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A B S T R A C T   

Impulsivity and deficits in response inhibition are hallmarks of attention-deficit(-hyperactivity) disorder (AD(H) 
D), can cause severe problems in daily functioning, and are thus of high clinical relevance. Traditionally, research 
to elucidate associated neural correlates has intensively, but also quite selectively examined mechanisms during 
response inhibition in various tasks. Doing so, in-between trial periods or periods prior to the response inhibition 
process, where no information relevant to inhibitory control is presented, have been neglected. Yet, these periods 
may nevertheless reveal relevant information. In the present study, using a case-control cross-sectional design, 
we take a more holistic approach, examining the inter-relation of pre-trial and within-trial periods in a Go/Nogo 
task with a focus on EEG theta band activity. Applying EEG beamforming methods, we show that the dynamics 
between pre-trial (pro-active) and within-trial (inhibition-related) control processes significantly differ between 
AD(H)D subtypes. We show that response inhibition, and differences between AD(H)D subtypes, exhibit distinct 
patterns of (at least) three factors: (i) strength of pre-trial (pro-active control) theta-band activity, (ii) the inter- 
relation of pro-active control and inhibition-relation theta band activity and (iii) the functional neuroanatomical 
region active during theta-related pro-active control processes. This multi-factorial pattern is captured by AD(H) 
D subtype clinical symptom clusters. The study provides a first hint that novel cognitive-neurophysiological 
facets of AD(H)D may be relevant to distinguish AD(H)D subtypes.   

1. Introduction 

Impulsivity and deficits in response inhibition are hallmarks of 
attention-deficit(-hyperactivity) disorder (AD(H)D), can cause severe 
problems in daily functioning, and are thus of high clinical relevance 
(Bari and Robbins, 2013; Chmielewski et al., 2018; Fallgatter et al., 
2005, 2004; Paul-Jordanov et al., 2010; Pliszka et al., 2007; Seifert et al., 
2003). Owing to this high clinical relevance, the neurophysiological 
(EEG) processes underlying response inhibition deficits in AD(H)D have 
been studied extensively (Albrecht et al., 2014; Baijot et al., 2017; 
Bluschke et al., 2016a; Doehnert et al., 2013; Fallgatter et al., 2004; 
Johnstone et al., 2009; Smith et al., 2004). In such studies, classical 
experimental approaches such as Go/Nogo and Stop-signal paradigms 
are used and the examination of neurophysiological processes is then 
focused on the time period after a certain stimulus has been presented (e. 
g. a Nogo or Stop stimulus); i.e. during response inhibition processes. 
Cognitive neuroscience studies in healthy populations suggest that 

theta-band activity is prominently involved in inhibitory control 
mechanisms triggered by such stimulus input (Chmielewski et al., 2016; 
De Blasio and Barry, 2013; Dippel et al., 2016, 2017; Huster et al., 2013; 
Isabella et al., 2015; Pscherer et al., 2019; Quetscher et al., 2015). In AD 
(H)D, alterations in theta band-related processes during inhibitory 
control have also been described (Pertermann et al., 2019; Yordanova 
et al., 2013) and are already targeted in interventions to ameliorate 
response inhibition deficits in AD(H)D (Bluschke et al., 2018). Yet, 
crucially, in-between trial periods or periods prior to the response in-
hibition process, where no information relevant to inhibitory control is 
presented, have been ignored in research on inhibitory control in AD(H) 
D, but may nevertheless reveal relevant information. 

Interestingly, theta band activity is also important for pro-active 
control (Cooper et al., 2017, 2015) and thus for processes preparing 
the cognitive system to engage in a specific cognitive control subprocess 
(Braver, 2012), such as response inhibition. Although pro-active control- 
related theta band activity has mostly been examined after the 
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presentation of “cues” that directly predict an upcoming event (Cooper 
et al., 2017, 2015; Cunillera et al., 2012; van Driel et al., 2015), it is 
possible that theta-band activity between trials is essential for the neural 
implementation of inhibitory control. This is because participants build 
expectancies about upcoming events and the likelihood of the need to 
engage in inhibitory control that persists across trials (Adelhöfer and 
Beste, 2019; Zavala et al., 2018). Moreover, some evidence indicates 
that pre-stimulus neurophysiological oscillations modulate cognitive 
control during inhibition (De Blasio and Barry, 2013; Smith et al., 2006). 
This sort of activity (i.e. pre-trial theta band activity; ptTBA) and its 
relation to inhibitory control-related theta band activity has, to the best 
of our knowledge, not been examined in AD(H)D thus far. It is the goal of 
the current study to examine this novel facet in the dynamics of inhib-
itory control in AD(H)D. Since pro-active control processes are essential 
for the implementation of inhibitory control (Hong et al., 2017; Liebrand 
et al., 2017; Randall and Smith, 2011; Smith et al., 2007; Vuillier et al., 
2016), we hypothesize that the strength (evoked power) of ptTBA is 
correlated with the strength (evoked power) of theta band activity 
during response execution and inhibitory control within the trial (i.e. 
wtTBA). This hypothesis may seem trivial, but assumes that the “con-
tent” of the information in the ptTBA and the wtTBA are similar to a 
certain degree. However, although theta oscillations are associated with 
cognitive control in general, they have actually been shown to reflect 
different facets such as top-down attentional control, response inhibi-
tion, conflict/interference monitoring and working memory (Cavanagh 
and Frank, 2014; Cohen, 2014a; Hsieh and Ranganath, 2014; Jensen, 
2006). Importantly, these aspects have been suggested to reflect rela-
tively independent facets of cognitive control (Diamond, 2013; Miyake 
et al., 2000). However, a significant correlation between ptTBA and 
wtTBA would require that the type of information encoded in the pre- 
trial interval and during the trial is somehow associated or similar. 
Only if processes encoded in the theta band during the pre-trial interval 
have a high relevance for processes reflected in the theta band during 
the trial, the correlation would turn out to be relatively high and posi-
tive. Within a Go/Nogo task, participants are required to build across- 
trial expectancies about upcoming events and about the likelihood of 
the need to engage in inhibitory control (Adelhöfer and Beste, 2019; 
Zavala et al., 2018). Since working memory processes affect the 
unfolding of inhibitory control processes (Chmielewski et al., 2015), 
ptTBA can be hypothesized to represent inhibitory control-related 
working memory processes. Thus, ptTBA and wtTBA are thus presum-
ably closely linked via inhibition-related processes, we hypothesize that 
a strong ptTBA is linearly correlated with wtTBA in that higher ptTBA is 
associated with stronger wtTBA. 

