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Abstract 

Bayesian network modeling (BN modeling, or BNM) is an interpretable machine learning 

method for constructing probabilistic graphical models from the data. In recent years, it has been 

extensively applied to diverse types of biomedical datasets. Concurrently, our ability to perform 

long-timescale molecular dynamics (MD) simulations on proteins and other materials has 

increased exponentially. However, the analysis of MD simulation trajectories has not been data-

driven but rather dependent on the user’s prior knowledge of the systems, thus limiting the scope 

and utility of the MD simulations. Recently, we pioneered using BNM for analyzing the MD 
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trajectories of protein complexes. The resulting BN models yield novel fully data-driven insights 

into the functional importance of the amino acid residues that modulate proteins’ function. In this 

report, we describe the BaNDyT software package that implements the BNM specifically attuned 

to the MD simulation trajectories data. We believe that BaNDyT is the first software package to 

include specialized and advanced features for analyzing MD simulation trajectories using a 

probabilistic graphical network model. We describe here the software's uses, the methods 

associated with it, and a comprehensive Python interface to the underlying generalist BNM code. 

This provides a powerful and versatile mechanism for users to control the workflow. As an 

application example, we have utilized this methodology and associated software to study how 

membrane proteins, specifically the G protein-coupled receptors, selectively couple to G 

proteins. The software can be used for analyzing MD trajectories of any protein as well as 

polymeric materials. 
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Introduction 

The dynamics of proteins play a critical role in deciphering their function which in turn is 

important for designing drugs targeting proteins. Molecular dynamics (MD) simulations are a 

widely used toolbox to simulate and understand the dynamics of proteins and their complexes 1–

5. In combination with experimental data from NMR, DEER, and other spectroscopic methods 

MD simulations provide a detailed atomistic-level view of the protein dynamics and their 

function 6–22. There has been exponential growth in the feasibility of long-timescale MD 

simulations of proteins and protein complexes that provide rich information on their dynamic 

properties. At the same time, there is a dire need to shift the usual paradigm of structural 

bioinformatics from studying single structures to analyzing conformational ensembles. 

MD simulation trajectories provide an abundance of high-dimensional data, which makes it a 

perfect candidate for network-based secondary analysis. Currently, there are multiple network-

centric approaches to the analysis of MD simulations data. They can be divided into two main 

categories: (i) physical proximity based – protein is represented as a graph with residues being 

nodes, and edges indicating physical interaction between residues with their weight proportional 

to correlation coefficients extracted from MD simulations 23–27; or (ii) interaction energy based – 

protein residues make the network’s nodes and edge weights are based on interaction energies 

between residues, where strong attractive interactions receive higher weights, and weak 

interactions lead to disconnection 28–33.  These methods are focused on the residues as variables, 

and there are currently no network-centric tools that represent residue pairs as network nodes for 

inferring and quantifying dependencies between inter-residue distances from dynamics data. The 

existing methodology either simply concentrates on the residues (not residue pairs) or uses 

dimensionality reduction techniques (primarily principal component analysis, PCA) to analyze 
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the residue pairs data 34–36. The latter approach suffers from the inherently low interpretability of 

PCA, and from the related issue of its inability to separate induced and direct (non-transitive) 

dependencies. Moreover, there is currently no method based on probabilistic relationships 

between residues/residue contact pairs that can infer dynamic dependencies in a more data-

driven, unbiased manner, regardless of the residues’ spatial proximity. This gap highlights the 

need for a framework that can go beyond physical proximity and correlations, enabling a deeper 

understanding of residue-residue relationships within the broader context of protein dynamics. 

Therefore, we reasoned that Bayesian Network (BN) modeling (BNM) was a natural fit with the 

MD simulation data, due to the capacity of BNs to infer nonlinear non-transitive dependencies 

(suggesting directional causality) among different parts of the protein by analyzing dynamical 

trends. Recently, we developed a workflow to apply BNM to analyze MD simulation trajectories 

of large protein complexes, namely the G protein-coupled receptors (GPCRs) coupled to trimeric 

G proteins 37. Applying such data-driven interpretable network models led to the identification of 

the previously unknown important GPCR:G protein interface residue pairs that contribute 

significantly to G protein coupling strength and to their selectivity/promiscuity 37. 

