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Abstract: As a major food crop, rice (Oryza sativa) is produced and consumed by nearly 90% of the
population in Asia with less than 9% produced outside Asia. Hence, reports on large scale grain
losses were alarming and resulted in a heightened awareness on the importance of rice plants’ health
and increased interest against phytopathogens in rice. To serve this interest, this review will provide a
summary on bacterial rice pathogens, which can potentially be controlled by plant growth-promoting
bacteria (PGPB). Additionally, this review highlights PGPB-mediated functional traits, including
biocontrol of bacterial rice pathogens and enhancement of rice plant’s growth. Currently, a plethora
of recent studies address the use of PGPB to combat bacterial rice pathogens in an attempt to replace
existing methods of chemical fertilizers and pesticides that often lead to environmental pollutions.
As a tool to combat bacterial rice pathogens, PGPB presented itself as a promising alternative in
improving rice plants’ health and simultaneously controlling bacterial rice pathogens in vitro and in
the field/greenhouse studies. PGPB, such as Bacillus, Pseudomonas, Enterobacter, Streptomyces, are now
very well-known. Applications of PGPB as bioformulations are found to be effective in improving
rice productivity and provide an eco-friendly alternative to agroecosystems.

Keywords: Oryza sativa; bacterial rice pathogens; plant growth-promoting bacteria; biocontrol
agents; bioformulations

1. Introduction

Rice (Oryza sativa) is a staple food in Asia and parts of African countries. Over 90% of
the world’s rice is produced in the Asian region and consumed as the main food source.
With an ever-increasing human population, it is challenging to ensure food security for the
general population. To counter the demand, rice production needs to be increased to fulfill
this need [1]. However, throughout the growing season, reduction in rice yields has been
detected and are caused by a variety of phytopathogens including bacteria. Rice diseases
caused by bacteria are the main constraint towards sustainable productivity of rice [2]. Up
until now, extensive work has been carried out on the management of bacterial diseases
of rice caused by bacterial species belonging to the genus Xanthomonas [3–5]. With an
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awareness to reduce chemical usage to decrease the proliferation of pathogenic microbes,
biocontrol is a promising strategy to combat phytopathogens [6].

In plant rhizosphere, plant growth-promoting bacteria (PGPB) are indigenous. PGPB
display beneficial effects on their host plant and play a major role in the biocontrol of
phytopathogens [7]. With rice, diverse types of bacterial genera, including Pseudomonas,
Bacillus, Enterobacter, Alcaligenes, Arthrobacter, Azospirillum, Azotobacter, Burkholderia, Kleb-
siella, Rhizobium, and Serratia, have all been potentially considered as PGPB as characterized
in vitro [8]. Characterization of PGPB is based on their ability to stimulate plant growth,
which involves multiple mechanisms, including direct and indirect mechanisms [9]. Direct
mechanisms involve nitrogen fixation, mineral (e.g., phosphorus and iron) solubiliza-
tion, siderophore production, and phytohormone production (e.g., auxins, cytokinins,
gibberellins, and ethylene). Meanwhile, indirect mechanisms are mainly due to the bio-
control activities of PGPB in responding to the biotic stress by producing antibiotics. In
addition, PGPB also have a role in the management of abiotic stresses, such as salinity
and drought [10]. Thus, to enhance rice productivity, as well as for biocontrol against
phytopathogens, the usage of PGPB is needed.

Applications of PGPB on rice have shown notable successes. A plethora of PGPB
from the genera Bacillus [11], Pseudomonas [12], Enterobacter [13], and Streptomyces [14]
were reported to give positive effects on rice plant’s health and growth. Bacterial species,
such as Pseudomonas fluorescens [15,16], and a bacterial consortium [17] have shown their
applicability to enhance rice yields in a form of bioformulations. Studies indicated that
PGPB can act as bioinoculants as they promote plant growth, health, and yield [18–20].
Currently, PGPB also have been found acting against bacterial rice pathogens [21–23].
Hence, PGPB inoculation is emerging as an effective method to combat bacterial rice
pathogens for enhancing rice production through eco-friendly approaches. In this review,
an overview of bacterial rice pathogens is described. We have discussed PGPB-mediated
functional traits including biocontrol of bacterial rice pathogens and enhancement of rice
plant’s growth. Future potential uses of PGPB in enhancing rice productivity in the form of
bioformulations are also projected.

2. Bacterial Rice Pathogens

Rice diseases caused by bacteria are a major bottleneck towards sustainable produc-
tivity of rice, especially in Asia and parts of the African countries. In severe epidemics,
reduction in rice has reached more than 60% and millions of hectares of rice are infected
annually [24–26]. Bacterial pathogens, such as Xanthomonas oryzae pv. oryzae, Xanthomonas
oryzae pv. oryzicola, Burkholderia glumae, and Burkholderia gladioli, are spread rapidly and
sporadically under favorable conditions and cause tremendous obstacles to rice produc-
tion [27,28]. Bacterial pathogens are easily transmitted from infected plants that travel
through the water and spread to the roots and leaves of neighboring plants. The spreading
of bacterial pathogens can also be transmitted from contaminated or infected seeds to the
emerging seedlings [29].

Bacterial pathogens infect the rice plant at all parts including the seed, foliar, leaf
sheath, grain, culm, and root (Table 1). Numerous bacterial pathogens that are reported to
cause diseases in rice belong to the genera Xanthomonas, Burkholderia, Pseudomonas, Pantoea,
Erwinia, Acidovorax, Dickeya, and Enterobacter. Bacterial species belonging to the genus
Xanthomonas, including X. oryzae pv. oryzae (the causal agent of Bacteria Leaf Blight) and
X. oryzae pv. oryzicola (the causal agent of Bacterial Leaf Streak), are well-known bacterial
diseases of rice. It is noteworthy that studies in recent years have indicated numerous
bacterial species from the genus Burkholderia and Pantoea as the next major pathogens of
rice [4,29,30].

With regard to bacterial pathogenicity, plant pathology and genomic studies have
revealed the detection of virulence factors including degradative enzymes, extracellu-
lar polysaccharides, and components of quorum sensing signaling molecules, which are
in-volved in the communication between the host and pathogen that contribute to rice
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dis-eases [31–33]. This conveys a sense of continuing excitement in the field of molec-
ular plant pathology to control bacterial rice pathogens. To date, the main approaches
to control bacterial rice pathogens include the production of disease-resistant rice vari-
eties [34–36]; modification in cultural practices [37,38]; use of natural products or botanical
extracts [39–41]; use of conventional and non-conventional chemicals [42,43]; coevolution
analysis of the pathogen virulence and the host resistance genes [44,45]; transcriptomic
analysis of pathogen along rice development [46,47]; improvement of diagnostic tools in
the field for early detection of infectious diseases [48].

