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Abstract

A novel approach to reveal intramolecular signal transduction network is proposed in this work. To this end, a new
algorithm of network construction is developed, which is based on a new protein dynamics model of energy dissipation. A
key feature of this approach is that direction information is specified after inferring protein residue-residue interaction
network involved in the process of signal transduction. This enables fundamental analysis of the regulation hierarchy and
identification of regulation hubs of the signaling network. A well-studied allosteric enzyme, E. coli aspartokinase III, is used
as a model system to demonstrate the new method. Comparison with experimental results shows that the new approach is
able to predict all the sites that have been experimentally proved to desensitize allosteric regulation of the enzyme. In
addition, the signal transduction network shows a clear preference for specific structural regions, secondary structural types
and residue conservation. Occurrence of super-hubs in the network indicates that allosteric regulation tends to gather
residues with high connection ability to collectively facilitate the signaling process. Furthermore, a new parameter of
propagation coefficient is defined to determine the propagation capability of residues within a signal transduction network.
In conclusion, the new approach is useful for fundamental understanding of the process of intramolecular signal
transduction and thus has significant impact on rational design of novel allosteric proteins.
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Introduction

The structure of a protein is the basis for understanding its

function. However, the function is ultimately governed by its

dynamics in most cases. Proteins are inherently dynamical

molecules that undergo structural fluctuations over a wide range

of timescales [1,2]. Therefore, a thorough knowledge of the

principle(s) governing protein dynamics is of fundamental

importance for functional study and design of new protein

functions. As a classic model for understanding the relation-

ship(s) among protein structure, dynamics and function,

allosteric proteins have attracted large attention for decades

(for recent reviews see [3,4,5,6]). The concept of protein

allostery began with the Monod-Wyman-Changeux (MWC)

model (also known as the concerted model or symmetry model)

[7] and the Koshl-Némethy-Filmer (KNF) model (also known as

the sequential or ‘‘induced fit’’ model) [8], which sought to

account for allostery based on gross properties of the transition

between two well-defined end-states. More recent thermody-

namic models of allostery emphasize population shifts in

conformational ensembles [9,10,11]. There has been experi-

mental evidence that alternate allosteric states are simulta-

neously populated in solution [12,13]. Furthermore, intramo-

lecular signal transduction has been proposed as a key concept

of protein allostery [4,5,14] and successfully used for redesign of

protein functions [15,16]. Nevertheless, none of these models

describe how the signal is transferred from the regulatory site to

the active site upon binding of an effector to the allosteric site.

Recently, we proposed a new protein dynamics model [17],

which considers the signalling process as the result of energy

dissipation.

Perturbation dynamics has been used to discover discrete

breathers in protein structures [18,19] and long-range energy

transfer in proteins [20]. In these studies, it was shown that high

amounts of energy may pop up in (or near) enzyme active sites, as

a consequence of large and long-lived thermal fluctuations of

nonlinear origin. Moreover, perturbation waves can also be

applied in proteins and protein networks in signaling and drug

design [21,22]. By simulating the input of external energy (binding

of an effector) using energy perturbation, in our recent study a new

concept is developed to quantitatively describe protein dynamics

in terms of energy dissipation. Furthermore, protein dynamical

modules are introduced and defined based on the residue response

time to bridge protein structure and function. Different from the

protein structural modules which merely provide information

about the structural stability of proteins, protein dynamical

modules could reveal protein characteristics from the perspective

of dynamics [17].

The concept of network reconstruction is widely used to

understand the structure and regulation of complex biological
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systems like metabolic and regulatory networks [23,24,25,26].

Proteins are complex residue-residue interaction (RRI) systems if

we regard the amino acid residues as nodes and the residue-

residue interactions as edges. Protein RRI networks have been

constructed and studied in literature [27,28,29,30]. However,

these networks are merely constructed based on the crystal

structures of proteins and not able to show the information flow

within proteins. In order to explore how the signal is transferred

within molecules like allosteric proteins upon binding of an

effector, new concepts and methods are needed. In this work, a

novel algorithm of network reconstruction is combined with the

energy dissipation model to reveal the process of intramolecular

signal transduction involved in allosteric regulation. A key feature

of the novel approach is that directed RRI networks that involved

in the process of intramolecular signal transduction could be

constructed based on the data of residue response time predicted

from the energy dissipation model. For this purpose, specific

molecular dynamics simulations are designed and carried out to

obtain residue response time during the energy dissipation

process.