Since BNM inherently generalizes to different proteins and other materials where MD 

simulations are used, in this report we describe the BaNDyT software package that implements 

the specialized BNM application to MD simulation trajectories, in general. We believe that this 

software represents the first comprehensive BNM solution for MD simulations, including 

advanced features not available with other network models. We include a pragmatic description 

of how to use the software, and how to interpret the results.  

 

Methodology 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 8, 2024. ; https://doi.org/10.1101/2024.11.06.622318doi: bioRxiv preprint 

https://doi.org/10.1101/2024.11.06.622318
http://creativecommons.org/licenses/by-nc/4.0/


 
 

5 

 

BaNDyT workflow 

 

Figure 1. Workflow used in BaNDyT. Step 1 involves performing MD simulations to obtain 

dynamics trajectories. Step 2 includes extracting data from MD simulation trajectories on single 

residues and/or pairwise residue-residue interactions as an input for BN analysis. Step 3 uses 

BNOmics (highly scalable generalist BN modeling software previously developed by us 38,39) to 

construct BN model(s). Step 4 involves visualizing, interpreting, and quantifying the network 

properties from the BN graph(s) to identify key residues and residue interactions. (BaNDyT can 

be obtained at GitHub: https://github.com/bandyt-group/bandyt) 

Step 1: MD Simulations of protein of interest 

All-atom molecular dynamics (MD) simulations or any type of enhanced sampling or coarse 

grain simulations can be performed using standard protocols to generate trajectories that capture 

the relevant motions and conformational changes 40–44. Since the protocols for performing MD 

simulations vary with the systems simulated, we leave it to the users to formulate their protocols 
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for performing the simulations. To obtain a stable BN downstream, the user should test for the 

convergence of the MD simulation trajectories. The users could perform multiple MD runs with 

different starting velocities to ensure robust statistical sampling of the conformational space that 

would subsequently yield a stable BN. The number of snapshots stored in each trajectory will 

affect the network model’s robustness – based on our experience, to achieve favorable 

dimensionality for BNM (given the likely typical protein sizes), we suggest that the user stores 

snapshots at least every 100ns.  

Step 2: Generating input variable values for Bayesian Network Modeling  

Properties describing each residue in a protein for every MD simulation snapshot can be used 

as input variables for deriving BN models. Examples of such residue-based properties include 

but are not limited to (i) interaction of each residue with the rest of the protein, (ii) packing of 

each residue with its neighboring residues 45, (iii) flexibility of each residue, (iv) torsion angles 

of each residue, or any other such residue-based attributes.  

Properties describing the interaction between pairs of residues in every MD snapshot can also 

be given as input variables to BNM. This is unique to BNM and has not been done before with 

other network models. Such pairwise residue properties could be the residue contacts or 

interaction energies between pairs of residues calculated for each MD snapshot. Parameters such 

as contact frequency, interaction strength, and changes in contacts over time are analyzed to 

understand the network of interactions within the protein. Pairwise residue properties can be 

calculated between residues within a protein or in the interface between proteins forming a 

complex.  
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Both types of data can be obtained using standard MD analysis tools readily available 40–44,46–

48. Such input data combined with BN analysis yields a deeper understanding of the 

dependencies between inter- or intra-protein interactions.  

Step 3: Constructing Bayesian Networks from Molecular Dynamics data with BaNDyT 

The data obtained from the two approaches in Step 2 is then used to construct a BN with the 

BNOmics software, previously developed by us for highly scalable multi-scale BN modeling 

38,39. Briefly, given a set of input variables, BN modeling generates a DAG (Directed Acyclic 

Graph) with these variables as nodes connected by the edges that are direct probabilistic 

dependencies between the variables. BN modeling is an interpretable unsupervised machine 

learning network-centered methodology, and the residue-based or contact-based properties input 

variables correspond to the nodes in the network model. Edge strengths indicate probabilistic 

dependency strengths that can be estimated via a variety of scoring criteria (BNOmics 

implements the minimum uncertainty (MU) criterion that is based on the resolution limit as well 

as the customary AIC and MDL/BIC). The sum of all the edge strengths (evaluated on a 

universal 0-1 scale when using MU 38) of a node provides information on its dependencies on 

adjacent nodes, in the probabilistic space, irrespective of the nodes’ structural location. The 

nodes that are connected to a given node in the BN can be structurally local or non-local 