However, the effectiveness of these approaches is somehow inefficient due to the
polymorphisms and chemical resistance developed in virulent strains [49]. Interestingly,
biocontrol strategies by implementing PGPB could be a possible alternative in controlling
rice pathogens, which involves the application of disease-suppressive bacteria to control
pathogens and improve plant health.

Table 1. Bacterial rice pathogens and related diseases.

Diseases Bacterial Pathogens References

Seedling
Seedling blight Burkholderia plantarii [50]

Bacterial Brown Stripe of Rice
(BBSR)

Pseudomonas syringae pv. panici [51]
Acidovorax avenae subsp. avenae [52]

Foliar

Bacterial Blight (BB) or
Bacteria Leaf Blight (BLB)

Xanthomonas oryzae pv. oryzae [53]
Pantoea ananatis [54]

Pantoea stewartii subsp. indologenes [55]
Pantoea stewartii [54]

Pantoea agglomerans [56]

Bacterial Leaf Streak (BLS) Xanthomonas oryzae pv. oryzicola [57]

Halo blight Pseudomonas syringae pv. oryzae [58]

Leaf sheath and grain rot

Sheath brown rot Pseudomonas fuscovaginae [59]

Sheath rot Pseudomonas syringae pv. syringae [60]

Bacterial Panicle Blight (BPB) Burkholderia glumae or Burkholderia gladioli [29]

Bacterial palea browning
Erwinia herbicola [61]
Pantoea ananatis [62]

Enterobacter cloacae [63]

Culm and root Bacterial foot rot
Erwinia chrysanthemi [64]

Dickeya zeae [65]

3. An Overview of In Vitro Characterizations of Promising PGPB

Rhizosphere is the soil surrounding plant roots that are rich in nutrients and a potent
habitat for microbes that thrive on root exudates known as rhizodeposits [66]. Rhizode-
posits comprise various compounds that aid the lubrication and nutrient acquisition of
plants [67]. Rhizodeposits act as chemo attractants that welcome large and diverse micro-
bial communities living in the rhizosphere to multiply the roots or adjacent rhizospheric
soil [68]. PGPB are a specific category of microbes that are beneficial to the plant or are
involved in some positive plant–microbe interactions [69]. The mechanisms of plant–
microbe interactions for a successful PGPB to enhance plant growth have been reviewed
previously [70–72]. As suggested by Kloepper, successful PGPB are characterized by three
inherent distinctiveness: (i) must be proficient to colonize the root surface; (ii) must survive,
multiply, and compete with other microbiota, at least for the time needed to express their
plant growth-promoting activities; (iii) must promote plant growth [73]. Other than being
able to colonize plant roots and promote plant growth, PGPB also simultaneously act as
biocontrol agents, biofertilizers, phytostimulators, rhizoremediators, and biopesticides [74].
It is noteworthy to highlight that the usage of PGPB as biological agents offered various
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promising advantages, including enhancement in crop yield and a decrease in disease
occurrence [75].

PGPB’s ability as a biocontrol agent is linked to how they improve plant growth
and suppress phytopathogens either by direct and or by indirect mechanisms (Figure 1).
The characterization of plant growth-promoting mechanisms of PGPB can be determined
in vitro (Table 2). Direct mechanisms include the balance of plant growth regulators. PGPB
release plant growth regulators that are integrated into the plant and act as a sink of plant-
released hormones. Subsequently, this induces the plant’s metabolism, thus leading to an
improvement in the plant’s adaptive capacity. In this mechanism, PGPB facilitate resource
acquisition such as nitrogen, phosphorus, and essential minerals through biological ni-
trogen fixation, phosphate solubilization, and iron sequestration by siderophores. PGPB
also modulate phytohormone levels such as indole-3-acetic acid (IAA), cytokinins, and gib-
berellins to promote plant growth [76]. IAA is an auxin produced by PGPB that plays a role
in stimulating both rapid (e.g., cell elongation) and long-term (e.g., cell division and differ-
entiation) responses in plants [77]. Similar to IAA, cytokinins influence plant physiological
and developmental processes. Plant responses to exogenous applications of cytokinins
resulted in enhanced cell division and root development and formation [78]. Gibberellins
are important phytohormones that influence the developmental processes in higher plants
including, seed germination, stem elongation, flowering, and fruit setting [79].
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Figure 1. Biological control interactions exerted by the plant growth-promoting bacteria (PGPB).
This illustration depicts the interactions between PGPB, phytopathogens, and plants. PGPB promote
plant growth either by direct and or indirect mechanisms. PGPB colonize plant’s rhizosphere and
produce antimicrobial metabolites. In the plant’s rhizosphere, antibiosis and nutrient competition
interaction suppresses the growth of phytopathogens. Elicitors of induced systemic resistance (ISR)
production by PGPB and in the simultaneous presence of phytopathogens enhanced the plant ISR.
Thus, this mediated defense response of plants towards phytopathogens and consequently enhanced
plant growth and health.
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Table 2. In vitro characterizations of promising PGPB.

Mechanisms Media Descriptions References

Direct

Nitrogen fixation

Nitrogen-free (NF) agar Nitrogen fixation was observed qualitatively by the blue
coloration around the colonies [80]

Malate (NFM) semisolid medium
Acetylene production was quantified on a gas

chromatograph equipped with a Porapak Q column and
a H2-flame ionization detector (FID)

[81,82]

Phosphate solubilization Pikovskaya’s agar Phosphate solubilization was determined qualitatively
by the formation of halo zones around the colonies [83]

Siderophore production Chrome azurol S (CAS) agar Siderophore production was observed qualitatively by
the yellow halo coloration around the colonies [84]

Phytohormones
production

IAA Nutrient broth medium
supplemented with L- tryptophan

IAA production was determined using colorimetric
methods and quantified on HPLC using ethyl acetate

oxidation method
[85–87]

Cytokinins Burk’s medium Cytokinin production was determined using
colorimetric methods [88,89]