However, a critical factor to consider in this hypothesized relation-
ship between ptTBA and (inhibition-related) wtTBA in AD(H)D is that 
different AD(H)D subtypes have to be distinguished. The most important 
ones are the inattentive subtype (ADD) and the combined ADHD subtype 
(Ahmadi et al., 2014; Randall et al., 2009). Previous research suggests 
that these AD(H)D subtypes differ in their ability to inhibit responses as 
well as in the associated neurophysiological dynamics (Aldemir et al., 
2018; Bluschke et al., 2016b; Kenemans et al., 2005). Thus, it is very 
important to consider the AD(H)D subtype when examining the dy-
namics between pro-active and inhibition-related theta band activity in 
children and adolescents with AD(H)D. It has been proposed that 
oscillatory dynamics may bear the potential to distinguish between AD 
(H)D subtypes (Aldemir et al., 2018). On that basis it is reasonable to 
hypothesize that the correlational pattern between ptTBA and wtTBA 
differs between AD(H)D subtypes. However, the precise pattern of 
subtype differences can, at present, not be deduced from current liter-
ature. It is possible that patients with different AD(H)D subtypes show a 
pattern in which the strength of correlation differs between them while 
the direction of the correlation is still the same. It is, however, also 
possible that patients with one subtype do not show correlations be-
tween ptTBA and wtTBA while those affected by the other subtype do. In 
any case, the dynamics of theta-related pro-active control and response 

inhibition processes will then represent a novel, clinically relevant 
metric to distinguish patients with different AD(H)D subtypes from each 
other. 

To examine these questions, this study utilizes a sequential data 
analysis approach: In a first step, we analyze the relationship between 
pro-active and inhibition-related theta band activity regardless of AD(H) 
D subtype. In a second step, we examine the relevance of AD(H)D sub-
types in more detail. For the data analysis, we use EEG data recorded 
from patients with AD(H)D and healthy controls in a standard Go/Nogo 
task. To examine theta dynamics of ptTBA and wtTBA, we first identify 
brain regions associated with both these forms of theta band activity 
using the dynamic imaging of coherent sources (DICS) beamforming 
approach (Gross et al., 2001). For these functional neuroanatomical 
sources, we reconstruct the time course of theta band activity using a 
linear constraint minimum variance beamforming approach (LCMV) 
(Dippel et al., 2017; Van Veen et al., 1997). This source-level time series 
data of ptTBA and wtTBA is then used to examine the above hypotheses. 
Further details are presented in the methods section. The reason why we 
perform the correlation analysis on the beamformed EEG data is that the 
applied beamforming methods (especially the LCMV beamforming step) 
reduce residual variance in the data (Dippel et al., 2017; Van Veen et al., 
1997). The reduction of residual variance increases the reliability of the 
correlation analysis. Moreover, due to the spatial filter properties of 
beamforming (Gross et al., 2001; Handy, 2009), this approach circum-
vents the problem of spurious volume conduction effects that can also 
compromise the correlational results. Lastly, this approach also informs 
the functional neuroanatomical level, which is important to consider 
given that structure-functional biomarkers are important to develop in 
ADHD (Albajara Sáenz et al., 2019; Uddin et al., 2017). Since no clear- 
cut hypotheses can be deduced regarding the precise differential pattern 
of the relationship between ptTBA and wtTBA in different AD(H)D 
subtypes, data-driven methods (i.e. cluster analyses) are used to 
examine the pattern of correlations between ptTBA and wtTBA 
depending on AD(H)D subtype. 

2. Materials and methods 

2.1. Participants and patients 

In a case-control cross-sectional study, we examined children/ 
adolescent patients with AD(H)D compared to healthy controls. All 
participants included in the patient group had been diagnosed with AD 
(H)D in an outpatient clinic setting. Diagnoses were determined by a 
multi-professional team according to standard clinical guidelines. These 
include family and teacher interviews, symptom questionnaires (see 
below), IQ (WISC-IV) and attention testing. Further, possible underlying 
somatic disorders were checked for using EEG, blood analyses and 
hearing and vision tests. After diagnoses had been confirmed, patient 
families were contacted by telephone to enquire whether they were 
interested in participating in this study. N = 47 subjects (10 female) 
agreed to participate in this study (N = 28 medicated with methylphe-
nidate (extended release)). N = 22 had been clinically diagnosed with 
ADD (ICD-10: F98.8), while N = 25 were clinically diagnosed with the 
combined subtype (ADHD; ICD-10 F90.0 or F90.1). None of the patients 
suffered from any psychiatric comorbidities like tic/Tourette, autism 
spectrum disorders, depression, conduct or oppositional defiant disor-
der. Two patients had additionally received a diagnosis of adjustment 
disorder, while three had a confirmed Axis II diagnosis (n = 2 with 
developmental coordination disorder, n = 1 with dyslexia). Due to the 
recruitment context (outpatient clinic setting), it was not feasible to 
record the number of participants who were not interested or able to 
take part in the study. 

We further recruited a sample of healthy controls (N = 50, 21 female) 
from our in-house database and by external advertisements. AD(H)D 
had been excluded in this control sample by means of a telephone 
interview concerning ICD-10 diagnostic criteria for AD(H)D. In case of 
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good suitability for the study, questionnaires were sent to the families 
beforehand, which were filled out at home (see below). These ques-
tionnaires were also used to confirm that no AD(H)D symptoms were 
reported by parents or children. Any items that had been marked by the 
parents as applicable to their child were discussed with the families at 
the start of the research appointment. Participants were excluded from 
the study if symptoms of severe or acute psychiatric disorders were re-
ported during the initial telephone screening or in the questionnaires 
(except for AD(H)D in the patient group). They were also not included in 
the study if the IQ score was below 85 points (as assessed by a short form 
of WISC-IV; (Waldmann, 2008)), were outside of the required age range 
of 8–15 years, or had performed the Go/Nogo task before. Please refer to 
Table 1 for demographic information. 

The questionnaire “AD(H)D Symptom Checklist” from the DISYPS II 
(Döpfner et al., 2008) was completed by parents. Parents scored their 
children on a scale of 0 (no problems) to 3 (severe problems) for core AD 
(H)D symptoms (Table 1). Average values above 1.5 suggest that 
symptoms are clinically severe (Döpfner et al., 2008). Healthy controls 
scored significantly lower than the patient group on all three subscales 
(all F ≥ 101.75; p ≤ 0.001; ηp

2 ≥ 0.525). Patients with ADD and ADHD 
displayed a similar degree of inattentive symptoms (p = 282). As ex-
pected, patients with ADHD displayed significantly stronger hyperactive 
(p ≤ 0.001) and impulsive (p ≤ 0.001) symptoms. Groups did not differ 
in age or IQ (both F ≤ 0.46; p ≥ 0.631; ηp

2 ≤ 0.010) (see Table 1). Overall, 
the number of included participants was even slightly larger than it was 
the case in previous studies using the same experimental paradigm 
(Bluschke et al., 2016b, 2018, 2020), justifying the assumption of this 
study being sufficiently powered. Due to the novel and complex analysis 
approach applied to the EEG data, it was not possible to conduct a 
separate power analysis for this data. 

