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Abstract

Cancers develop as a result of driver mutations1,2 that lead to clonal outgrowth and disease 

evolution3,4. The discovery and functional characterization of individual driver mutations is a 

central aim of cancer research and has elucidated myriad phenotypes5 and therapeutic 

vulnerabilities6. Serial genetic evolution of mutant cancer genes7,8 and the allelic context in which 

they arise, however, is poorly understood in both common and rare cancer genes and tumor types. 
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Here, we find that nearly 1 in 4 human tumors harbor a composite mutation of a cancer-associated 

gene, defined as two nonsynonymous somatic mutations in the same gene and tumor. Composite 

mutations are enriched in specific genes, have an elevated rate of utilization of less common 

hotspot mutations acquired in a chronology driven in part by oncogenic fitness, and arise in an 

allelic configuration that reflects context-specific selective pressures. Cis-acting composite 

mutations are hypermorphic in some genes, such as TERT, where dosage effects predominate, 

while they lead to selection of function in others such as TP53. Collectively, composite mutations 

are driver alterations that arise from context- and allele-specific selective pressures dependent in 

part on gene and mutation function leading to complex, often neomorphic functions of biological 

and therapeutic significance.

To study the pattern, prevalence, and function of composite mutations in cancer, hereafter 

defined as two or more distinct somatic mutations in the same gene and tumor specimen, we 

analyzed the germline blood and matched tumor tissue of 31,359 cancer patients in whom 

prospective clinical sequencing was performed to guide treatment decisions for advanced 

and metastatic disease (Fig. 1a, Extended Data Fig. 1a, Supplementary Table 1).

Selection for composite mutations

In total, 22.7% (n = 7,874) of tumors harbored at least one composite mutation, 56% more 

frequent than expected by chance when controlling for gene content and mutational burden 

(P < 10−5, see Methods; Extended Data Fig. 1b–c, Supplementary Table 2). Significantly 

more composite mutations arose than would be expected in cases of modest mutational 

burden (4–12 mutations/megabase, ~45% of all tumors, P < 10−5; Fig. 1b, Extended Data 

Fig. 1d), an enrichment that decreased in tumors of increasing mutational burden. As 

positive selection cannot be easily distinguished from the predominantly neutral impact of 

increasing mutational burden, high mutational burden tumors were considered biologically 

distinct and excluded from analysis (see Methods, Fig. 1c). Finally, we also found that 

known mechanisms of localized hypermutation explained few composite mutations overall 

(Extended Data Fig. 2).

Composite mutations arose more frequently in tumor suppressor genes (TSGs) than in 

oncogenes (17.5 versus 6.7% of all mutations; P = 10−261, two-sample Z-test) (Fig. 1d). 

Furthermore, 70% of composite mutations in TSGs consisted of one or more truncating 

variants, compared to only 13% for oncogenes (Fig. 1e), suggesting biallelic loss drives the 

enrichment for composite mutations in TSGs. Lineage-specific patterns of driver mutations 

in individual cancers genes were, in part, reflected in the pattern of composite mutations 

pan-cancer (Fig. 2a and Extended Data Fig. 3a). This included a higher burden of composite 

mutations in PIK3CA in breast cancers, APC in colorectal cancers, CDK12 in prostate 

cancers, and EGFR in both lung cancers and gliomas among others. By contrast, not all 

significantly mutated genes had frequent composite mutations such as KRAS in multiple 

cancers or VHL in renal cell carcinomas, often reflecting serial genetic evolution by other 

means.

We next sought to determine whether individual cancer genes were enriched or depleted for 

composite mutations in individual genes, controlling for determinants of their background 
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mutation rate (see Methods)9. In total, 34 genes were significantly enriched for composite 

mutations (Q < 0.01; Fig. 2b, Supplementary Table 3), including both TSGs such as APC, 

TP53, PTEN, and MAP3K1, and oncogenes, the most significant of which was PIK3CA 
(9.9% of all PIK3CA mutations were composite, 95% CI 9.0–10.9; Extended Data Fig. 3b). 

Other frequently mutated oncogenes were not enriched for composite mutations including 

IDH1, reflecting the requirement for heterozygosity in IDH-mutant cells to sustain adequate 

D-2HG production10 and KRAS, which may reflect selection against further detrimental 

oncogenic Ras activation8,11. Mutational recurrence alone cannot, therefore, predict whether 

a cancer gene is enriched for composite mutations.