Gibberellins Nutrient broth medium Gibberellin production was determined using
colorimetric methods [90]

Indirect

ACC deaminase production Dworkin and Foster’s (DF) salts
medium

Colonies growing on the DF agar were taken as ACC
deaminase producers and ACC deaminase activity was

determined using colorimetric method
[91,92]

HCN production Nutrient broth supplemented with
4.4 g/L of glycine

HCN production was observed qualitatively by the
changes in the filter paper color from yellow to

orange-brown
[93,94]

Antibiotics production Mueller Hinton (MH) medium Screening of antimicrobial activity was observed using
diffusion methods [95,96]

Indirect mechanisms require the involvement of the plants’ defensive metabolic pro-
cesses that respond to the signal sent from the PGPB. The mechanisms include: (i) induced
systemic resistance (ISR) to plant phytopathogens (biotic stress), and (ii) protection against
environmental stress (abiotic stress) [97]. In this mechanism, PGPB mediate the produc-
tion of antimicrobial metabolites under biotic stress by responding to the rhizospheric
competition for nutrients and niche exclusion. PGPB produced antimicrobial metabolites
such as hydrogen cyanide (HCN), cyclic lipopeptides (CLP), 2,4-diacetylphloroglucinol
(DAPG), pyrrolnitrin, pyoluteorin, and phenazines, which are used to inhibit the growth of
competing microbes [98]. Interaction of PGPB with plant roots enhances plant resistance
against some microbes including pathogenic bacteria, fungi, and viruses. This phenomenon
is termed as induced systemic resistance (ISR). Many individual bacterial components,
such as siderophores, CLP, DAPG, and volatile organic compounds (VOCs), including
acetoin and 2,3-butanediol, act as an elicitor of ISR [99]. Moreover, ISR involves ethylene
(a phytohormone that governs plant growth and development) signaling that stimulates
the host plant’s defense responses against a variety of phytopathogens [100]. Interestingly,
PGPB that produce 1-aminocyclopropane-1-carboxylate (ACC) deaminase enzyme are able
to facilitate plant growth and development by lowering ethylene levels through degra-
dation of ACC to ammonia and α-ketobutyrate. Therefore, the PGPB containing ACC
deaminase have the potential to reduce abiotic stress by decreasing ethylene levels [101].

4. The PGPB as Biocontrol Agent

Biocontrol is a promising strategy to control phytopathogens, which could be an
alternative for chemical fertilizers and pesticides. The implementation of PGPB as a
biocontrol agent to inhibit the growth of phytopathogens has become widespread due
to environmental concerns. This strategy has received great attention as it provides a
safe, inexpensive, long-lasting, and environmentally friendly alternative [102]. Bacteria
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from the genera Bacillus, Pseudomonas, Enterobacter, and Streptomyces were all extensively
studied as biocontrol agents as soon as their antagonistic activity against rice pathogens was
recognized. Apart from these four groups, other genera are highlighted in the section below.

4.1. Bacillus spp.

Bacillus spp. are Gram-positive bacteria belonging to the phyla Firmicutes, class Bacilli,
and family Bacillaceae. It can be characterized as rod-shaped and endospore-forming bacte-
ria. The ability to produce endospores when facing harsh conditions enabled this bacterial
species to survive in various habitats including animal feces [103], bee products [104],
soil [105], food [106], and aquatic environments [107]. Bacillus spp. as PGPB have been
proven to confer numerous advantages in the agricultural sector [108]. There are three
main contributions of Bacillus spp. in rice: (i) increase yield; (ii) improve tolerance to abiotic
stresses; (iii) decrease in disease occurrence.

The colonization of Bacillus spp. on crop roots caused an increase in crop yields [75].
Evidently, rice root associated with Bacillus was found to improve growth, yield, and
zinc (Zn) translocation of Basmati rice. Basmati-385 and Super Basmati rice yields were
improved by more than 22% and 18%, respectively, upon inoculation with Zn-solubilizing
strains that were identified as Bacillus spp. by 16S rRNA gene analysis [109]. Growth
and yield were also found to be improved upon a new Egyptian rice line, GZ9461-4-2-3-1,
inoculated with a consortium of PGPB containing Bacillus subtilis, Pseudomonas fluorescens,
and Azospirillum brasilens. The integration of inorganic fertilizers with a consortium of PGPB
positively affected rice yields and contributed to reducing chemical nitrogen fertilizers
by 25% [110]. Moreover, nursery application of biological fertilizers containing Bacillus
pumilus strain TUAT-1 and N fertilizer reportedly led to higher tiller numbers of rice at the
maximum tillering stage [111].

Abiotic stresses, such as salinity and drought, pose major threats to rice growth
and yield. Interestingly, Bacillus amyloliquefaciens strain NBRI-SN13 isolated from the
alkaline soil of Banthara, Lucknow, was found to possess PGPB activities and improve
stress tolerance in rice [112,113]. Tiwari et al. reported that B. amyloliquefaciens strain
NBRI-SN13 positively modulated stress-responsive gene expressions, such as dehydrin
(DHN) and late embryogenesis abundant (LEA), under various abiotic stresses (salt and
heat) and phytohormone (abscisic acid) treatments [10]. The results suggested that PGPB
play multifaceted roles in crosstalk among stresses and phytohormones in rice especially
in osmolyte biosynthesis and subsequently osmotic adjustment. Recently, inoculation
of salt-tolerant PGPB, namely, Bacillus tequilensis strain UPMRB9 and Bacillus aryabhattai
strain UPMRE6 on rice plants were shown to have beneficial effects on photosynthesis,
transpiration, and stomatal conductance [114]. Shultana et al. demonstrated that the
inoculation of B. tequilensis strain UPMRB9 on the MR297 rice variety improved total
chlorophyll content by 28% and reduced electrolyte leakage by 92% [115]. Increments of
relative water content and reduction in the Na/K ratio were also found upon inoculation
of B. tequilensis strain UPMRB9 and B. aryabhattai strain UPMRE6 on rice plants. The
results suggested a synergistic effect between PGPB and rice plants on the mechanisms
of the plant’s salt tolerance, suggesting the application of PGPB for salinity mitigation
practice for coastal rice cultivation. Moreover, the potential application of Bacillus to
mitigate drought stress in rice has also been demonstrated [116]. Inoculation of rice with
drought-tolerant Bacillus altitudinis strain FD48 found an increased relative water content,
chlorophyll stability index, and membrane stability index in rice.