Written informed consent was obtained from all participants or their 
legal guardians. The study was approved by the ethics committee of the 
TU Dresden. 

2.2. Task 

A Go/Nogo task was used to examine inhibition performance (Beste 
et al., 2011; Chmielewski et al., 2015). Within this task, the word 
’DRÜCK’ (German for ’PRESS’; Go stimulus) or ’STOP’ (Nogo stimulus) 
was presented for 300 ms in white font on a black background. In case of 
a Go stimulus, participants were required to perform a button press with 
the right index finger within 500 ms. The participants had to refrain 
from reacting when a ’STOP’ stimulus was presented. The intertrial in-
terval was jittered between 1600 ms and 1800 ms. The experiment 
consisted of 248 Go experiments and 112 Nogo trials which were pre-
sented in a pseudo-randomized order. The task lasted about 20 min. 
Before the start of the experiment, participants familiarized themselves 
with the task completing 18 practice trials (6 Nogo trials; pseudo- 
randomized order). 

2.3. EEG recording and analysis 

EEG was recorded using an equidistant electrode setup of 60 Ag/ 
AgCl electrodes with a sampling rate of 500 Hz (reference at Fpz, the 
ground electrode at θ = 58, ф = 78) using a QuickAmp amplifier (Brain 

Products Inc.) and the Brain Vision Recorder software (Brain Products 
Inc.). Offline data processing was carried out as already described in 
Adelhöfer et al. (2018): recorded data was down-sampled to 256 Hz and 
a bandpass filter (0.5–20 Hz, IIR zero phase Butterworth, slope: 48 dB/ 
oct.) was applied. Technical artefacts were identified by visual inspec-
tion in the raw EEG data. An independent component analysis was then 
used to detect and remove periodically occurring artefacts (e.g., pulse 
artefacts, horizontal and vertical eye movements). The data was 
segmented to the onset of the Go and Nogo stimuli (-1000 ms before 
stimulus onset to 1500 ms after stimulus onset). Only trials with correct 
responses to Go stimuli and without responses to Nogo stimuli were 
analyzed further. Remaining artefacts were removed by an automatic 
artefact rejection procedure (amplitude criterion: maximum amplitude: 
+200 µV, minimum amplitude: − 200 µV; maximum value criterion: a 
difference of max. 200 μV in an interval of 200 ms; low activity criterion: 
activity below 0.5 μV in a period of 100 ms). The remaining trials in each 
group were for ADD: 190 ± 31 Go, 46 ± 23 Nogo; for ADHD: 202 ± 31 
Go, 60 ± 21 Nogo; for controls: 212 ± 28 Go, 71 ± 19 Nogo. Impor-
tantly, a statistical analysis of these frequencies using the factor Go/ 
Nogo and group revealed no interaction “Go/Nogo × group (ADHD, 
ADD, controls)” (F(2,94) = 0.19; p = 0.828). This lack of interaction that 
there are no systematic differences in the frequencies of trials used for 
the EEG data analysis. This shows that differences obtained at the EEG 
level (cf. results section) are not due to systematic differences in trial 
numbers constituting an important factor for the SNR of the obtained 
data and reliability of the results. 

These single-trial segments were then averaged for each condition, 
which served as the basis for the following time–frequency analyses 
using Morlet wavelets (w). Given the input parameters time (t) and 
frequency (f), the wavelets were defined as 

w(t, f ) = Aexp
(

−
t2

2δ2
t

)

exp(2iπft)

The remaining parameters are defined as A = (δt
̅̅̅
π

√
)
− 1/2, δt : wavelet 

duration and i =
̅̅̅̅̅̅̅
− 1

√
. We used f0/δf = 5 with f0 being central frequency 

and δf the width of the Gaussian shape in the frequency domain. As the 
basis for the next analysis steps, we used the power between frequencies 
4 to 7 Hz (theta band) in the single-trial EEG data. To test whether there 
were statistically significant clusters of electrodes exhibiting theta-band 
activity, we employed a method similar to cluster-based permutation 
tests from the FieldTrip toolbox (Maris and Oostenveld, 2007). Different 
from cluster-based permutation tests, we did not contrast two experi-
mental conditions, but each condition against a baseline array con-
taining only zeros (i.e. hypothetically non-existent theta-band power). 
That is, we adjusted functions from the FieldTrip toolbox as follows: For 
the reference distribution, trials (including those containing only zeros) 
were randomly assigned to either the experimental condition or the 
baseline (1000 randomizations). The largest electrode cluster was 
identified based on this random categorization. The frequency distri-
bution of the randomly assigned clusters served as the reference distri-
bution, and clusters exceeding the largest 5% of the reference 
distribution (i.e. the largest sum of t values for all electrodes in this 
cluster) were considered significant. Resulting clusters are shown as 
inlays in Fig. 2 for each condition (all p < 0.001). 

2.4. Beamforming-based source localization analysis 

As mentioned in the introduction, theta source activity was recon-
structed in a two-step approach (Dippel et al., 2017). First, we employed 
dynamic imaging of coherent sources beamformer (DICS) (Gross et al., 
2001). We used Fieldtrip functions (Oostenveld et al., 2003) to derive 
power values for each source voxel using DICS. For that, we first per-
formed a spectral analysis with a multitaper frequency transformation 
and obtained the cross-spectral density matrix. Since the theta band is 
defined from 4 to 7 Hz, we set the centre frequency to the frequency 

Table 1 
Demographical Information. No significant differences between groups and 
subgroups were evident (p ≥ 0.631).   