(allosteric). Such information on allosteric dependencies (i.e., when the nodes are adjacent in the 

probabilistic space/BN but remote in the physical space) is valuable in determining the allosteric 

communication mechanism in proteins 17,18,49–52. The sum of edge strengths of each node is also 

known as “node strength,” or “weighted degree”.  It should be re-emphasized here that, in 

contrast with most other network-centered methods, BN modeling aims to filter out spurious 

dependencies induced by multicollinearities.  
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Performing Bayesian Network Modeling of Molecular Dynamic Trajectories data with 

BaNDyT 

Listing 1 shows the script that is used to run BaNDyT. The following steps are necessary to 

obtain the BN graph: 

import sys 
sys.path.append('path/to/BaNDyT/folder') 
import bandyt 
 
# Read input file 
dt = bandyt.read_input_file('input.csv') 
 
# Perform search 
srch = bandyt.search(dt) 
srch.restarts(nrestarts=50) 
srch.dot(path='output') 
 
# Convert to igraph format and get graph properties 
bandyt.convert_bn_to_igraph(srch, fout="output.pickle", format="pickle") 
bandyt.getGraphProp('output.pickle', 'output') 

 

Listing 1. Example of BaNDyT workflow. 

Data Loading and Discretization: The input data, derived from MD simulation trajectories, is 

loaded using the bandyt.read_input_file function. In this function, the data containing the 

continuous variables (for example, residue-centric energy of interaction) is discretized into 

appropriate bins. By default, BaNDyT utilizes a maximum entropy binning algorithm for 

discretization 53. This approach ensures that each bin contains a roughly equal number of data 

points, while also maintaining as much randomness as possible in the allocation of data to bins. 

By maximizing entropy, this method avoids making strong assumptions about the underlying 

data distribution and ensures that the bins reflect the most uniform possible partition of the data. 

It is particularly useful in situations where the data distribution is unknown or complex, as it 

leads to more balanced and informative bins. As the number of observable rare events grows 
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with arity in the case of the recommended scoring function MU, we set the default number of 

bins as eight, to capture rare events that are still significant. 

BN search (model selection): The discretized data is then used to search for the optimal BN 

topology using the bandyt.search function. There are three scoring functions available in 

BaNDyT: mdla (based on AIC 54), mdlb (based on MDL/BIC 55), and mu (based on MU 38). We 

recommend using MU (bandyt.mu) as the scoring function/criterion, due to (i) its superior 

performance in avoiding false positives (i.e., if the edge, no matter how weak, is in the resulting 

network, it is highly likely to reflect a real direct dependency) and (ii) edge strengths being 

estimated on a universal 0-1 scale, which makes downstream comparative analyses possible.  

To optimize the number of iterations needed to attain the satisfactory convergence of the BN 

model selection process, we performed BN reconstruction on proteins of different sizes (Fig. 2A, 

Table S1). We performed MD simulations on each of these proteins, choosing proteins that vary 

in sizes from 70 to 1091 residues. We used BaNDyT with MU to generate BN models. We 

calculated the weighted Hamming distance 56 between the graphs to assess the improvement in 

the network topologies after each restart as compared to the original model to evaluate the 

similarity. For all the eight proteins of varied sizes considered here, the models appear to show 

significant improvements up to 40 restarts, after which the changes in topology are minimal 

(average Hamming distance per node is less than 0.01, Fig. 3B). Therefore, to ensure robustness 

and correct BN model selection, we recommend repeating the search process with at least 50 

restarts (Fig. 2A, B; Fig. S1A).  
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Figure 2. A. Performance and accuracy of Bayesian Network reconstructions for various 

protein systems. Average Hamming distances per node for BN reconstructions of various 

proteins with the trajectory length of 5000 frames. Reconstruction for each protein system was 

replicated 50 times with 100 restarts. The dashed red line indicates the recommended minimal 

number of restarts. B. Average Hamming distances per node for BN reconstructions of A2A 

receptor. C. Computing time of BN models for protein systems of different sizes (on a high-

performance cluster with 10G memory and 4 nodes x NVIDIA A100 GPU with 2 x Intel(R) 

Xeon(R) Platinum 8368 CPU).  

Visualizing the BN and Scoring the BN Given the Data: The BN can be visualized using the 

dot method or using network visualization software such as Cytoscape 57, which generates a 
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graphical representation of the network as shown in Fig. 3A. The BN score, obtained with the 

score_net method, provides a quantitative measure of the network's fit to the data. 