We use a well-studied allosteric protein, aspartokinase III of

Escherichia coli, as a model system to demonstrate the new method

and its usefulness. Aspartokinase is a key regulatory enzyme in the

synthesis of aspartate derived amino acids. Small molecules such as

lysine or threonine are separately or jointly bound at the

regulatory regions, causing a change of the protein from an active

state to an inactive state and the loss of enzyme activity. The

regulatory domain of aspartokinase contains the ACT domain

which is composed of four b strands and two a helices arranged in

a babbab fold (Fig. 1) and named after the first letters of three of

the proteins, aspartate kinase-chorismate mutase-tyrA (prephenate

dehydrogenase). This structural motif is one of a growing number

of different intracellular small molecule binding domains that

function in the control of metabolism, solute transport, and signal

transduction [31]. E. coli aspartokinase III (EC 2.7.2.4) is

monofunctional and allosterically inhibited by lysine [32]. The

subunit is organized into a C-terminal regulatory region and an N-

terminal catalytic region. The C-terminal regulatory region

consists of two ACT domains, in which the second ACT domain

is inserted within the first. The catalytic region exhibits a typical

amino acid kinase family fold [33], which can be further divided

into the N-terminal lobe (N-lobe) and the C-terminal lobe (C-lobe)

(Fig. 1).

The allostery of E. coli aspartokinase III has been recently

studied by a combined approach of statistical coupling analysis

and molecular dynamics simulation (SCA-MD) [15]. Several

sites have been successfully developed to alter the allostery of

aspartokinase III by the effector lysine and their underlying

mechanisms were investigated employing protein dynamics

modules [17]. However, considering the fact that not all of

the residues of these modules contribute to the allosteric

communication, it is necessary to develop a novel algorithm in

order to figure out those residues that contribute to the signal

transduction process. The new strategy proposed in this work

successfully predicted the functionally important sites that have

been experimentally proved to desensitize allosteric regulation

of the enzyme and revealed hereto unknown features of the

allosteric communication. Moreover, our approach is not

dependent on the availability of protein sequences for evolu-

tionary analysis and provides more information than ever

before. From the practical viewpoint, it will have significant

impact on rational design of novel allosteric proteins once we

are able to construct the signal transduction network with

direction information.

Theoretical background of the new approach
The new protein dynamics model of energy dissipation is based

on the following facts:

N Protein is an open system which means energy can be

transferred from external environment through intermolecular

interactions (i.e. caused by a ligand binding).

N Residues in the protein are dynamic and fluctuating.

N Regulatory process is conducted by intramolecular non-linear

interactions.

N The conformation of a protein with or without ligand is in a

quasi-equilibrium state, whereas intermediate conformations

during the signalling process are in non-equilibrium states.

According to the energy dissipation model, the allosteric process

can be described as follows:

N allosteric protein is in an initial conformational distribution in

which the population of the R-state (in the case of feedback

inhibition) or the T-state (in the case of feedback activation) is

higher than that of the others;

N external energy is introduced into the allosteric site through

intermolecular interactions when the ligand binds to it;

N the input energy dissipates within the allosteric protein through

intramolecular non-linear interactions;

N the allosteric protein reaches a new conformational distribu-

tion in which the population of the T-state (in the case of

feedback inhibition) or the R-state (in the case of feedback

activation) is higher than that of the others.

The new model represents an extension of the concept of

population shift by emphasizing that after the allosteric process of

the open protein system is stimulated, the energy perturbation will

pass through within the protein in a dissipative pattern, resulting in

a re-distribution of protein conformational states.

Figure 1. Structural regions of E. coli aspartokinase III. The
structure is organized into a C-terminal regulatory region and an N-
terminal catalytic region. The C-terminal regulatory region consists of
two ACT domains, in which the second ACT domain (colored in green)
is inserted within the first (colored in purple) via connections in two b-
strands. ACT1 exhibits the fold of a typical ACT domain with an
extended 14-residue loop between b15 and aK (colored in orange). The
catalytic region exhibits a typical amino acid kinase family fold which
can be further divided into the N-terminal lobe (N-lobe, colored in blue)
and the C-terminal lobe (C-lobe, colored in red).
doi:10.1371/journal.pone.0031529.g001
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Materials and Methods

Residue response time during the energy dissipation process is

obtained according to the procedures given in Fig. 2 which is

composed of the following steps.