Controls AD(H)D Patients   
ADD ADHD 

Age 11.4 (±2.0) 11.9 (±2.2)   
11.8 (±2.1) 12.0 (±2.2) 

IQ 107.5 (±12.4) 106.3 (±11.6)   
105.2 (±12.1) 107.3 (±11.3)  
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band’s centre at 5.5 Hz and used a smoothing window of ±1.5 Hz. We 
used an MNI brain template included in Fieldtrip as the forward model. 
It consists of a grid of 6 mm voxels in each dimension. After the 
realignment of the employed EEG electrodes to the forward model, a 
leadfield matrix was computed by partitioning the forward model’s 
brain volume into a grid with 6 mm resolution. For every voxel and 
using the realigned EEG channel positions based on the template, the 
voxel leadfield matrices were computed. In addition, the cross-spectral 
density matrix was computed. Based on this, a common spatial filter 
(regularization parameter set to 5%) was derived. Applying this filter 
yielded the source power of the grid coordinates in the theta frequency 
band and the time windows of interest. Regarding the latter, we defined 
two time windows were chosen for DICS beamforming, representing the 
pre-trial and within-trial condition, respectively. The duration of both 
time windows was set to 800 ms in order to ensure at least 3 full cycles in 
the theta range to obtain reliable theta power estimations. The 800 ms 
time windows either ended at the stimulus onset for the pre-trial phase 
(i.e. for ptTBA) or started at the stimulus onset for the wtTBA analysis. 
Since noise in the data usually shows with a maximum towards the 
centre of the head model, relevant neural activity can be obscured if only 
raw power values are investigated (Van Veen et al., 1997). Therefore, we 
divided power values by the respective local noise estimates. These 
values, which vary as a function of location, were derived using 
implemented functions in Fieldtrip (Maris and Oostenveld, 2007) based 
on the smallest eigenvalue of the cross-spectral density matrix. This 
normalization procedure yielded the Neural Activity Index (NAI), which 
provides estimates of source neural activity. Please note that the number 
of channels in this study is sufficient to provide reliable localization 
results, as could be shown recently based on a combined simulation/ 
empirical approach (Halder et al., 2019). In this study, authors found 
that high localization accuracy can be achieved from DICS and LCMV 
beamforming approaches, given a similar amount of sensors and pro-
vided that the signal-to-noise ratio (SNR) of the data is sufficiently high. 
We could ensure a high SNR via impedance control of the electrodes 
prior to the task. Regarding the further beamforming analyses (see 
below), only the voxel with maximum NAI power (based on Grand 
Average data) was selected. Since we did not focus on the full extent of a 
source voxel cluster, but rather a central voxel with highest activity, the 
likelihood that the source is located within a task-relevant anatomical 
region is further increased. 

2.5. Statistical analysis 

Task-related effects and effects of the different patient groups/par-
ticipants were analyzed using parametric tests (ANOVAs and t-tests). 
The main focus, however, was on the correlational analysis based one 
LCMV beamforming analysis (Van Veen et al., 1997) applied to the re-
sults of the DICS analysis. The LCMV analysis reveals the time course of 
theta band activity in each DICS-reconstructed source of the NAI (Dippel 
et al., 2017; Van Veen et al., 1997). For the LCMV analysis, as imple-
mented in the Fieldtrip toolbox (Maris and Oostenveld, 2007), the 
covariance matrix was calculated. Using this matrix, and the previously 
identified voxels from the DICS beamforming step, the adaptive spatial 
filter of the LCMV beamformer was calculated. We obtained the single- 
trial time series of the reconstructed source by multiplying the spatial 
filter with the preprocessed EEG data. These time series at source level 
were then decomposed to time–frequency data for each trial (see above). 
Theta band oscillations were then averaged and isolated (4–7 Hz). Next, 
the theta oscillatory activity of the individual trial level was averaged. 
This resulted in the theta band time series at the source level for ptTBA 
and wtTBA, which were used for the correlation analyses of the ptTBA 
and wtTBA time series data: 

Pearson correlations were computed between every time point of the 
ptTBA time series and the wtTBA time series within each group of par-
ticipants included in the study (i.e. controls and both groups of AD(H)D 
patients) and Go or Nogo trials. This results in a matrix of group 

correlation coefficients with the axes pre-trial interval time course (y- 
axis) and within-trial interval time course (x-axis). Crucially, for the 
statistical analysis, it is required that an estimate of the correlation co-
efficient is evident for each individual and not only at the group level. 
Although individual correlation values can be obtained using single-trial 
data, this approach might bias into correlation coefficients, because trial 
numbers vary across participants and conditions. More important, 
however, single trial EEG data are inherently noisy, which limits inter-
pretability of the resulting correlations. For this reason, we derived these 
individual subject estimates of the correlation between ptTBA and 
wtTBA based on average values by employing a jack-knife procedure 
(Miller et al., 1998), as introduced recently (Adelhöfer and Beste, 2020): 
To obtain the jackknifed correlation coefficients (i.e. coefficients for the 
single subjects), correlation analyses are calculated across participants 
by successively omitting data from every participant once. This results in 
n jack-knifed correlations (j…jn), with each ji being based on the data 
from all participants but i. These jack-knife analyses were conducted for 
each group and condition, separately. These single-subject correlation 
coefficient data were then used in further analyses. For the statistical 
analysis, we focused on the mean single-subject correlation coefficient 
between the time ranges − 800 to 0 ms (i.e. the ptTBA) and the analyzed 
time interval in the trial data (wtTBA; 200 ms to 450 ms after stimulus 
onset). The duration of 800 ms ensured that the ptTBA interval did not 
overlap with the stimulus–response interval of the previous trial. This 
was the case for any participant and trial. The wtTBA interval was 
chosen upon visual inspection of source theta activity (see Fig. 2) and 
various previous findings using the same task suggesting that theta ac-
tivity during response inhibition is strongest in this time window (Beste 
et al., 2011; Quetscher et al., 2015). Prior to the statistical analysis, all 
these single-subject mean correlation coefficients were Fisher Z-trans-
formed to achieve a normal distribution of the data (Gayen, 1951). Note 
that because of this transformation, correlation coefficients are not 
bound between − 1 and 1. Since the application of the jack-knifing 
procedure reduces variance in the data, this artificial reduction in 
variance needs to be corrected in the statistical analyses. For that, we 
applied the correction procedure by (Ulrich and Miller, 2001). These 
corrected F-values are denoted as Fcorr. 

3. Results 

3.1. Behavioral data 

The behavioral data results are shown in Fig. 1. 
For Go trials, we found no significant reaction time (RT) difference 

between the patients with AD(H)D (466 ± 18 ms) and the control group 
(458 ± 14 ms) (t(95) = 0.34; p = 0.736; d = 0.068). Also, rates of correct 
responses did not differ significantly between the two groups (t(95) =
1.11; p = 0.271; d = 0.226; patients: 95.9 ± 0.6%; controls: 97.0 ±
0.8%). False alarm rates (i.e. responses in Nogo trials) differed between 
the groups (t(95) = 3.76; p < 0.001; d = 0.761). False alarm rates in the 
patient group were higher (45.0 ± 3.7%) than in the control group (28.0 
± 2.6%). 

3.2. Neurophysiological data 

The time–frequency data for each trial type and group are displayed 
in Fig. 2. Mean sensor-level and source-activity waveforms (±SD) for the 
theta-band response (4–7 Hz) over time are given in Supplementary 
Figs. 1 and 2. In Fig. 2, the left-hand plots denote activity in the pre-trial 
interval (ptTBA, i.e. before Go or Nogo stimulus onset, respectively) 
while the right-hand plots denote activity within the trial (wtTBA, i.e. 
after Go or Nogo stimulus onset). 