 

Figure 3. Bayesian Network graph as a main BaNDyT output. A. Visual representation of 

BN graph. The size and color of the node is proportional to the weighted degree of the nodes. 

The thickness of the arrow is proportionate to the edge weight. B. Formula for computing the 

weighted degree Wd. 

The main BaNDyT output is a BN model which can be represented as a DAG, such as shown 

in Fig.3A. The graph depicts the probabilistic dependencies between the variables (residues or 

residue contacts) within the protein. Nodes in the graph represent individual variables, while 

edges represent the direct (non-transitive, non-spurious) dependencies between them. This 

representation allows us to infer how changes in one region of the protein might influence other 

local or distant regions, facilitating the identification of key residues and interactions that are 

critical for the protein function. As a measure of variable importance, local context network 
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properties associated with nodes (such as betweenness, closeness, etc.), can be extracted. In our 

case, we have observed that weighted degree shows a strong correlation with experimental data 

to provide insight into the functional importance of residues and protein-protein interactions 37. 

The weighted degree of node � (Fig. 3B) can be computed as 

 

����� � � ���, 
�
������

 

 

where Γ���  is the set of nodes in the immediate neighbor of the node �; �(�,
) denotes the 

weight of the edge between node � and node 
. The weights reflect the strength or significance 

of the probabilistic dependencies between the nodes, providing insight into the relative 

importance of these interactions. In the context of the BNM, the weighted degree of the node 

helps in identifying how central and “influential” the node is within the local network context. A 

higher weighted degree indicates that the node has stronger or more significant (or numerous) 

connections with its neighboring nodes, suggesting that it plays a more central role in 

maintaining the structure and function of the protein. 

Step 4: Interpretation of BN Graphs 

The final step involves the interpretation of the BN graphs to gain mechanistic insight into the 

protein dynamics. Here, we aim to translate back from the probabilistic space to the physical 

space. 

• Residue Importance: In the single residue approach, the network can be analyzed to 

determine the significance of individual residues in the overall structure and function. 

This is done by evaluating metrics such as weighted degree (Fig. 3B). 
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• Contact Importance: Similarly, for the pairwise approach, the importance of residue-

residue contacts is assessed based on the BN weighted degree. This involves 

identifying key interactions that are critical for the stability, cooperativity, and function 

of protein. 

• Local and Allosteric Network Interactions: The BN graph provides information (direct 

node adjacency) on both local interactions (close spatial proximity) and allosteric 

interactions (distant residues influencing each other). This probabilistic perspective 

helps in understanding how local changes can propagate through the protein to affect 

distant sites, shedding light on mechanisms of allosteric regulation. 

Example of single residue-based analysis 

Here, we will use the histamine H1 receptor as an example. MD simulation was started from 

PDB ID 7DFL 58, which includes the receptor itself and its coupling partner, trimeric Gq protein. 

We performed multiple runs of all-atom MD simulations in explicit 1-palmitoyl-2-oleoyl-sn-

glycero-3-phosphocholine (POPC) bilayer with cholesterol with a total simulation time of 5µs 

(see Methods for more details on MD simulation setup). The main input data for the single 

residue-based approach is the interaction energy for each protein residue (Fig. 4A, Table S2). To 

obtain this data, we have used gmx energy module from GROMACS2022 version 59 to calculate 

the energy of 273 residues of H1 receptor. By leveraging this input, a BN was constructed to 

model the probabilistic dependencies among the residues within the receptor, using previously 

described parameters (8 bins for discretization of input data, 50 restarts for network convergence; 

Data S1-2). This network effectively captures intricate interactions and allows for a 

comprehensive analysis of the residue relationships and their potential impact on receptor 

function. Upon obtaining the BN graph, we calculated the weighted degree to rank the residues 
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based on their importance within the network (Fig. 4B, C; Table S3). The top 25 percentile of 

residues, as determined by their weighted degree, are identified as the most important. These key 

residues were further analyzed to categorize the edges in the network into neighboring 

interactions and allosteric interactions, based on structural information. Notably, residues within 

the ligand-binding site were found to have direct connections (in the probabilistic/BN space) 

with the G protein binding interface and mediator regions, underscoring that minor changes in 

one location can propagate to distant regions, significantly impacting the receptor’s function 

(Fig. 4B, C). 