Structures
The X-ray diffraction structures of E. coli aspartokinase III were

retrieved from Protein Data Bank (PDB) [34]. According to the

model, the active state is dominant in the initial ensemble of E. coli

aspartokinase III. Therefore, the active state could be chosen to

demonstrate the dynamical process. In this work crystal structure

of the R-state (PDB code: 2J0W) was employed to conduct

molecular dynamics simulations followed by energy dissipation

simulations as well as indentifying the key amino acid residues that

interact with substrates at the catalytic site. Crystal structure of the

T-state (PDB code 2J0X) was used to identify the key residues that

have interactions with the effector at the regulatory site.

Preparation
After deleting the substrates binding to the catalytic site, crystal

structure of the R-state was neutralized by adding sodium and

chlorine ions with an ionic concentration of 0.5 mol L21 and

solvated in a rectangular box of TIP3P [35] water molecules with

a minimum solute-wall distance of 10 Å. The solvated systems

were energy-minimized by 5,000 steps employing the software of

NAMD [36] prior to the molecular dynamics simulations in order

to relax the loops and side chains to make them suitable for

performing the simulations.

Molecular dynamics simulations
The aim of this step is to obtain the equilibrium conformation of

the R-state protein, whose population is the highest in the initial

ensemble. Molecular dynamics simulations were performed with a

periodic boundary condition in the NPT ensemble using Langevin

dynamics at 310 K with the damping coefficient of 5.0 ps21 and

constant pressure of 1 atm. The non-bond pair list was updated

every 10 steps and the Particle Mesh Ewald (PME) method [37]

was used to treat long-range electrostatic interactions. A residue-

based cut-off of 12 Å was applied to the non-covalent interactions.

No constraint was applied to the protein during the molecular

dynamics simulations. A time step of 2 fs was used and the

coordinates of the simulated complexes were saved every 1.0 ps.

The simulations lasted 600 ps and were performed employing the

software of NAMD with the CHARMM27 force field. Analysis of

the molecular dynamics trajectory was conducted on the entire

simulation to ensure the dynamical stability of the system. To

examine the convergence of the molecular dynamics simulations,

energy, temperature and pressure were monitored during

simulations [17].

Energy dissipation simulations
According to the energy dissipation model, if the energy of

residues at the regulatory site is changed, the energy perturbation

will be transferred to the catalytic site through intramolecular non-

linear interactions. This energy dissipation process will show a

unique pattern which can reflect the dynamical characteristics of

the protein. However, the energy transferred to the binding pocket

is conducted by forces such as van der Waals force and

electrostatic force in the form of potential energy. Considering

the facts that potential energy and kinetic energy transfer to each

other during the process of protein dynamics and it is easy to

change the kinetic energy of atoms in molecular dynamics

simulations, the energy of key residues residing in the regulatory

site was changed by increasing its velocity by four times in this

study.

To avoid involvement of unexpected force or energy, the energy

dissipation simulations were conducted with a time step of 1 fs

under the condition that the temperature and pressure of the

system were able to change automatically during the simulation

process. Other simulation parameters were the same as that used

in the former step. In the meanwhile, reference simulations in

which the velocities of the residues were not changed were carried

out to simulate the molecular dynamics process when no external

energy was input to the protein. The energy of each amino acid

residue was captured during the entire dissipation process for both

simulations. Then, energy change could be calculated by

subtracting the energy of the reference simulations from that of

the energy dissipation simulations. With an energy change cut-off

of 0.01 kcal mol21, the response time of each residue caused by

the energy perturbation was obtained. Both the energy dissipation

simulation and the reference simulation lasted 1,000 fs when all

residues had responded to the energy perturbation.

For more details about the energy dissipation model and the

procedures, please refer to our recent publication [17], in which

the energy dissipation model was proposed to reveal protein

dynamics. Here, the focus is put on the construction of

intramolecular signal transduction networks based on residue

response time.