Regarding ptTBA, we did not observe a significant effect of group (t 
(95) = 1.28; p = 0.202; d = 0.260; control group: 2.94 ± 0.01 µV2; 
patient group: 2.72 ± 0.14 µV2). ptTBA was not supposed to differ be-
tween Go and Nogo trials, since the likelihood of any trial type was 
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constant over the whole experiment, which means that likelihoods were 
independent of the type of the upcoming trial. Therefore, preparatory 
activity should not be different regarding the upcoming trial type (Go vs. 
Nogo). This is confirmed by a within-sample t-test of pretrial theta 
power between Go and Nogo trials (t(96) = 0.54; p = 0.590). 

For the wtTBA a main effect trial type is shown (F(1,95) = 20.83; p <
0.001; ηp

2 = 0.180). There was a higher TBA in Nogo trials (2.90 ± 0.07 
µV2) than Go trials (2.58 ± 0.08 µV2). The main effect group was not 
significant (F(1,95) = 0.23; p = 0.634; ηp

2 = 0.002). Also, no interaction 
effect between group and trial type was detected (F(1,95) = 1.83; p =
0.179; ηp

2 = 0.019). 
In the next step, we examined whether the degree of ptTBA was 

correlated with wtTBA and whether these correlations are modulated by 
trial type and/or group. Fig. 3 shows the results of these analyses. 
Table 2 displays the respective anatomical regions and coordinates 
identified via DICS beamforming for control and patient group. 

The top row in Fig. 3 shows the voxel locations in the standard MNI 
brain that were identified via beamforming analysis. Data are shown for 
controls and patients with AD(H)D, in Go and Nogo trials. For Go and 
Nogo trials, the source of ptTBA is shown on the left and the source of 
wtTBA shown on the right. As outlined in the methods, the time series of 
the theta source activity was extracted using LCMV beamforming and 
used for the correlation analysis; i.e. the time series in the pre-trial in-
terval (ptTBA) was correlated with the time series in the post-stimulus 
interval (wtTBA). The results of these correlation analyses are shown 
in the lower row of Fig. 3. In these plots, the y-axis denotes the pre-trial 
interval and the x-axis the post-stimulus interval. The strength of 

correlations is colour coded. The statistical analysis, however, revealed 
that there were no significant differences in pre-trial/post-trial corre-
lations of theta band activity. None of the included factors (main or 
interaction effects) in the ANOVA were significant (all Fc ≤ 1.74, p ≥
0.191). Thus, there were no trial-dependent, group-dependent or trial x 
group dependent modulations of the correlation between ptTBA and 
wtTBA. However, the obtained correlation coefficients were rather low 
(see Fig. 3B), which indicates that the shape of scatterplot denoting the 
inter-relation between ptTBA and wtTBA in the control and ADHD 
sample is circular-shaped. Indeed, this is the case when inspecting the 
scatterplot for the healthy control group in Go and Nogo trials (see 
Fig. 4A left panel). 

However, a close look at the data pattern (scatterplots) showing the 
correlations between ptTBA and wtTBA for Go trials (top row) and Nogo 
trials (bottom row) for the ADHD group suggest that there is not a ho-
mogenous distribution of the data in the scatterplot as it is the case for 
the control sample. Opposed to the control group, the regression line for 
the AD(H)D group is placed between the apparent data clusters (see 
Fig. 4). From the visual inspection of the data distribution shown in 
Fig. 4 it is clear that the linear correlation does not well capture the 
pattern/distribution of the individual data points. Rather, the distribu-
tion of the correlation coefficients between ptTBA and wtTBA falls apart 
in two clusters in the AD(H)D group. Especially for the Nogo trials, it 
seems that there are two distinct clusters (see Fig. 4A, middle panel). 
Therefore, there are further aspects in the data that need to addressed 
statistically. To test the possibility that there are indeed two distin-
guishable clusters in the AD(H)D sample, we performed a cluster 

Fig. 1. Depiction of behavioural data. Part A shows 
the comparison between controls and the AD(H)D 
group. Part B shows the comparison between the 
ADD and the ADHD group. Reaction time (left 
panel), rate of correct responses (central panel) and 
false alarm rate data (right panel) are shown. The 
triangles indicate the means, vertical lines represent 
standard deviations. Both parameters are shown 
separately for healthy controls (N = 50) and AD(H) 
D-diagnosed subjects (N = 47; top row) as well as 
for ADD (N = 22) and ADHD-diagnosed subjects (N 
= 25; bottom row; see x-axes).   
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analysis. At this point it is important to mention that the performed 
cluster-analysis is not a sort of a post-hoc analysis of the ANOVA results 
since the cluster analysis captures different aspects in the data, to which 
the (standardized) correlations coefficient and ANOVAs are blind. The 
cluster analysis is able to capture the structure of the data (pattern of the 
individual data points in the scatterplot determining the strength of 

correlation), which was not possible in the ANOVA. Prior to running the 
cluster analysis, the mean theta band power values of every single 
participant were log10-transformed to achieve normal distribution of the 
data. For the cluster analysis, we employed the Gaussian mixture model 
(GMM) as implemented in Matlab (Johannes, 2020). This algorithm 
requires the number of expected clusters as input and provides the 

Fig. 2. Average time–frequency EEG data (i.e., spectral power as a function of time point (x-axes) and frequency (y-axes)). The figures show the groups (healthy controls 
vs. AD(H)D patients), trial types (Go vs. Nogo trials), and time intervals (pre-trial: left-hand side; within-trial: right-hand side). For each time–frequency plot, 
significant theta activity has been shown using cluster-based permutation tests. Significant electrodes are shown in the scalp topography plots. Also, the significant 
activation of functional neuroanatomical regions (i.e. theta source activity) is shown in the coronal, horizontal and sagittal slice views. Note that for pretrial activity 
(ptTBA, left-hand side), no distinction was made between Go and Nogo trials because participants could not predict whether the upcoming trial would be a Go or a 
Nogo trial. Dashed rectangular boxes show the time × frequency area which was used for source reconstruction. We analyzed the theta band (4 to 7 Hz) in all 
conditions and time ranges between − 800 and 0 ms (pre-trial theta activity; ptTBA) and between 200 and 450 ms (within-trial theta activity; wtTBA). Time values are 
relative to stimulus onset. Precise locations of the neuroanatomical regions are shown in Table 2. 
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probability of belonging to one of the clusters. Based on the visual in-
spection of the data distribution in the ADHD sample, the number of 
expected clusters was two and this may potentially reflect the AD(H)D 
subgroups. Since the result of the cluster analysis depends on the initial 
configuration of Gaussian parameters, we ran the algorithm 10-times 
and selected the resulting pattern with the most distinct clustering. 
The GMM revealed two significant clusters (Fig. 4A, right-most panel) 
for Go trials (χ2 = 14.15; p < 0.001) and two clusters for Nogo trials (χ2 