In plant disease management, Bacillus controls the proliferation of phytopathogens by
suppressing plant immunity [117,118]. Suppression of plant immunity by PGPB, referred to
as ISR, is one of the important mechanisms to secure the plant against phytopathogens. ISR
is defined by the systemic protection of plants by the enhancement of the plant’s defensive
capacity against various phytopathogens, which is acquired after appropriate inducing by
PGPB [100]. The mechanisms by which PGPB triggered ISR are poorly understood. It is
believed that the ISR is triggered by inducing agents (elicitors of ISR) such as antimicrobial
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metabolites produced by PGPB. Once ISR is triggered, further activation of plant antioxi-
dant enzymes, such as phenylalanine ammonia lyase (PAL), peroxidase (PO), polyphenol
oxidase (PPO), chitinase, and β-1,3-glucanase, will take place. This will help the plants
to mitigate the reactive oxygen species (ROS) level which is a source of oxidative stress
during phytopathogens infection [117,119]. It is worth mentioning that the Bacillus can
inhibit proliferation of phytopathogens as well as enhance plant immunity directly (by
producing antimicrobial metabolites) and indirectly (by producing antioxidant enzymes).
As confirmed through genomic analysis, the Bacillus genome is composed of antimicrobial
metabolite gene clusters (e.g., surfactin and fengycin) and gene-encoding proteins (e.g., PO,
PPO, chitinase, and β-1,3-glucanase) that function to suppress plant immunity [117,120].
The plant immune response may be triggered through specific bacterial elicitors produced
by Bacillus. Further studies should be conducted on the Bacillus antimicrobial compounds
and antioxidant enzymes beyond in silico genome analysis to understand its contribution
in mediated rice plant ISR.

Bacillus spp. are known to activate ISR. This has been verified in vitro that rice seeds
treated with Bacillus spp. showed an elevation of ISR in rice against X. oryzae pv. oryzae [121].
Bacillus-treated seeds exhibited an increased synthesis of defense-related enzymes including
PAL, PO, and PPO. On another related study, the induction of systemic resistance against a
fungal pathogen, namely, Rhizoctonia solani (the causal agent of Sheath Blight) was detected
through an increased level of PAL and PO in rice treated with B. subtilis [122]. The treatment
of B. subtilis on rice leaves under greenhouse conditions triggered the accumulation of
pathogenesis-related proteins (thaumatin and β-1-3-glucanases) that play important roles
for the induction of resistance in rice plant.

It is well known that the activity of Bacillus spp. as PGPB is linked to their ability to
suppress phytopathogens by secretion of antimicrobial metabolites [123]. The secretion
of antimicrobial metabolites including surfactins, difficidin, and bacilysin from Bacillus
spp. trigger the pathways of ISR, which contributes to the suppressive effect of plant
immunity [124,125]. Antimicrobial metabolites were determined to act as elicitors of plant
immunity and enhance resistance towards further pathogenesis in plants [126]. Sarwar et al.
found that purified surfactins from Bacillus strains, NH-100 and NH-217, were effective
against rice bakanae disease [125]. In 2020, C15surfactin A produced by Bacillus velezensis
strain HN-2 displayed antibacterial activities against X. oryzae pv. oryzae and effectively
inhibited its infection on rice [119]. It is worth mentioning that the suppression by pu-
rified surfactins from B. amyloliquefaciens in bean plants was determined to enhance the
plant’s ISR against a fungal pathogen, Botrytis cinerea, infection [127]. Similarly, in tobacco,
surfactins were also found to induce early plant-defense mechanisms [128]. Furthermore,
in vitro assays demonstrated the ability of difficidin and bacilysin from B. velezensis strain
FZB42 (previously B. amyloliquefaciens strain FZB42) to suppress rice diseases caused by
Xanthomonas [129]. The results found that difficidin and bacilysin caused downregulated
expression of genes involved in Xanthomonas virulence, cell division, protein synthesis, and
cell wall synthesis.

4.2. Pseudomonas spp.

Pseudomonas spp. are Gram-negative, polar-flagellated, and rod-shaped bacteria. This
bacterial genus belongs to the phyla Proteobacteria, class Gammaproteobacteria, and fam-
ily Pseudomonadaceae. Species of Pseudomonas and their products have been used in
large-scale for biotechnological applications [130]. Pseudomonas spp. are ubiquitous in
agricultural soils and have many plant growth-promoting traits. Moreover, Pseudomonas
is a notable bacterial genus because some species are known as clinically important op-
portunistic human pathogen, plant pathogen, and biocontrol agent. Notable examples
include the human pathogen, Pseudomonas aeruginosa [131], the plant pathogen, Pseu-
domonas syringae [132], and the non-pathogenic biocontrol agents, Pseudomonas putida and
Pseudomonas fluorescens [133,134].
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P. aeruginosa strains have been intensively studied as an opportunistic human pathogen,
especially in an immunocompromised host (a host with a weakened immune system). In-
terestingly in biocontrol applications, the use of P. aeruginosa strains as PGPB has been
demonstrated. Strains of P. aeruginosa have been reported to be used in seed treatments
of rice [135]. All P. aeruginosa strains showed plant growth-promoting activity and ISR in
rice. Pathogenesis-related peroxidases that are involved in ISR in rice plants were detected
in all the P. aeruginosa strains and showed antifungal activity against phytopathogenic
fungi (R. solani, Pyricularia oryzae, and Helminthosporium oryzae). In 2017, P. aeruginosa
strain BRp3 (identified using 16S rRNA gene sequencing) isolated from rice rhizosphere
was found able to solubilize phosphorus (97 µg/mL) and produced IAA (30 µg/mL) and
siderophores (15 mg/L) in vitro [136]. MS analysis revealed the production of siderophores
(1-hydroxy-phenazine, pyochellin, and pyocyanin), 4-hydroxy-2-alkylquinolines, rham-
nolipids, 2,3,4-trihydroxy-2-alkylquinolines, and 1,2,3,4-tetrahydroxy-2-alkylquinolines
in crude extracts of strain BRp3. The results suggested that the secondary metabolites
produced by strain BRp3 contribute to its antibacterial activity against X. oryzae pv. oryzae
and its potential to promote the growth and yield of Super Basmati rice.