Method for network construction and the algorithm
With a cut-off value for the distance of residue interactions, an

undirected RRI network could be obtained from the crystal

structure of a protein. Nodes can be represented either by the Ca
or the mass center of residues. In this work, a residue is considered

to interact with those whose atoms are within a cut-off distance of

6 Å. Data of residue response time obtained from the energy

dissipation simulations were then put into the undirected network,

resulting in a directed RRI network (referred to as the Initial

network). Next, the signal transduction network from the source

residue to the target residue was achieved using the algorithm

which consists of three major steps (Fig. 3).
Figure 2. Procedures used to obtain residue response time.
doi:10.1371/journal.pone.0031529.g002
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Step 1. Nodes whose response time is larger than t (the response

time of the target residue) are deleted.

Step 2. Nodes whose in-degree is zero are deleted except the

source residue. This step cycles until the number of nodes of the

new generated network does not change any more. The value of

node in-degree is re-calculated for each new network.

Step 3. Nodes whose out-degree is zero are deleted except the

target residue. This step cycles until the number of nodes of the

new generated network does not change any more. The value of

node out-degree is re-calculated for each new network.

Usually, the regulatory site and the catalytic site are composed

of several key residues that interact with ligand. Thus, the

procedure was conducted for each pair of source-target residues to

get the signal transduction networks from the regulatory site to the

catalytic site. The obtained networks are referred to as the source-

target pair networks.

Definition of propagation coefficient
A hierarchical layout is commonly used to reveal the

information flow within a directed network. For this algorithm,

the nodes are placed on different layers from top to bottom,

depending on directions of the edges. Once the nodes are

attributed to a layer, order of the nodes is rearranged within the

layers to minimize the crossings of the edges. In this work the

software Cytoscape [38] was employed to obtain the hierarchical

layout of the signal transduction network. From the hierarchical

architecture, it can be seen that information is transferred from the

higher layers to the lower layers through different pathways. To

characterize the information propagation capability of a node

within the signal transduction network, a new parameter of

propagation coefficient is defined as follows:

PC(i)~
mi|ni

Xk

j~1

mj|njzl

ð1Þ

where PC(i) is the propagation coefficient of node i that resides in

layer N; k is the total number of nodes residing in layer N; mi and

mj are the in-degree of node i and j; ni and nj are the out-degree of

node i and j; l is the number of edges that pass through layer N.

The denominator of the right side stands for all possible pathways

from the former layer to the later layer; whereas the numerator

stands for the possible pathways conduced by node i. Because the

propagation coefficient takes into account not only the information

of node degree but also the number of nodes residing in the layer

as well as the number of edges passing through the layer, it is

better than the commonly used node degree to determine the

propagation capability of nodes in a directed network like the

signal transduction networks. However, it is noteworthy that a

deep-preference hierarchical layout should be carried out before

the calculation of propagation coefficient.

Results and Discussion

Signal transduction network
After constructing the protein RRI network with a cut-off value

of 6 Å, data of residue response time obtained from the energy

dissipation simulations were put into the undirected network,

resulting in the Initial network (Fig. 4). The Initial network consists

of all residues of E. coli aspartokinase III (447 nodes) and all

direction information between them (2944 edges). Considering the

fact that the allosteric regulation is the process of signal

transduction from the regulatory site to the catalytic site, some

direction information included in the Initial network may not be

relevant to this process and thus could be deleted from the Initial

network to achieve signal transduction network. For this purpose,

residues that interact with substrates were recognized according to

the crystal structure of aspartokinase III (PDB code: 2J0W). With

these residues as targets, signal transduction networks for each

source-target pair were obtained from the Initial network

employing the algorithm of network construction described in

Materials and Methods.

As shown in Fig. 4, the source-target pair networks consist of

different number of nodes and edges. The smallest network

(residue pair of Ser345-Lys257) has only 50 nodes and 207 edges,

whereas the largest one (residue pair of Ser345-Ser201) has 126

nodes and 564 edges. This implies that some pathways may be

common among them, whereas some may be unique. Table 1 lists

the number of common residues among the source-target pair

networks. For the largest network, 37 residues are unique; while

the others are shared with the other pair networks. The smallest

network shares all its residues with the other pair networks.

Merging all of the source-target pair networks together results in

the ‘‘Union network’’ (Fig. 4 and 5A). The Union network is

composed of all the possible signaling pathways from the

regulatory site to the catalytic site. Change of any residue in the

Union network would influence the process of signal transduction.

However, the underlying mechanism may be different. Some

changes may influence the signal transduction to only one of target

residues without the influence on the others; some changes may

affect two or more target residues at the same time (Fig. 5B).