One of the most important aspects of BN graph analysis is the ability to analyze a community 

of residues that have established probabilistic relationships. Fig. 4D, E presents an example of 

the Markov neighborhood (an immediate-adjacency subset/simplification of the Markov blanket) 

of an important node, residue Q171 in extracellular loop 2. Markov neighborhood of a node 

refers to the set of all its adjacent nodes (neighbors); the state of the given node is conditionally 

independent of all other nodes in the graph, given the states of the nodes in its Markov blanket. 

As seen from the network and structural representation (Fig. 4C, D), the network relationships of 

this residue can be separated into neighboring and allosteric. Although this residue is not part of 

the immediate ligand pocket, it evidently influences other functionally important residues, such 

as 6.36 (G protein binding residue) and 4.56 (ligand binding site residue, mutations that affect 

protein function 60). Thus, the BN model provides valuable insights into how specific residues, 

even the ones that are not located in the functionally important region, can play pivotal roles in 

the receptor's functionality through their influence on the network of interactions. 
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Figure 4. Bayesian Network modeling and structural analysis of H1 receptor. A. BN 

modeling of H1 receptor network: interaction energies of each residue in H1R were used with 

BaNDyT to obtain the BN graph. B. Structural representation of subnetwork of top 25 percentile 

of nodes based on weighted degree (in C). Ligand-binding site residues are colored green, G 
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protein binding interface residues - blue. Red dash lines represent allosteric probabilistic 

relationships, black – neighboring relationships. C. BN subnetwork of the most important 

residues (top 25 percentile) based on the weighted degree. Green nodes correspond to ligand-

binding site residues, blue nodes – G protein binding interface residues. Red arrows represent 

allosteric relationships, black – neighboring relationships. D. The Markov neighborhood of 

residue Q171. Size is proportional to weighted degree; arrow thickness is proportional to edge 

weight. Red arrows represent allosteric relationships, black – neighboring relationships. Green 

nodes correspond to ligand-binding site residues, blue nodes – G protein binding interface 

residues. E. Structural representation of the network depicted in D. 

Example of pairwise contact-based analysis 

Here, we will use the muscarinic receptor 1 (M1) coupled to the Gq protein as an example. 

Similarly to H1 receptor, we have performed all-atom MD simulations of GPCR:G protein 

complex (PDB ID: 6OIJ 61) in POPC membrane according to the protocol, as described in 

Methods. To investigate the protein-protein residue contacts within this complex, we utilized 

GetContacts 62, which provided a detailed map of these interactions (Fig. 5A). GetContacts-

generated output was converted into a binary matrix of residue contacts fingerprints, where 1 

represents presence of the contacts in the trajectory frame, and 0 represents absence. Unlike 

conventional methods, we did not apply any frequency cutoffs, as BN analysis is capable of 

capturing significant rare events (infrequent contacts) from transient interactions (recall that the 

MU criterion is optimized for guarding against false positives). This resulted in the dataset of 

427 residue-residue contacts with 25,000 trajectory frames as an input for BaNDyT (Table S4). 

BaNDyT was run using default parameters of 50 restarts, while discretization was not needed 
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due to data already being binary. The primary outcome of our BN analysis was the BN graph, 

illustrating the direct dependencies between variables—in this case, the residue contacts (Fig. 

5B; Data S3-4). The weighted degree of each node was used as a measure of importance within 

the network, reflecting the cooperativity of protein-protein interactions observed throughout the 

MD simulation trajectory (Table S5). 

We identified the top 25 percentile of nodes with the highest weighted degrees as the most 

cooperative interactions, which were subsequently analyzed in the context of protein biology 

(Fig. 5B, Table S5). This approach has been previously applied to the analysis of six different 

GPCR protein complexes, revealing significant differences in how various G protein coupling 

types contribute to the cooperativity of these interactions and highlighting the prevalence of 

certain types of contacts across different coupling types 37. 

Recall that the BN graph connects variables in the probabilistic space without considering their 

structural positions, meaning that contacts that are not in close physical proximity can still be 

directly connected within the network. This means that even distant contacts may influence each 

other during the MD trajectory. To further investigate these interactions, we categorized BN 

dependencies into two groups: neighboring dependencies, where the Cα atoms of the GPCR and 

Gα subunit residues in two contacts are within 10Å of each other, and allosteric dependencies, 

where these atoms are more than 10Å apart (Fig. 5C). 