Strains of P. syringae are noted for their diverse and host-specific interactions with a
plethora of plant species including rice [51,137]. As a plant pathogen, P. syringae colonizes
plant tissues by entering plant leaves through the stomata, multiplies in the intercellular
space (apoplast), and eventually produces necrotic lesions that are often surrounded
by chlorotic halos [138]. However, in 2019, P. syringae pv. syringae strain 260-02 was
found exhibiting non-pathogenic behavior [139]. Strain 260-02 was reported to promote
plant growth and exerted biocontrol of P. syringae pv. tomato strain DC3000, against the
B. cinerea fungus and the Cymbidium ringspot virus. Controversially, the pathogenic status
of P. syringae has been rising. Considering the genome plasticity of strain 260-02 that
could switch to pathogenic behavior through horizontal gene transfer mechanisms, the
introduction of this strain into an ecosystem as a biocontrol agent is extremely dangerous.

The implementation of various species of Psuedomonas as PGPB on rice plant is well
reported [140,141]. For instance, PGPB activities of P. putida strain RRF3 have been demon-
strated through transcriptomic analysis of rice plant roots [133]. Overall, the results
suggested that strain RRF3 immunizes rice plants by re-organizing the root transcriptome
to stimulate plant defense responses, and simultaneously protects itself (being a foreign
organism) from the primed plants by altering the rhizodeposits. In another related study,
the application of a microbial consortium containing P. putida (bacterium) and Chlorella vul-
garis (algae) has proven to ameliorate arsenic toxicity in rice [142]. The positive responses
were attributable to a significant decline in arsenic accumulation in root (94 mg kg−1 dw)
and shoot (51 mg kg−1 dw) in a consortium of inoculated seedlings as compared to arsenic
exposed plants (156 and 98 mg kg−1 dw, respectively). These results suggested that this
consortium might alleviate arsenic stress and improve growth of rice seedlings along
with a reduction in arsenic levels. Moreover, in vitro characterization of plant growth-
promoting activities of Pseudomonas pseudoalcaligenes showed that this bacterium has a
higher phosphate solubilization and productions of ACC deaminase, siderophores, IAA,
and gibberellins [143]. In addition, P. pseudoalcaligenes suppressed Magnaporthe grisea (the
causal agent of Rice Blast Fungus) infection by producing lytic enzymes, namely, chitinase
and β-1, 3-glucanase. In greenhouse studies, inoculation of P. pseudoalcaligenes resulted in
the improvement of dry weight, plant height, and root length of rice plants compared to
inoculation of B. pumilus.

PGPB strains belonging to fluorescent Pseudomonas such as P. fluorescens are commonly
isolated from rice rhizosphere [134]. For instance, 10 strains of P. fluorescens isolated
from rice rhizosphere soils in Karnataka, India possesses antibacterial activities against
X. oryzae pv. oryzae [144]. All 10 strains were positive for plant growth-promoting activities
including phosphate solubilization and productions of siderophores, HCN, IAA, chitinase,
β-1, 3-glucanase, cellulase, and salicylic acid. One P. fluorescens strain, namely, Pf9, was
found to effectively control the causal agent of Bacteria Leaf Blight (BLB) disease. In
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untreated controls, BLB disease incidence was 80% and this was reduced to 20% in plants
raised from strain Pf9 treated seeds. Moreover, biological control of X. oryzae pv. oryzae by
plant-associated P. fluorescens producing antimicrobial compound, DAPG, also has been
reported [145]. DAPG was found able to inhibit the growth of X. oryzae pv. oryzae in
laboratory assays and reduced BLB disease in net-house (59%) and field (64%) experiments.
In 2016, the application of P. fluorescens (PGPRPf) in Giza 179 rice cultivar has been tested in
the nursery and field [110]. Inoculated rice in the nursery by PGPRPf exhibited an increase
in seed germination, seedling vigor, and yield. In addition, the application of inorganic
nitrogen in combination with PGPRPf (46 kg nitrogen fed−1 + PGPRPf soil application and
PGPRPf foliar spray bacterial application) in the field improved rice yields.

4.3. Enterobacter spp.

Enterobacter spp. are Gram-negative, rod-shaped, and non-spore-forming bacteria
belonging to the phyla Proteobacteria, class Gammaproteobacteria, and family Enterobac-
teriaceae. The potential of Enterobacter to contribute to the development of sustainable
agricultural systems as PGPB has been reviewed previously [146]. However, the mecha-
nisms of PGPB-mediated enhancement of plant growth and yield of many crops are not
yet fully understood. It is suggested that Enterobacter functions in three different ways:
(i) synthesizing particular compounds for the plants, (ii) facilitating the uptake of certain
nutrients from the soil, and (iii) lessening or preventing the plants from diseases. These
can be characterized by the determination of antagonistic and plant growth-promoting
activities [147].

Enterobacter cloacae strain B8 [148] and strain B8x [149] have been proven to be effective
in improving rice growth and showed antagonistic activity towards X. oryzae pv. oryzae. In
2020, two bacterial strains (BSB1 and BCB11) isolated from the field showed antagonistic
activities towards B. glumae were identified belonging to the genus Enterobacter [21]. The
strains showed high similarity (99%) to Enterobacter tabaci as analyzed based on 16S rRNA
gene sequences and phylogenetic analyses. Strain BSB1 proved to be the best inorganic
phosphorus solubilizer with a solubilization index (SI) of 4.5. Noteworthy, the EtOAc
extract of strain BCB11 was found to inhibit the growth of B. glumae strains by 85–95%.
Metabolomic analysis of EtOAc extract based on GC–MS showed that the main compound
present is 3-phenylpropanoic acid (46.7%). This compound showed antibacterial activity
with a minimum inhibitory concentration (MIC) of 1000 mg/L against five strains of
B. glumae. The results suggested that Enterobacter is a promising strain as a PGPB and as a
source of compound that could inhibit the growth of B. glumae.