Obviously, residues that are involved in all of the pair networks

(blue-colored in Fig. 5A) are more significant than the others.

Getting together those residues we obtained the ‘‘Intersection

network’’ (Fig. 4). Considering the importance of the residues

composing the Intersection network, the Intersection network can

be regarded as the core of the Union network. However, it is not

proper to regard the Intersection network as the smallest network

that ensures the process of signal transduction, because nodes not

in the Intersection network but in the Union network, can also

Figure 3. Algorithm proposed to construct source-target pair
networks from the Initial network.
doi:10.1371/journal.pone.0031529.g003
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influence the signaling process, which can be seen from the

experimental results of such nodes as shown in the following

sections.

Table 2 lists the basic network parameters for the Initial

network, the Union network and the Intersection network.

Associated with the decrease of the numbers of nodes and edges

within each network, the network diameter, the characteristic path

length and the average number of neighbors also decrease. In

contrast, the percentage of shortest path and the clustering

coefficient increase and the network radius keeps constant for all of

them. It is clear that a core signal transduction network which is

around ten percentage of the Initial network was successfully

inferred using the algorithm of network construction.

Comparisons of residue distribution
In order to better understand the features utilized by the E. coli

aspartokinase III when constructing its signal transduction

network, several comparisons of residue distribution were carried

out for the Initial network, the Union network and the Intersection

network. In the case of residue distribution among protein

structural regions (Fig. 6A), more residues reside in the regulatory

domain (ACT1 and ACT2) than that in the catalytic domain (C-

lobe and N-lobe) with the decrease of network size. Nearly half of

the residues of the Initial network reside in the N-lobe region,

whereas almost half of the residues of the Intersection network

belong to the ACT1 region with none in the N-lobe region. This

distribution characteristic indicates that the protein dynamical

Figure 4. Signal transduction networks. Networks are constructed based on the new protein dynamics model of energy dissipation and the
novel algorithm of network construction.
doi:10.1371/journal.pone.0031529.g004
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property involved in the process of signal transduction is mainly

conducted by the regulatory domain and that the role of the

catalytic domain is merely to realize its catalytic function. Thus, in

practice it is possible to design lysine-sensitive allosteric proteins by

introducing the regulatory domain of E. coli aspartokinase III to a

non-allosteric protein.

As regard to the distribution of secondary structure types

(Fig. 6B), nearly half of the residues of the Initial network are the

Helix type, whereas over half of the residues of the Intersection

network are the Sheet type. Considering the residue distribution

among protein structural regions and the fact that the regulatory

domain is mainly composed of the secondary structure of Sheet

type whereas the catalytic domain mainly consists of Helix type, it

is not difficult to understand the distribution result among the

secondary structure types. It is noteworthy that, for all of the

networks, secondary structure types of the ‘‘Others’’ group, such as

loops, also play an important role in the signal transduction

process. In Fig. 6C, amino acid residues are divided into five

different groups according to their polarization. It is a little

surprising that no evident preference could be observed for the

signal transduction networks. This means that polar and non-polar

residues contribute equally to the signal transduction process. At

least this is true for the case of E. coli aspartokinase III.

Another important distribution is about the residue conserva-

tion (Fig. 6D). It is well known that residues which play significant

roles in protein structures and functions are better conserved

during the evolution of proteins. This feature has been widely used

to construct communication network for allosteric proteins to

figure out key residues [14,39]. Since the networks constructed

based on the new model and algorithm is able to reflect the

signaling process, residues of the signal transduction networks

should also show high conservation. As it is expected, Fig. 6D

clearly shows that ninety percent of the residues of the Intersection

network have the conservation of more than 0.9 with the others

between 0.6 and 0.8. This result illustrates the high conservation of

the core signal transduction network during protein evolution and

demonstrates the powerful ability of the new approach to figure

out conservation residues.

Super-hubs and motif preference
The node degree distribution was calculated for the core signal

transduction network of E. coli aspartokinase III (Fig. 7A). Nearly

half of the nodes have 6–8 neighbors. When we focus on the nodes

with high node degrees (.10), it is interesting to find that these

residues tend to form super-hubs: Leu310-Leu311-Thr312-Leu313,

Asp340-Leu341-Ile342-Thr343, Ala350-Leu351- Thr352 and

Ser348-Val349. Three-dimensional structures of these super-hubs

are given in Fig. 7B. Discovery of super-hubs in signal transduction

network indicates that allosteric protein tends to gather residues

with high connection ability to facilitate the signaling process and to

increase the robustness of the signal transduction network against

external influences.