= 14.15; p < 0.001). Note that χ2 values are the same for Go and Nogo 
trials since cluster membership was independent of trial type. When 
labelling the clustered data points it become apparent that these two 

clusters refer to different AD(H)D subtypes. The ADD group is shown in 
blue and the ADHD group is shown in red. For Go and Nogo trials, one 
cluster predominantly represents ADD patients, the other cluster pre-
dominantly represents ADHD patients. Importantly, the obtained cluster 
results were only found for AD(H)D subtypes, but not when using IQ (χ2 

= 0.31; p = 0.579) or age (χ2 = 0.51; p = 0.474) as a clustering criterion. 
Furthermore, no significant association was found between the obtained 
clusters and “medication status” (χ2 = 1.33; p = 0.250). As can be seen in 
Fig. 4A, the clustering result is largely (although not entirely) due to a 
separation in pre-trial theta power. This is corroborated by statistical 
analysis: As expected, the clusters differ significantly regarding ptTBA (t 
(45) = 15.28; p < 0.001). The results of the cluster analysis point to an 
aspect in the data that has not been captured when running the analysis 
over the entire groups of subjects. The results of the cluster analysis 
provide methodological/statistical justification to (re-)run the analyses 
on the inter-relation between ptTBA and wtTBA with specific focus on 
the statistically derived AD(H)D subgroup clusters. As can be seen in 
Fig. 4 (middle panel), not every patient that was clinically diagnosed 
with ADD or ADHD was part of the statistically derived ADD or ADHD 
cluster. For example, 3 patients with a clinical ADHD diagnosis were 
actually located in the cluster where the majority of patients with a 
clinical ADD diagnosis were collated. Therefore, the analyses conducted 
using the cluster information do not 1:1 relate to the clinical diagnosed 
group. The analyses steps undertaken after conducting the cluster 

Fig. 3. Main results of correlation analysis. (A) Relevant anatomical sources (detailed in Table 2) for each condition as selected via DICS beamforming analysis of the 
neural activity index (NAI; details in text). White arrows indicate the regions used for the correlation analysis between ptTBA and wtTBA. Dashed circular lines 
additionally highlight the found neuroanatomical region. The colour scale shows the strength of activity (B) Mean correlations as a function of pretrial time (y-axes) 
and within-trial time sample (x-axes). Rectangular boxes display the time range used to calculate the means, which were then used for statistical analyses. We applied 
a Fisher Z-transformation prior to the Pearson correlations prior to statistical analyses. Correlation coefficients (r) and Z-values are shown. The colour scale shows the 
strength of correlations. 

Table 2 
Description of source regions identified with DICS beamforming.    

MNI label MNI coordinates (x,y,z) Brodman Area   
Controls 

ptTBA  rIFG 6.0 | 2.9 | 0.0 BA45 
wtTBA Go Rectus R 1.0 | 5.1 | − 2.2 BA11  

Nogo Precuneus 0.0 | − 7.1 | 5.0 BA7   
AD(H)D patients 

ptTBA  Frontal Mid R 5.0 | 4.9 | 0.8 BA10 
wtTBA Go Frontal Mid Orb R 4.0 | 5.9 | − 1.0 BA10  

Nogo Cingulum Mid R 1.6 | − 2.7 | 4.8 BA6 

pre-trial theta-band activity (ptTBA); within-trial theta-band activity (wtTBA) 
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Fig. 4. Results from correlations on the basis of the cluster analysis. (A) Scatter plots showing the correlation of log10-transformed theta power between the pretrial 
interval (ptTBA) and the post-stimulus interval (wtTBA) for Go stimuli (top row) and Nogo stimuli (bottom row). Left panels: The data of the healthy group is shown 
with the regression line in grey. Middle panel: The correlation is shown in the ADHD sample with the regression line in grey. Two clearly distinct cluster can be seen. 
Patients belonging to the ADD group (as defined by the clinical diagnosis) are shown in blue, patients belonging to the ADHD group (as defined by the clinical 
diagnosis) are shown in red. It can be seen that the regression line is placed between the two clusters. Right panels: After the cluster analysis two distinct clusters can 
be defined and statistically verified. The orange cluster shows the ADD-cluster (as defined by the statistical cluster analysis), the purple cluster shows the ADHD- 
cluster (as defined by the statistical cluster analysis). The regression line is fit to each of the estimated clusters showing a clear positive correlation. (B) Results 
of correlation analysis with the ADD/ADHD subgroups as defined by the results from the cluster analysis. Figures show mean correlations as a function of pretrial 
time sample (y-axes) and within-trial time sample (x-axes). Rectangular boxes display the time area used to calculate grand means, which were then used for 
statistical analyses. We applied a Fisher Z-transformation prior to the Pearson correlations prior to statistical analyses. Correlation coefficients (r) and Z-values are 
shown. The colour scale shows the strength of correlations. (For interpretation of the references to colour in this figure legend, the reader is referred to the web 
version of this article.) 
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analysis were based on the statistically estimated clusters of patients and 
not using the already available clinical information diagnosing a patient 
as ADD or ADHD. When referring to ADD and ADHD in the forthcoming 
we relate to the statistically derived ADD/ADHD-clusters and not to the 
clinical diagnosis: 

For ptTBA, we found a highly significant difference between the ADD 
cluster (5.87 ± 0.61 µV2) and the ADHD cluster (2.62 ± 0.80 µV2) (t(45) 
= 15.91; p < 0.001; d = 4.60). Regarding wtTBA, we only found a main 
effect of trial type (F(1,45) = 18.08; p < 0.001; ηp

2 = 0.287; Nogos: 2.88 
± 0.11 µV2; Gos: 2.45 ± 0.11 µV2), but no main effect of cluster (F(1,45) 
= 0.61; p = 0.438; ηp

2 = 0.013; ADD: 2.59 ± 0.15 µV2; ADHD: 2.75 ±
0.13 µV2) and no significant interaction effect (F(1,45) = 0.85; p =
0.363; ηp

2 = 0.018). Also, the correlations between ptTBA and wtTBA 
were tested again. The results are shown in Fig. 4B. All correlations were 
statistically significant. Specifically, there were positive correlations 
between ptTBA and wtTBA in Go trials (r = 0.597; p = 0.005) and Nogo 
trials (r = 0.645; p = 0.002) in the ADD cluster, as well as in Go trials (r 
= 0.631; p < 0.001) and Nogo trials (r = 0.424; p = 0.028) in the ADHD 
cluster. There were no significant differences in correlations regarding 
group-cluster, trial type or an interactive effect of both (all Fc ≤ 0.87, p 
≥ 0.357). 