Up until now, multi-heavy-metal-resistant strains of Enterobacter have exhibited pos-
itive effects on rice plant growth. In 2018, multi-heavy-metal-resistant-PGPB isolated
from metal-contaminated rice rhizosphere were identified as Enterobacter sp. strain K2
using phenotypic characterization and MALDI-TOF MS [150]. Strain K2 was found able
to resist a group of heavy metals/metalloids (cadmium, lead, arsenic, nickel, and mer-
cury) and possesses plant growth-promoting activities, such as phosphate solubilization,
nitrogen fixation, IAA production, and ACC deaminase production. In vitro growth en-
hancement of a rice cultivar by strain K2 was investigated using cadmium stress and an
almost 40% increase in the germination percentage was observed. Other related studies
also characterized cadmium-resistance Enterobacter that conferred cadmium-tolerance in
rice seedlings and are potentially to be applied as PGPB in contaminated fields. Mitra
et al. reported that Enterobacter sp. strain S2 showed multiple heavy metal resistance on
cadmium (3500 µg/mL), lead (2500 µg/mL), and arsenic (1050 µg/mL) [13]. Strain S2 also
possesses plant growth-promoting activities based on its ability to solubilize phosphate
(73.56 ppm), fix nitrogen (4.4 µg of nitrogen fixed/h/mg protein), produce ACC deam-
inase (236.11 ng α-keto-butyrate/mg protein/h), and IAA (726 µg/mL). Inoculation of
strain S2 with rice seedlings significantly enhanced various morphological and biochemical
characters of seedling growth compared to un-inoculated seedlings under cadmium stress.
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Moreover, a multi-heavy-metal-resistant-PGPB strain identified as Enterobacter aero-
genes strain K6 (based on 16S rDNA gene sequence, MALDI-TOF MS, and FAME analyses)
was isolated from rice rhizosphere contaminated with a variety of heavy metals/metalloid
near an industrial area [151]. Strain K6 exhibited a high degree of resistance to cadmium
(4000 µg/mL), lead (3800 µg/mL), and arsenic (1500 µg/mL). Moreover, strain K6 showed
several important plant growth-promoting activities, such as phosphate solubilization,
nitrogen fixation, IAA production, and ACC deaminase activity under high cadmium
stress (up to 3000 µg/mL). Strain K6 was manifested to improve growth of rice seedlings
under cadmium stress by lowering oxidative stress (through antioxidants), ethylene stress,
and cadmium uptake in seedlings. Furthermore, Enterobacter has also been reported to
be resistant to chromium (Cr(VI)) and possesses plant growth-promoting activities. For
example, Enterobacter cloacae strain CTWI-06 was shown to be resistant to 3500 ppm of
Cr(VI) [152]. Under optimized conditions, strain CTWI-06 reduced 94% of Cr(VI) within
92 h and reduction was proven by FTIR and XRD analyses. Plant growth-promoting
activities such as phosphate solubilization, nitrogen fixation, IAA production, antifungal
activities (R. solani ITCC 2060 and Phytium debaryanum ITCC 5488) were recorded, as well
as improved productivity of Mahalakshmi rice in pot culture. The results suggested the
potential application of Cr(VI)-reducing strain, CTWI-06, as a bioremediation agent of
Cr(VI) in chromium-contaminated soil.

Current explorations of Enterobacter spp. are not only focusing on the determination
of heavy-metal-resistant-PGPB. Several studies also reported the potential of Enterobacter
to enhance tolerance of rice plants to salt in soil. For instance, inoculation of Enterobacter sp.
strain SE-5 resulted in an increment of mature rice plant biomass under salt and cadmium
stresses [153]. Strain SE-5 is proposed as an inheritable endophyte due to its ability to be
transmitted into rhizosphere, roots, stems, and leaves of mature rice plants as analyzed
using green fluorescent protein (gfp). In addition, strain SE-5 was found to survive in
different soil layers for more than 90 days. Overall, the results suggested that strain
SE-5 is potentially proliferating-transmitting in mature rice plants and rhizosphere soil
during plant growth. Moreover, salt-tolerant PGPB isolated from rice fields, namely,
Enterobacter sp. strain P23, were also shown to promote rice seedling growth under salt
stress [154]. This effect was correlated with a decrease in plant ethylene production.
Reduction in plant ethylene production after inoculation of strain P23 was linked to the
bacterial ACC deaminase activity. Strain P23 utilized ACC as a nitrogen source, thus
preventing plant ethylene production. In another related study, Enterobacter was also
found exhibiting ACC deaminase activity [155]. Inoculation with the wild (Enterobacter sp.
E5) and engineered (Enterobacter sp. E5P; overexpressed with ACC deaminase gene)
strains promoted the growth of sprouts. The promoting effects were more profound with
engineered strain than with wild strain. The engineered strain improved saline resistance
of sprouts under salt concentrations from 10 to 25 gL−1 and promoted longer roots and
shoots than the wild strain. These results suggested that bacterial ACC deaminases play a
role in plant-produced ACC degradation and thus inhibit plant ethylene production.

4.4. Streptomyces spp.

Streptomyces spp. are the most attractive bacterial genus within the scientific com-
munity due to their capability to produce various bioactive compounds, which are con-
sequently invaluable in the medical and agricultural fields. Streptomyces spp. received a
worldwide attention due to their potential as producers of extracellular enzymes [156] and
as important sources of secondary metabolites such as antibiotics [157]. Streptomyces spp.
are complex filamentous Gram-positive bacteria belonging to the phyla Actinobacteria,
class Actinomycetes, and family Streptomycetaceae.

Bacteria from the genus Streptomyces are complexly reproduced. Unlike most bacteria
that divide by binary fission, Streptomyces spp. grow as a mycelium of branching hyphal
filaments and reproduce in a mold-like manner by sending up aerial branches that turn into
chains of spores [158]. The complexity of Streptomyces spp. can also be observed through
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their large genome size (more than 8 Mbp with a high G + C content), which is often
associated with their ability to survive in various environments [159,160]. Interestingly,
genome analysis via genome-mining approach has allowed the prediction of biosynthetic
gene clusters related to the plant growth-promoting activities of Streptomyces strains as a
biocontrol agent [161].

Streptomyces spp. were reported to aid in plant development as PGPB [162–165].
The characterization of Streptomyces spp. as PGPB has provided information on their
beneficial traits related to the antagonistic and plant growth-promoting activities [166].
Bacteria belonging to the Streptomyces clade isolated from the Colombian Caribbean Sea
showed antibacterial activities against B. glumae, B. gladioli, and B. plantarii [167]. More-
over, Streptomyces spp. have also been reported to exhibit antagonistic activities against
X. oryzae [168,169], X. oryzae pv. oryzicola [170,171], X. oryzae pv. oryzae [172–174], B. glumae
and B. gladioli [175], P. fuscovaginae [166], E. chrysanthemi [176], and D. zeae [177].