Both allosteric and neighboring dependencies contribute to the importance of a node (contact) 

within the network. For example, in Fig. 5D, E, we explore the Markov neighborhood of the 

most cooperative contact in the M1 protein complex, 5.70_G.H4.20. While this contact is 

positioned in the core region of the G protein, it has multiple interactions with the contacts 

formed by H5 helix in the network graph (Fig. 5E). Given the established importance of H5 helix 
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interactions in G protein coupling, disruptions to contact 5.70_G.H4.20 may have profound 

effects on the dynamics of dependent H5-helix contacts, potentially compromising GPCR-G 

protein interaction. Our prior research highlights the core's heightened influence in Gs proteins 

over Gq proteins 37. As the M1 complex comprises a Gq protein chimera with a Gs protein core 

61, this configuration could manifest Gs-like characteristics in the interplay between the core and 

the H5 tip. 
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Figure 5. Bayesian Network modeling and structural analysis of M1:Gq protein residue 

contact network. A. BN modeling of M1:Gq protein contact network: contact fingerprints were 

used with BaNDyT to obtain the BN graph. B. BN graph of M1:Gq protein residue contact 

network. Size and color intensity are proportional to the weighted degree of the node, thickness 

of the arrows is proportional to the edge strength. C. Schematic representation of neighboring 

and allosteric dependencies. Nodes (GPCR:G protein residue contacts) are represented by oval 

shapes. The pairwise distance between nodes is marked as a black dashed line. A node 

dependency is considered as neighboring if at least one of the distances (d1, d2, d3, d4) is less than 

10Å and allosteric if all distances (d1 to d4) are larger than 10Å. D. Structural representation of 

nodes (contacts) that are connected to node 5.70_G.H4.20 in the BN graph with edge weight 

higher than 0.01. M1 is represented as grey cartoon, Gq protein – as blue cartoon. Cα atoms of 

residues involved in the contacts are shown in spheres, black dash lines represent contacts. Red 

solid line shows allosteric dependency, black solid line – neighboring. E. The Markov 

neighborhood of contact 5.70_G.H4.09. The nodes are grouped by their location in the G protein 

structure: N terminus, core, or H5 helix. Node color is proportional to weighted degree; arrow 

thickness is proportional to edge strength. Red arrows represent allosteric relationships, black – 

neighboring relationships.  

Concluding remarks 

Here, we have presented BaNDyT, a novel Bayesian Network Modeling software specifically 

designed for the analysis of MD simulation trajectories. By leveraging the power of BNM, 

BaNDyT provides an intrinsically interpretable, scalable and fully data-driven unsupervised 

machine learning approach to uncovering functional relationships between residues and residue 

pairs in proteins, going beyond traditional MD analysis methods. Our approach addresses several 
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limitations in the current network-based methodologies, such as their reliance on residue-centric 

variables and the surfeit of spurious dependencies. With the ability to capture both local and 

allosteric dependencies, BaNDyT provides a comprehensive framework for analyzing the 

dynamic interplay within proteins and their complexes, as demonstrated through its application 

to GPCRs and their selective coupling to G proteins. Furthermore, BaNDyT’s versatile Python 

interface makes it a robust tool for the broader scientific community to explore MD simulation 

data across various systems, including polymeric materials and other complex biomolecular 

structures. The resulting Bayesian networks offer new insights into key residues and interactions 

that are critical for protein stability, function, and allosteric regulation, paving the way for more 

targeted and effective therapeutic interventions. 

Methods 

Preparation of Protein Structures for MD simulations 

All protein and protein complexes were prepared for MD simulations using the corresponding 

experimental structures: A2AR:Gs protein complex – 6GDG63, H1R-Gq protein complex – 

7DFL58, M1R-Gq protein complex - 6OIJ61, SGF29 – 3ME964, ITGV – 3IJE65, RORgamma – 

4WLB66, PKC – 3IW467, GNAI2 - 6CRK68, RAN - 2MMC69. Mutations in structures were 

reverted to their wild-type residues using Maestro (Schrödinger Release 2020-1: Maestro, 