In the last step, we examined how far the inter-relation between 
ptTBA and wtTBA affects behavioural performance in response inhibi-
tion (i.e. the rate of false alarms). Prior to computing these correlations, 
false alarm rates were Fisher’s Z-transformed, upon which Pearson 
correlations were computed. The results are summarized in Table 3. 

Since the control group did not show a significant correlation be-
tween ptTBA and wtTBA, co-variation between ptTBA-wtTBA correla-
tions and false alarm rates in the control group cannot be meaningfully 
interpreted. Therefore, this group was not considered further to examine 
the relevance of the ptTBA-wtTBA inter-relation for behavioural per-
formance. In the ADD group and the ADD cluster, showing better 
response inhibition performance than the ADHD group/cluster, no 
correlations were evident (see Table 3). In the ADHD group and the 
ADHD cluster, showing worst response inhibition performance, a 
stronger correlation between ptTBA and wtTBA in Nogo trials was 
correlated with a higher rate of false alarms (see Table 3). A scatterplot 
showing the correlation between the ptTBA/wtTBA correlation and rate 
of false alarms is given in supplemental Fig. 3. 

4. Discussion 

In this study, we investigated the interrelation of neural dynamics 
underlying pro-active control and inhibitory control processes in AD(H) 
D with special emphasis on differences between AD(H)D subtypes. We 
provide the first in-depth insights into the dynamics of pre-trial and 
within-trial periods in AD(H)D and its clinical relevance as a novel 
parameter which may be used to distinguish patients with ADHD and 
ADD from each other. Doing so, we use a previously published meth-
odological approach developed using a healthy adult sample in related 
but not identical experimental paradigm (Adelhöfer and Beste, 2020). 

The behavioural data revealed the typical response inhibition defi-
cits in AD(H)D, i.e. an increase in false alarms relative to healthy con-
trols (Kolodny et al., 2020; Metin et al., 2012; Pievsky and McGrath, 
2018), and worse response inhibition performance in the ADHD group 

than the ADD group (Bluschke et al., 2016b). The analysis of source- 
level theta band activity showed that theta power was stronger during 
trials requiring response inhibition than in those requiring response 
execution. This is also well in line with the literature (Adelhöfer et al., 
2019; Chmielewski et al., 2016; Hong et al., 2020; Nigbur et al., 2011; 
Yamanaka and Yamamoto, 2010; Zavala et al., 2018). We could show 
that different prefrontal cortical regions are associated with pro-active 
control theta dynamics (ptTBA) in healthy participants and patients 
with AD(H)D (see Table 2). The same was the case for theta dynamics 
underlying response execution and inhibition (wtTBA). Most important 
is the data on the dynamics between ptTBA and wtTBA associated with 
these functional neuroanatomical regions: 

There was no correlation (inter-relation) between ptTBA and wtTBA 
in controls, suggesting that theta band dynamics during response 
execution and inhibition are largely decoupled from pro-active control 
dynamics occurring beforehand in the same frequency band. The same 
was the case in patients with AD(H)D. However, the data analysis 
showed that there was not a homogenous distribution of the data in the 
scatterplot denoting the inter-relation of ptTBA and wtTBA. This was 
confirmed by a cluster analysis. The cluster analysis shows that there 
were two distinct clusters, which further analyses showed can be 
labelled as an ADHD-cluster and an ADD-cluster. When performing an-
alyses of the ptTBA and wtTBA inter-relation for these statistically 
derived clusters, the pattern of results changed (see Fig. 4). In both AD 
(H)D subtypes and for Go and Nogo trials, high ptTBA was associated 
with high wtTBA. This suggests that opposed to controls, theta band 
activity prior to the presentation of behaviourally relevant information 
(i.e. Go or Nogo stimuli) is strongly associated with neurophysiological 
processes occurring during behavioural control (i.e. response execution 
or inhibition) in an AD(H)D-subtype specific manner. This shows that in 
the case of AD(H)D-cluster, the neurophysiological processes during 
response inhibition and execution are less flexibly modulated and more 
dependent on the pre-existing level of neuronal activity. Importantly, 
the inter-relation (correlation) between ptTBA and wtTBA creates two 
distinct clusters that distinguish the ADD and the ADHD group very well. 
Thus, the inter-relation of pro-active control theta band activity and 
control-related theta band activity is a clinically useful metric to 
distinguish patients with ADD and ADHD. Further data analyses 
corroborated the robustness of this clustering since potential con-
founding factors like IQ, age or medication status did not allow for a 
similar clustering. Crucially, the obtained ADD and ADHD subtype 
clusters did also not differ regarding these variables (cf. Table 1). This 
suggests that the dynamics of pro-active and inhibitory control processes 
in the theta frequency band may provide a clinically relevant tool to 
substantiate the diagnostic categorization of AD(H)D subtypes, the 
validity of which has been critically discussed (Vahid et al., 2019; 
Willcutt et al., 2012). At present, the standard diagnostic procedure to 
distinguish AD(H)D subtypes is based on clinical interviews and ques-
tionnaires completed by different raters. The current results suggest that 
the analysis of neural dynamics underlying pro-active control and 
inhibitory control processes may prove useful for clinical diagnostic 
procedures in the future. Along these lines, it may in the future be 
interesting to further examine this using machine learning approaches 
(Itani et al., 2019; Müller et al., 2020; Vahid et al., 2019) and to 
investigate whether the dynamics between pro-active and inhibitory 
control may provide a metric for a reliable classification of AD(H)D 
subtypes on an individual level in clinical settings. 

For the obtained clustering, it is particularly the strong pre-trial theta 
activity that distinguishes patients with ADD from those with ADHD. 
Corroborating previous findings (Bluschke et al., 2016b), patients 
within the ADD-cluster committed fewer response inhibition errors than 
those within the ADHD-cluster. Although this may suggest that partic-
ularly the pre-trial theta band activity and hence pro-active control 
processes are important for successful response inhibition performance 
in AD(H)D subgroups, the pattern is actually more complex: The reason 
is that the control group showed the best response inhibition 

Table 3 
Correlation of mean pretrial-/within-trial correlations with false alarm rates.   