Genomically, the key pathways relating to plant growth-promoting activity, such as
siderophores, IAA, HCN, chitinase, and cellulase, have also been decoded in the genome
of Streptomyces strains [161]. It is noteworthy that Streptomyces spp. are reportedly able to
produce antimicrobial metabolites, including blasticidin-S [178], kasugamycin [179], poly-
oxins [180], and oligomycins [181], that were observed to be active against rice pathogens.
The secretion of antimicrobial metabolite from PGPB was suggested to trigger the pathways
of ISR in plants which contribute to the suppressive effects of plant immunity [182] and
enhance resistance towards further pathogenesis in plants [126]. Other than antimicrobial
metabolites, Streptomyces spp. also produce a large number of other bioactive metabolites,
including VOCs that stimulate plant growth both directly and indirectly [183,184]. Much
more focus is still needed to understand the function of antimicrobial metabolites and
VOCs from Streptomyces spp., particularly with regard to the antagonistic activity against
bacterial rice pathogens as well as the ISR of rice plants.

4.5. Other Bacterial Genus

Bacterial genera belonging to the phyla Proteobacteria, including Acidovorax [185],
Rhizobium [141,186], Burkholderia [187,188], Serratia [189], Azotobacter [190], Klebsiella [188],
Alcaligenes [191], Ochrobactrum [191], Pseudacidovorax [192], Azospirillum [192,193], and
Herbaspirillum [192,193], have all been proven to be effective in improving rice growth
and yield. Other bacterial genera belonging to the phylum Proteobacteria (Acinetobacter
and Pantoea) and Firmicutes (Staphylococcus, Oceanobacillus, and Paenibacillus) have been
reported as PGPB and showed antagonistic effects against X. oryzae pv. oryzae [194].
Moreover, PGPB with antifungal and antibacterial activities were detected from endo-
and rhizospheric bacteria isolated from Basmati rice [195]. Bacterial species belonging to
the phylum Proteobacteria (Stenotrophomonas maltophila UKA-72 and Rhizobium radiobacter
UKA-24) and Firmicutes (B. pumilus UKA-27) exhibited antimicrobial activities against
fungal (Sclerotium rolfsii, F. oxysporum, and Rhizoctonia bataticola) and bacterial (Xanthomonas
compestris pv. phaseoli M5, X. oryzae, Xanthomonas compestris pv. phaseoli CP-1-1, and
Ralstonia solanacerum) pathogens.

So far, omics technologies have led to the exploration of crop rhizobiome through the
metagenomics approach to understanding plant–microbe interactions [196]. Such inter-
actions lead to the selection of plant beneficial microbes, such as PGPB. Interestingly, the
population of bacteria in rice rhizosphere was explored metagenomically. In 2020, the pop-
ulation of bacteria in the rhizosphere and phyllosphere of Basmati rice was reported [197].
Bacterial population associated with the rice rhizosphere from three different rice growing
areas (Faisalabad, Gujranwala, and Sheikhupura) of Punjab, Pakistan, were compared.
Data analyses revealed that Proteobacteria was the dominant phylum at all three areas. In
the phyllosphere, Proteobacteria (79.6%) was detected as the dominant phylum followed
by Firmicutes (9.8%), Bacteroidetes (8.6%), Chloroflexi (4.3%), and Actinobacteria (0.9%).
In other related studies, the 16S rRNA gene amplicon-based metagenomic signatures of
the rhizobiome community in rice fields in India have also been evaluated [198]. The
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results demonstrated that the Proteobacteria (25.69%) is the most abundant bacterial phy-
lum associated with the rice rhizosphere followed by Firmicutes (20.82%), Actinobacteria
(16.68%), and Acidobacteria (13.28%). In particular, much more focus is still needed to
understand the biological roles of microbes in rice rhizosphere. Therefore, it is necessary
to conduct further studies to determine in vivo metabolic activities and the physiological
characteristics of rice rhizosphere microbial community. Understanding such attributes
will help to shed light on the functionality as well as biological roles of microbes in rice
rhizosphere not only for improved plant health as biofertilizers but as biological agents to
combat phytopathogens.

5. Bioformulations of PGPB in Rice: Applications, Challenges, and Future Prospects
5.1. Applications on Bioformulations

Bioformulations are defined as any biologically active substances derived from mi-
crobial biomass or products containing microbes and microbial metabolites that are used
in plant growth promotion, nutrient acquisition, and disease control in an eco-friendly
manner [199]. The application of PGPB in bioformulation development has been reviewed
previously [164,200,201]. In the development of bioformulations, three potent components
are needed, which include: (i) active ingredient, (ii) carrier material, and (ii) additive [202].
The active ingredient is typically a viable organism (live microbes or spores that are able
to survive during storage), while carrier material is an inert substance that supports the
active ingredient (cells). The carrier material assures that cells are able to easily proliferate
in or around the plant and to provide better chances of enhancing biocontrol and plant
growth-promoting activities. Carrier materials such as talc, charcoal, wheat bran, rice husk,
saw dust, fuller’s earth, and sugarcane bagasse were found to increase the shelf life of the
active ingredient [203,204]. Additives such as gum arabic, trehalose, glycerol, alginate,
and carboxymethyl cellulose were reported protect the cells and provide a longer shelf life
along with providing tolerance from harsh environmental conditions, while improving
physical, chemical, and nutritional properties of bioformulations [205].

Many reports suggested that bioformulations are easy to deliver, able to enhance plant
growth and stress resistance, and able to increase plant biomass and yield. Additionally,
any bioformulation with an increased shelf life with simultaneous actions of biocontrol
and biofertilizer activities under field conditions could open the way for technological
exploitation and marketing [206,207]. With rice, PGPB bioformulations have been applied
to combat bacterial as well as fungal rice pathogens [17,208–211]. In 2017, P. aeruginosa strain
BRp3 has been suggested as a bio-inoculant for Super Basmati rice and showed antagonistic
activities against X. oryzae pv. oryzae [136]. The inoculation of strain BRp3 supplemented
with 80% of the recommended doses of N and P (140–80 kg NP acre−1) significantly
enhanced grain and straw yield with an increase of 51% and 55%, respectively. Colonization
studies under field conditions using viable count detected the colonization of strain BRp3 on
rice roots and shoots up to 60 days, suggesting its application as rhizobacteria-inoculants.