Different from hubs, motifs are linkage patterns utilized by

networks to organize its structure. Networks with different physical

meanings will normally exhibit different motif preference. Thus, it

is a useful parameter in network analysis to reveal the construction

characteristic of a network, especially the 3-node and the 4-node

motifs. Here, motif search was carried out for the core signal

transduction network of E. coli aspartokinase III (Fig. 8A). In the

search of 3-node motifs, motif FKX and F8R show the highest

occurrence frequency for three and two edges separately (Fig. 8A

and B). Similarly, motif PUCZX, PNUZF, PMO8X and PNHHF

Table 1. Number of residues that influence different number
of target residues for each source-target pair network.

Number of target residues

Source-target pair networks 1 2 3 4 5 6

Ser345-Arg198 0 1 0 0 4 50

Ser345-Ser201 37 1 0 34 4 50

Ser345-Thr221 1 18 0 34 4 50

Ser345-Tyr227 5 18 0 34 4 50

Ser345-Lys257 0 0 0 0 0 50

Ser345-Val258 0 0 0 34 4 50

doi:10.1371/journal.pone.0031529.t001

Figure 5. The Union network. (A) Residues are colored according to the number of target residues they can influence. (B) The number of nodes
that can affect different number of target residues.
doi:10.1371/journal.pone.0031529.g005
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show the highest occurrence frequency in the case of the 4-node

motifs (Fig. 8A and C). Occurrences of motif FKX in the 3-node

motif and motif PUCZX, PNUZF, PMO8X in the 4-node motif

illustrate the diversity and complexity of signal transduction

pathways during the process of allosteric communication and

stimulate the proposal of a new parameter to determine the

significance of a residue in the signal transduction network.

Characterization of propagation capability
As an important feature of directed network, it is possible to

examine its hierarchical architecture. When the signal trans-

duction network is hierarchically layout with deep-preference

using the software Cytoscape [38], it is clear to see the

information flow that is carried by the energy change of the

residues (Fig. 9A). It can be seen that the hierarchical

architecture is composed of many layers. Each layer consists

of several nodes and edges that pass though it. The total number

of layers represents the longest pathway from the regulatory site

to the catalytic site. Nodes receive signals from a higher layer

and send them to a lower layer. Thus, each layer contains all the

possible pathways for signals to pass through from the higher

layer to the lower layer.

Table 2. Network parameters of the signal transduction networks (calculated using Cytoscape [38]).

Parameters Initial network Union network Intersection network

Number of nodes 447 150 50

Number of edges 2944 720 207

Network radius 1 1 1

Network diameter 15 10 7

Characteristic path length 4.724 3.534 2.544

Shortest paths 38329 (19%)* 6063 (27%) 916 (37%)

Average number of neighbors 13.172 9.600 8.280

Clustering coefficient 0.247 0.255 0.284

*: Percentage of the shortest paths in all possible paths.
doi:10.1371/journal.pone.0031529.t002

Figure 6. Comparisons of residue distribution for the Initial network, the Union network and the Intersection network. (A) protein
structural regions, (B) secondary structure types, (C) residue types, (D) residue conservation.
doi:10.1371/journal.pone.0031529.g006
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The information flux passing through a node reflects its

propagation capability. Characterizing the propagation capability

of a node is not only meaningful to interpret the signal

transduction process but also useful for rational modification of

allosteric proteins. Although node degree is able to measure the

connection ability of a node, it is not suitable for determining the

propagation capability of a node in a directed network like the

signal transduction network. That is because the number of nodes

residing in the layer and the number of edges that pass through the

layer should also be taken into account to calculate the possible

signaling pathways conducted by a certain layer. The large

number of nodes in each layer (Fig. 9B) and edges passing through

each layer (Fig. 9C) indicates that many other pathways could

propagate signals and thus maintain the protein function when

one or some of them are disturbed (e.g. by mutagenesis). Thus, it is

necessary to take them into account to measure the propagation

capability of a node.