Corr(ptTBA, wtTBA) 
Group Go trials Nogo trials 

Control r ¼ 0.517***; p < 0.001 – 
ADD – – 
ADD cluster – – 
ADHD – r = 0.429*; p = 0.046 
ADHD cluster – r = 0.448**; p = 0.019 

pre-trial theta-band activity (ptTBA); within-trial theta-band activity (wtTBA) 
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performance while at the same time displaying weaker pre-trial theta 
band activity than the ADD-cluster. As also the ADHD-cluster did not 
differ from controls in pre-trial theta band activity (see Fig. 4), it cannot 
only be the strength of pro-active control-related theta band activity 
alone that affects performance. Rather, the inter-relation of ptTBA and 
wtTBA for response inhibition performance is important to consider. 
This is evidenced by the analyses presented in Table 3. In the ADD- 
cluster, the inter-relation between ptTBA and wtTBA was not associ-
ated with performance. It seems that it is the combination of these 
factors that affects response inhibition performance and differentiates 
between ADD-cluster and the ADHD-cluster. The stronger ptTBA and 
presumably stronger proactive control processes in the ADD-cluster 
explains the better inhibitory control performance compared to pa-
tients within the ADHD-cluster. A negative influence of the ptTBA- 
wtTBA correlation on response inhibition seems to occur especially 
when ptTBA and proactive control are low in the first place (i.e. in the 
ADHD group). This suggests that the strength of ptTBA may be most 
important for behavioural performance in response inhibition and that a 
high level of ptTBA can eliminate or compensate otherwise negative 
effects of a strong inter-relation of ptTBA and wtTBA on inhibitory 
control. 

However, why then does the control group show the best response 
inhibition performance even though ptTBA and wtTBA were not inter- 
related and ptTBA was as low as in the ADHD-cluster? The explana-
tion may lie in the different functional neuroanatomical regions that 
were associated with ptTBA in controls and AD(H)D patients. In the 
control group, ptTBA was associated with the right inferior frontal gyrus 
(rIFG, BA45), which is well-known to play a role in inhibitory control 
processes (Aron et al., 2004; Bari and Robbins, 2013). It appears that the 
relatively low rIFG theta activity in the pre-trial interval of controls is 
sufficient to provide the necessary level of inhibitory control. To the 
extent that inhibitory processes in the control group are “anticipated” in 
the pre-trial interval in the rIFG (an essential aspect of pro-active con-
trol), inhibitory activity during the trial is less crucial for good response 
inhibition performance. This may explain the lack of a correlation be-
tween ptTBA and wtTBA in controls who still were able to achieve good 
inhibition performance. Opposed to the control group, the ptTBA in 
patients with AD(H)D patients was associated with right middle frontal 
regions (BA10). This region, however, has not consistently been 
described to be part of the cortical response inhibition network (Bari and 
Robbins, 2013). Since patients within the ADHD-cluster seemingly 
involve a different brain region in the pre-trial interval that is less 
relevant for inhibitory control, the dynamics described above cannot 
develop as it is the in controls. It is possible that in addition to the 
complex effects of the factors “strength of ptTBA” and “inter-relation of 
ptTBA and wtTBA”, the functional neuroanatomical region active during 
ptTBA is a third important factor underlying the ability to inhibit pre- 
potent responses. Likely, it is the complex interplay of these factors 
underlying inhibitory control and its modulation in AD(H)D subtypes. 
This multi-factorial pattern is captured by AD(H)D subtype symptom 
clusters. 

At this point, it has to be acknowledged that the captured pattern was 
reflected using a well-motivated, yet specific methodological approach 
(cf. introduction). One can think about different methodological ap-
proaches, e.g. using entropy-based measures, or other more complex 
measures of oscillatory dynamics such as cross-frequency coupling 
(Cohen, 2014b). The latter may be relevant since also beta frequency 
oscillations have been shown to play a role in response inhibition and 
the combination of theta and beta frequency oscillatory regimes is tar-
geted in neurofeedback treatments in AD(H)D (Bluschke et al., 2016c; 
Enriquez-Geppert et al., 2019). Furthermore, source reconstruction 
points to multiple distinct source activations, for example elevated 
ptTBA in the precuneus in the AD(H)D group (see Fig. 2), which may 
suggest that also differences in top-down attentional allocation (Shom-
stein, 2012) contribute to the pattern of effects. Importantly, we do not 
state that the analyzed regions (see Table 2) in this work are solely 

responsible for the observed sub-diagnostic distinction. While we 
restricted our analyses to the location of maximum activation (located in 
frontal regions) in order to rely our interpretation on the strongest re-
sults, future studies might investigate possible network effects spanning 
multiple areas. This could further help enhance the separability of ADD 
and ADHD based on neurophysiological indices. A possible methodo-
logical limitation lies within varying trial numbers included in the an-
alyses between diagnostic groups. Although care has been taken to 
provide sufficient numbers of trials for each condition and participant 
for statistical analysis, it cannot be completely ruled out that conditions 
and groups differ with regards to outlier sensitivity and/or signal-to- 
noise ratio (Cohen, 2017). This possible limitation necessarily results 
from a trade-off between data quantity (as reflected in the duration of 
the experimental session) and confounding time-related factors such as 
increasing fatigue and/or decreasing focus. Still, distinct sources were 
identified via beamforming theta oscillations, which were shown to be 
task relevant theoretically (see Introduction) and in this sample (Fig. 2). 
The observation that sources differ between clustered AD(H)D sub-
groups might gain clinical relevance with more investigations of pre- 
trial activity in AD(H)D. It is not yet clear why patients do not recruit 
precisely those anatomical regions that have been previously reported to 
be relevant for response inhibition in healthy controls such as rIFG. 
However, this study provides a first step for an understanding of this 
issue, by systematically comparing theta activity in pre-trial and within- 
trial phases. To obtain a high signal-to-noise ratio in the data, only 
correct trials were taken into account. The results may therefore, also be 
interpreted that patients within the estimated AD(H)D-clusters arrive at 
the correct behavioral responses in a different way. Future studies may 
further examine the investigated pre-trial/within-trial dynamics when 
response inhibition was not successful. 

In summary, the study reveals a novel facet of neural mechanisms 
underlying AD(H)D subtype-specific differences during inhibitory con-
trol and impulsive behaviour. We show that the dynamics between pre- 
trial (pro-active) and within-trial (inhibition-related) control processes, 
as reflected by theta frequency oscillations, allows to cluster AD(H)D 
subtypes. This clustering seems to be robust and not affected by various 
clinically relevant parameters. We show that response inhibition, and its 
differential modulation in AD(H)D subtypes, depends on the complex 
interplay of (at least) three factors: (i) strength of pro-active control- 
related theta-band activity, (ii) the inter-relation of pro-active control 
and inhibition-relation theta band activity and (iii) the functional 
neuroanatomical region active during theta-related pro-active control 
processes. The results reveal novel neurophysiological facets of AD(H)D. 
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