rs1460239 112.26 1.618 NS NS
8 rs1433396 122.14 1.119 NS NS
8 rs766811 138.68 1.16 NS NS
9 rs1532310 0.124137 1.522 NS NS
9 rs1532309 0.124434 1.522 NS NS
9 rs1143025 30.9 1.176 NS NS
9 rs1029015 35.12 1.767 NS NS
9 rs716933 60.37 1.089 NS NS
9 rs987187 60.4 1.128 NS NS
9 rs1333342 69.96 1.477 NS NS
10 rs1346300 75.86 1.522 NS NS
11 rs676943 125.79 1.015 NS NS
12 rs871880 58.31 1.123 NS NS
12 rs7134835 161.7 1.2 NS NS
12 rs1278602 171.56 1.089 NS NS
12 rs1278601 171.57 1.089 NS NS
12 rs937538 171.78 1.094 NS NS
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been identified for the majority of CC and pediatric cataract
cases [6].

The peripheral cortical lamella wedge seen in this family
is similar to that observed in Stickler syndrome [7] and also
with neurofibromatosis Type 2 (NF2) [20]. Interestingly, one
case describes NF2 associated with posterior subcapsular
cataract and dragged disc [21]. In a series of 15 other NF2
patients, 12 patients had an epiretinal membrane in the
macular or paramacular area and 11 patients had central
posterior cortical, subcapsular, or peripheral cortical lens
opacities [22]. NF2 arises from mutations in the Merlin gene
on chromosome 22q12.2 [23].

The one case of PAP [24] prompted an investigation of
possible genes involved in the GM-CSF pathway using the
Online Mendelian Inheritance in Man® (OMIM) database at
Johns Hopkins University. Of three loci associated with PAP,
one gene located at chromosome 22q12.2-q13.1,

Granulocyte-macrophage Colony-stimulating factor receptor,
beta (CSF2RB) is adjacent to Merlin. Notably, on reviewing
myopia loci, the myopia linkage found by Stambolian and
colleagues [25] for marker D22S685 lies in chromosome
region 22q12. This region has also been replicated in the
Beaver Dam Eye study [26].

The refractive error recorded in this pedigree is atypical;
most hereditary myopia is symmetric and usually is not
associated with high astigmatism. To date there has been little
investigation of the genetics of astigmatism, though genetic
factors are likely to play a role [27]. It would appear that the
myopia in this family originates in increased axial length
rather than in the more usual primary lenticular fault. The
degree of astigmatism in severely affected members,
however, appeared to be both lenticular and corneal,
suggesting a common mechanism of growth or compensation.
The causative interaction of the cataract and the increased

TABLE 4. CONTINUED.

Chromosome Marker Position (cM) 2PT-parametric
(Fastlink)

MPT-non-
parametric

MPT-parametric

13 rs2985981 49.25 1.004 NS NS
13 rs2031836 115.73 1.003 NS NS
15 rs1435735 46.31 1.199 NS NS
15 rs890153 46.31 1.554 NS NS
15 rs725463 60.22 1.043 NS NS
15 rs1445020 71.05 1.049 NS NS
16 rs1019141 19.98 1.49 NS NS
16 rs889593 122.83 0.018 0.701998 1.0217
16 rs299956 123.93 0.734 0.943619 1.5971
16 rs2076962 125.29 −0.036 1.127055 1.8771
16 rs3794668 126.97 −0.011 1.126755 1.8763
16 rs1056707 128.94 0.057 1.12803 1.8782
16 rs750740 129.03 0.399 1.128125 1.8783
16 rs463701 130.14 −0.067 1.129806 1.8804
16 rs452176 130.21 0.01 1.129825 1.8804
16 rs1006547 130.48 0.018 1.129924 1.8805
16 rs1800330 130.5 0.891 NS NS
16 rs870856 130.83 1.781 1.126244 1.8762
16 rs8577 130.86 0.549 1.125715 1.8755
17 rs721429 95.95 1.199 NS NS
18 rs1972602 45.77 1.123 NS NS
18 rs1548755 51.57 1.252 NS NS
18 rs1131709 56.82 1.339 NS NS
18 rs650680 58.25 1.767 NS NS
18 rs931078 84.57 1.11 NS NS
20 rs1535382 14.16 1.046 NS NS
21 rs1041756 33.98 1.07 NS NS
21 rs2839576 62.26 1.324 NS NS

       2-point analyses with Fastlink under a dominant model; multipoint results, both parametric and non-parametric, using the
       multipoint engine for rapid likelihood inference (MERLIN ). Results in italics highlight suggestive loci, while the results in bold
       were found to be suggestive under all models tested. Abbreviations: Chr, chromosome; cM, centimorgan; 2PT, two point; MPT,
       multi-point; NS, not significant.
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myopia remains to be elucidated, but may involve visual form
deprivation [28].

We hope that characterization of this unusual phenotypic
constellation will identify other families with similar
characteristics. Further characterization of the genes involved
in this family using methods such as next-generation
sequencing should help shed light on the genetics of the four
clinical entities —POAG, CC, FEVR, and myopia— as well
as their interactions. In time, this further work also may help
clarify the molecular pathways of developing myopia
involving retinal signaling, lens growth and axial length.
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