A new parameter, propagation coefficient (PC) (Eq. 1), is

proposed in this work. PC is defined as the percentage of pathways

that pass through a node of a certain layer. Therefore, a larger

value of PC indicates that more signals are propagated by the

corresponding node and thus this node plays a more important

role than the others in the signaling process. It is noteworthy that

although PC is given in the context of layers rather than the whole

network, PCs of nodes from different layers can be compared with

each other. In Fig. 10A, the residues belonging to the core signal

transduction network are colored according to their PCs and the

distribution is shown in Fig. 10B. It can be seen that over half of

Figure 7. The core signal transduction network. (A) Node degree distribution. (B) Three-dimensional positions of the super-hubs.
doi:10.1371/journal.pone.0031529.g007

Figure 8. Motif occurrence frequency of the core signal transduction network. (A) Motifs are arranged first by their edges then by their
occurrence frequency. The 3-node (B) and 4-node (C) motifs with the highest occurrence frequency for different edges. Motif occurrence frequency
was calculated using MAVisto [40].
doi:10.1371/journal.pone.0031529.g008
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the residues have a propagation coefficient smaller than 0.2. The

residue with the largest propagation coefficient is Gly255 flowed

by Arg306 and Leu304 (Fig. 10A).

Prediction of functionally important sites
Functionally important sites are those residues by disturbance

of which (e.g. by amino acid mutagenesis) the allosteric properties

can be altered to reduce the strength of feedback inhibition by the

product. Thus, any residues that play a role in the signal

transduction process are functionally important sites and thus

could be potential mutation sites. According to the Union

network, as many as 150 residues could be the potential mutation

sites. However, their roles in the signaling process may be

different. Nodes with more target residues are more important

than the others. Therefore, residues belonging to the Intersection

network are better candidates than the others. Residues of the

Figure 9. Hierarchical layout of the core signal transduction network. (A) Residues that have been experimentally proved are colored in
yellow. (B) The number of nodes for each layer (histogram) and the cumulative number of nodes (line). (C) The number of edges passing through
each layer (histogram) and the cumulative number of edges (line).
doi:10.1371/journal.pone.0031529.g009

Figure 10. Residue propagation coefficient and its distribution for the core signal transduction network. (A) Residues are colored
according to its propagation coefficient. (B) The propagation coefficient distribution of the nodes.
doi:10.1371/journal.pone.0031529.g010

Intramolecular Signal Transduction Network

PLoS ONE | www.plosone.org 9 February 2012 | Volume 7 | Issue 2 | e31529



Intersection network can be further arranged according to their

different PCs.

Here, the functionally important sites predicted by the new

approach are compared with those that have been experimentally

verified (Table 3). It can be seen that the Union network, which

combines all possible pathways together and thus presents the

signal transduction network from the regulatory site to the

catalytic site, includes all the experimentally proved sites. To test

the statistical significance of this result, the occurrence probability

of the result was calculated using the following formula:

p~
C150{21

447{21

C150
447

%0:01 ð2Þ

where p is the occurrence probability; Cm
n ~

n!

m! n-mð Þ! is the

combination operator; 447 is the number of residues in the Initial

network; 150 is the number of residues in the Union network; 21 is

the number of mutation sites that have been experimentally

proved. As an alternative approach to test the statistical

significance, the hypergeometric distribution method was used to

calculate the occurrence probability:

p~

150

21

� �
447{150

150{21

� �

447

150

� � vv0:01 ð3Þ

where p is the occurrence probability;
n

m

� �
~

n!

m! n-mð Þ! is the

binomial coefficient; meanings of the numbers are the same as

above. Two methods got the same result. The small value of the

occurrence probability indicates that the result shown here is not a

chance.

Comparison with the SCA-MD method
The statistical coupling analysis (SCA) is a powerful approach to

define the architecture of functional interactions between amino

acids and can help understanding the basic physical principle

underlying protein structure, function, and evolution by extending

the traditional definition of conservation to include correlations

between positions [39]. Application of this method to structurally

and functionally distinct protein families reveals a surprisingly

simple architecture for amino acid interactions in each protein

family [43]. Molecular dynamics simulations and SCA data were

combined (SCA-MD method) to identify residues that are

important for catalysis [44]. In a recent study from our group,

the SCA-MD method was employed to guide engineering

allosteric regulation of E. coli aspartokinase III [15]. The allosteric

properties were altered as desired to reduce the strength of

feedback inhibition by the product(s). However, the co-evolution-

ary approach depends on the quantity and quality of sequence

information obtained for the protein family. Moreover, it does not

provide information for the underlying mechanisms of regulation.