In another related study, the efficacy of PGPB, P. fluorescens, as a bioformulation in
rice has been reported. Seed treatment with bioformulation of P. fluorescens strain RRb
11 increased the plant growth-promoting parameters of Pusa Basmati 1 rice [15]. The talc-
based bioformulation not only reduces disease intensity (caused by X. oryzae pv. oryzae) but
enhances germination, increases height, dry matter, and yield. In addition, Jambhulkar and
Sharma showed antagonistic potential of P. fluorescens strain RRb-11 against X. oryzae pv.
oryzae [16]. The results stated that the maximum shelf life of strain RRb-11 was recorded up
to 150 days after storage in talc-based bioformulations. In field studies, the bioformulation
was applied as seed treatment, seedling root dip, and soil application in combination.
Overall, the reduction in BLB disease against control was recorded by 92.3% in the year
2009 and 88.5% in the year 2010. The treatment also produced a maximum yield (61%)
greater than control. The bioformulation of PGPB, P. fluorescens strain SP007s, has also been
applied in Thailand [212]. The application of strain SP007s as a bioformulation termed as
ISR-P/K via seed treatment, broadcasting, and foliar spray significantly achieved the best
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results in yield improvement at 52.1% and a reduction in bacterial (X. oryzae pv. oryzae) and
fungal (Pyricularia grisea, H. oryzae, Cercospora oryzae, R. solani, Curvularia lunata, Fusarium
semitectum, Alternaria padwickii, and Sarocladium oryzae) pathogens.

The use of PGPB in the form of bioformulation is an eco-friendly and inexpensive
alternative to chemical fertilizers and pesticides [213,214]. It is worth mentioning that sev-
eral microbe-based products or microbial consortia to improve rice yields are commercially
available to farmers worldwide [215–218]. These include Bio-N (Nutri-Tech Solutions,
Yandina, Queensland, Australia) containing Azospirillum spp.; BioGroe® (Nguyen Thanh
Hien in Hanoi University, Hanoi, Vietnam) containing P. fluorescens, B. subtilis, B. amyloliq-
uefaciens, and Candida tropicalis; Dimargon® (Bernardo Dibut Alvarez in INIFAT, Havana,
Cuba) containing Azotobacter chroococcum; EMAS (Didiek Hadjar Goenadi in IRIBB, Bogor,
Indonesia) containing Azospirillum lipoferum, Acinetobacter beijerinckii, Aeromonas punctate,
and Aspergillus niger; BioPower (NIBGE, Faisalabad, Pakistan) containing multiple strains
of nitrogen-fixing bacteria.

5.2. Challenges and Future Prospects

To enhance yield and protect crops against pests and pathogens, the use of chemical
fertilizers and pesticides have been crucial in ensuring food security to feed the ever-
increasing human population [219]. Repeated use of chemical fertilizers and pesticides
that are rich in nitrogen, phosphorous, and potassium lead to soil, air, and groundwater
pollution [220]. Interestingly, the use of PGPB is a potent and upcoming method to ensure
sustainable agriculture without depleting natural resources [221,222]. The introduction
of successful PGPB to soil ecosystems improves soil’s physical (e.g., reducing sodicity
and bulk density, improving water infiltration rate, and increasing porosity and aeration)
and chemical (e.g., reducing acidity) properties [223]. However, before PGPB can be
applied to the environment, there are several safety standards and qualities that should be
fulfilled [224,225]. A potential PGPB should: be identified as a taxonomical unit univocally,
be effective against target phytopathogens, not show clinical or animal toxicity, and not
persist in the agro-environment. Moreover, PGPB should not transfer its genetic material to
other closely related microbes to avoid the risk of antibiotic resistance development [226].
With these, the antagonistic potential and behavioral features of a potential PGPB must be
thoroughly characterized to permit its registration as a biocontrol agent and approval for
use in plant protection.

The introduction of the research results for industrial exploitation is not necessarily
easy. Several PGPB bioformulations published worldwide demonstrated outstanding
biocontrol activities in vitro [11,227]. Often a lack of field results failed to support the ap-
plicability of PGPB in commercial fields/greenhouses studies. This limitation hinders the
commercial development of successful PGPB bioformulations. Furthermore, the biocontrol
activity of PGPB is also hindered due to the fact that the production of antimicrobial metabo-
lites by PGPB is strictly dependent on the PGPB’s culturing substrate as well as abiotic and
biotic stresses around them [228,229]. Additionally, the potential of PGPB to control newly
emerging bacterial rice pathogens remains obscure. Further extensive studies on plant–
microbe interaction mechanisms (beyond the rhizosphere), especially on biocontrol and
plant growth-promoting actions, are still not sufficiently explained. Advances of the omics
technologies through next-generation sequencing (NGS) and molecular biology studies
such as metagenomics, metabolomics, proteomics, and culturomics will be necessary to
understand the fate of PGPB in mediated plant–microbe interactions [230,231]. Shedding
light on the symbiotic interaction of PGPB with rice might lead to the development of
highly effective and efficient bioformulation across different soil types and environmental
conditions. Overall, much more focus is still needed to fulfill the industrial demands for the
production of effective bioformulations with one or more active ingredients, using different
carrier materials and additives, and with various methods/treatments of field inoculations.
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6. Conclusions

A plethora of studies have addressed the ability of PGPB to promote plant growth
on rice plants and its biocontrol activity against bacterial rice pathogens. As this review
has made clear, bacterial rice pathogens can be caused by a variety of bacterial genus,
including Xanthomonas, Burkholderia, and Pantoea. Interestingly, PGPB could be a possible
alternative in controlling bacterial rice pathogens, which involves the application of eco-
friendly microbes that control pathogens and improve plant growth. With the awareness
on the usage of PGPB in the agricultural sector, their isolation and characterization are
highly demanded, especially for use in rice plant protection. Varieties of bacterial genera,
including Bacillus, Pseudomonas, Enterobacter, and Streptomyces, are promising as rice plant
co-inoculants. Their application in the form of bioformulations could potentially improve
the sustainable production of rice. The use of a bacterium or a consortium of PGPB in correct
bioformulations provides a remarkable solution for a more sustainable agricultural future.
In conclusion, the studies mentioned in this review support the progress in characterizing
PGPB and designing bioformulations for use in rice plant protection to manage bacterial
rice pathogens. In addition, this review highlighted the importance of continuing research
on the applicability of PGPB, which, up to now, are scarcely used as rice plant co-inoculants
to enhance rice production and ensure food security.
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