Schrödinger, LLC, New York, 2020). Ligands were parameterized using ParaChem 

(https://cgenff.umaryland.edu). Missing side chains and loops (fewer than 5 residues absent) 

were modeled into the 3D structures proteins. Residues within 5 Å of mutation sites were 

minimized using MacroModel, with position restraints applied to all backbone atoms. Protein 

termini were capped with neutral acetyl and methylamide groups, and histidine protonation states 

were assigned via the Maestro protein preparation wizard. In case of A2AR and H1, receptors 
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were embedded into an explicit POPC bilayer membrane using the PPM 2.0 function from the 

Orientation of Proteins in Membranes (OPM) tool 70, and hydrated with TIP3P water containing 

0.15 M NaCl using CHARMM-GUI 71,72. The final system dimensions were approximately 120 

Å × 120 Å × 170 Å, and all systems were characterized using the CHARMM36m force field 73. 

MD Simulations for Proteins and Protein complexes 

All molecular dynamics simulations were conducted using the GROMACS 2019 48 package 

with a 2 fs integration timestep. The prepared systems underwent energy minimization with 

position restraints of 10 kcal/mol·Å² applied to the heavy atoms of the proteins, ligand, and lipids 

if present. A 1-ns heating phase followed, gradually raising the temperature from 0 K to 310 K 

under the NVT ensemble with the Nosé-Hoover thermostat. This was followed by equilibration 

in the NPT ensemble, where the initial 1-ns run retained the 10 kcal/mol·Å² restraints, which 

were then reduced incrementally (from 10 to 5, and finally to 1 kcal/mol·Å²) in 5-ns steps. The 

final equilibration phase was a 50-ns simulation without position restraints. The last snapshot of 

this equilibration served as the starting point for five production runs, each 1 μs in length, 

initiated with randomly generated velocities. The pressure was controlled at 1 bar using the 

Parrinello-Rahman method 74. Nonbonded interactions were calculated with a 12 Å cutoff, and 

long-range interactions were handled using the Particle Mesh Ewald (PME) method 75. The 

LINCS algorithm constrained all bonds and angles of water molecules. 

Calculation of Residue Interaction Energy 

Ensemble trajectories were used to analyze interaction energies between protein residues. 

Interaction energies for each residue with the rest of the protein were calculated using the 

GROMACS "energy" tool 48,59. The total nonbonded interaction energy, comprising short-range 
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(within 12 Å) coulombic and van der Waals forces, was extracted from the energy log file and 

summed to obtain the overall nonbonded interaction energy.  

Calculating Fingerprints of Pairwise Interactions Between M1R and Gαq Protein 

Pairwise residue contacts between M1R and Gq protein were analyzed using the Python script 

library "GetContacts" 62 (https://www.github.com/getcontacts). This tool was employed to 

identify different types of interactions, including salt bridges (cutoff < 4.0 Å), hydrogen bonds 

(cutoff < 3.5 Å with an angle < 70°), van der Waals contacts (difference < 2 Å), π-stacking 

interactions (distance < 7.0 Å with an angle < 30° between aromatic planes), and cation-π 

interactions (distance < 6.0 Å with an angle < 60°). The analysis was conducted over the 5μs 

trajectory, excluding lipids, water and ions. The atom selection groups were aligned with the 

relevant residues from both the GPCR and the G protein α-subunit. Each residue was mapped to 

its corresponding generic residue number using BW numbering for the GPCR and Common G 

protein numbering for G proteins. Transmembrane helix ends were adjusted using BW 

numbering. Custom Python scripts were used for one-hot encoding, generating binary contact 

fingerprints for each simulation frame, where "1" indicates a contact and "0" represents its 

absence. 

Supplementary Material 

A Python-based Jupyter Notebook that contains a tutorial for BaNDyT is provided in the 

supplementary material and can be accessed at https://github.com/bandyt-group/bandyt-tutorial.  

Data and Software Availability 

BaNDyT is available on GitHub at: https://github.com/bandyt-group/bandyt. A demo with 

instructions on how to use the software is available on GitHub at: https://github.com/bandyt-

group/bandyt-tutorial. An XLSX file containing interaction energy data and a CSV file with a 
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residue-residue contact matrix, both derived from molecular dynamics simulations and used as 

inputs for the BaNDyT analysis, are provided in the Supplementary Information (SI). Outputs of 

BaNDyT for showcases are provided as CSV (network properties), GRAPHML and PICKLE 

files (graphs) in the SI. Full simulation data will be provided by the authors upon request.  
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