When the functionally important sites predicted by the new

approach are compared with those given by the SCA-MD

method, it is found that the Union network contains all of the

30 sites given by Chen et al. [15] except N414 (Table 3). In the

meanwhile, it is not surprising to see that these sites influence

different number of target residues. Only half of the 30 sites, which

have 6 target residues, belong to the core signal transduction

network (Fig. 8A, yellow circles). Their PCs range from 0.03 for

S338L to 1.0 for S345L. The high agreement of the results from

the new strategy with that based on the co-evolution of sequence

information is not difficult to understand if we look again on the

comparison of their residue conservation distributions (Fig. 5D).

Nevertheless, an advantage of the new approach proposed in this

work is that it is not only able to reveal residues with high

conservations but also able to distinguish residues that are

conserved for the allosteric communication from those which are

kept to realize the catalytic function (Fig. 5A).

Table 3. Comparison of mutation sites predicted by the new approach with those reported in literature.

Mutation
sites

Number of
target residues* PC Reference Mutation sites

Number of
target residues PC Reference

M251P 4 - [15] E346R 6 0.04 [15]

T253R 6 0.17 [15] V347M 6 0.19 [41]

R305A 6 0.42 [15] V349M 6 0.53 [41]

S315A 6 0.11 [15] T352I 6 0.50 [15]

M318I 1 - [41] T355 1 - -

H320A 1 - [15] C378 1 - -

G323D 1 - [41,42] I392 1 - -

F324 1 - -** F407 4 - -

L325F 1 - [41] N414 0 - -

F329R 1 - [15] R416A 6 0.10 [15]

I337P 1 - [15] M417I 6 0.20 [41]

S338L 6 0.03 [15] S423 6 0.09 -

V339A 6 0.10 [15] S424 4 - -

T344M 6 0.19 [42] N426 4 - -

S345L 6 1.00 [41,42] C428R 4 - [15]

*: Number of target residues the corresponding mutation site can influence.
**: Mutation sites that have not been experimentally proved.
doi:10.1371/journal.pone.0031529.t003
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Conformational state-sensitivity of the signal
transduction networks

Allosteric proteins undergo structural fluctuations over a wide

range of timescales. Structural fluctuations over the wide range of

timescales can be represented as different conformational states in

an ensemble. The energy dissipation model employs the active

states to demonstrate the dynamical process due to the fact that the

population of the active states is higher than that of the others in

the initial ensemble. To illustrate the conformational state-

sensitivity of the intramolecular signal transduction networks, an

extreme example, which used the T-state of the allosteric protein

as the initial structure, is presented here using the same simulation

procedures and network construction approach. Comparing the

networks (Table 2 and 4), it can be seen that small differences exist

although the network radius and diameter are the same as those

based on the R-state of the protein. For example, the number of

edges is slightly larger for the Initial network, indicating that the

conformation of the T-state is more constrictive than that of the R-

state. The number of nodes and edges are smaller for the Union

network, whereas they are slightly larger for the Intersection

network. This means although less residues contribute to the

process of intramolecular signal transduction, more residues

involve in all of the source-target pair networks. The conforma-

tional state-sensitivity of the signal transduction networks indicate

that on the one hand, useful information can be obtained from

these differences (such as in the comparison of conformation

change); on the other hand, it is better to generate the signal

transduction networks based on the same conformational states

(for instance, the active states) when different allosteric proteins are

compared.

Conclusions
In this work we used residue response time obtained from a new

dynamics model of energy dissipation to provide direction

information of interactions and thus to solve a major problem in

constructing RRI networks of proteins. Signal transduction

networks were successfully predicted from the Initial network

employing a novel algorithm of network construction. In addition,

a new parameter of propagation coefficient was proposed to reflect

the propagation capability of a residue during the signaling

process. Validation of the new method was demonstrated using E.

coli aspartokinase III as a model system. Besides the powerful

ability in prediction of functionally important sites, characteristics

and mechanisms involved in the process of signal transduction

were also revealed. The new approach may be applicable to other

signaling molecules that are important in biotechnology and

biomedicine.
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