Consistent with their selection, composite mutants were 2.5-fold more likely than individual 

mutations to include a hotspot—residues mutated in cancer more often than would be 

expected in the absence of selection12,13 (P ≈ 0, two-sample Z-test for equal proportion) 

(Fig. 2c). Composite mutations were notably absent of hotspots of greatest positive selection 

(e.g. KRAS G12, BRAF V600), but were instead prevalent among less common hotspots, 

suggesting selective pressure is greatest for weakly functional alleles. Based on differences 

in their clonality, in 69% of cases the more prevalent hotspot mutation (at the population 

level) preceded the less prevalent mutation in oncogenes (95% CI 59–78%, Fig. 2d), 

consistent with a model whereby the less prevalent allele synergizes with a more potent 

initial hotspot mutation. TSGs exhibited no such temporal ordering, reflecting how 

prevalence is poorly correlated with fitness for predominantly loss-of-function mutations. 

Together, these data indicate a strong mutant allele-specific selective pressure for composite 

mutations that evolve along a chronology driven in part by oncogenic fitness.

Phase and function

The elevated rate of likely driver mutations in composite mutants led us to investigate their 

allelic configuration. We combined sequencing read support with clonality to phase 

mutations, thereby ensuring composite mutations arose in the same tumor cell population. 

Among evaluable composite mutants, 67% and 19% arose in cis or trans respectively (n = 

977 and 275), while 14% were indeterminate (n = 210). The higher rate of cis mutants 

reflected, in part, reduced sensitivity for detecting trans mutations from the short-read 

sequencing used here, an effect we controlled for in subsequent analyses (see Methods). 

TSGs were significantly more likely to harbor composite mutations in trans (71% in trans, 

n=79 of 111), especially those with two truncating mutations consistent with biallelic 

inactivation. By contrast, composite-mutant oncogenes with two missense mutations were 

largely cis-acting (91%, n=243 of 268; P = 3×10−33, two-sided Fisher’s exact test) (Fig. 3a). 

Composite mutations involving silent mutations exhibited no such difference in phase 

among these genes, suggesting that cis mutant enrichment in oncogenes reflects selective 

pressure. Notably, while not precluding resistance in trans14, all identified secondary 

resistance mutations arose in cis15–17 (n=18; P = 0.02, two-sided Fisher’s test; Fig. 3b, 

Extended Data Fig. 4), suggesting exogenous selective pressures drive, in part, the phase of 

composite mutations.

Despite these patterns, extensive variability existed in the phase of composite mutations in 

individual cancer genes (Fig. 3c). EGFR, TERT, and PIK3CA had the highest percentage of 
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cis composite mutations among oncogenes (88–97%). Remarkably, prevalent cis-acting 

composite mutations were observed even among canonical TSGs, comprising 77.1% of all 

composite mutations in these genes. Here, TP53 was notable as 43% of all phase-able 

composite mutations (n = 70 of 163) were cis-acting and enriched in a cluster of residues 

near the C-terminal end of the DNA binding domain (E287, E285, E271, and R280; Fig. 3d). 

While short-read sequencing technologies restricts phasing to variants within close physical 

proximity and potentially overestimates the prevalence of cis mutations, these data are 

nevertheless inconsistent with conventional loss-of-function via biallelic inactivation and 

may suggest a broader functional effect of composite mutations in TP53 and other TSGs.

To assess the phenotypic consequence of cis-acting composite mutations in the DNA 

binding domain of TP53, we developed an isogenic system for acute TP53 reconstitution. As 

E287D was the most significant residue enriched for composite mutants, we focused on a 

representative TP53 R280T-E287D cis composite mutant. To model its impact in the lineage 

of affected tumors, we transduced KrasG12D p53−/− mouse lung cancer cells with GFP-

labeled retroviral constructs encoding WT, R280T, E287D, or cis R280T-E287D p53 cDNAs 

(residues R277T and E284D in mice) after which GFP-expressing cells were selected and 

RNA sequencing was performed (Fig. 3e, Extended Data Fig. 5a, Supplementary Table 5). 

TP53 mRNA expression was stable and robust, while TP53−/−, TP53R277T, and 

TP53R277T-E284D led to a decrease in p21 (CDKN1A) induction, a surrogate marker of p53 

functionality (Extended Data Fig. 5b–c). TP53E284D cells transcriptionally resembled 

TP53+/+, while TP53R277T cells resembled TP53−/− (Extended Data Fig. 5d). By contrast, 

TP53R277T-E284D cells had a mixed transcriptional phenotype, bearing a dominant 

differential expression signature equivalent to the one induced by either TP53R277T or 

TP53−/− while retaining a TP53E284D-like down-regulation of the AP-1 transcription factor 

program (Fig. 3f, Extended Data Fig. 5e). These data correlated with human tumor 

genomics, whereby null-like TP53 R280T was common, but TP53 E287D was rare and 

nearly always arose as a composite mutation (Extended Data Fig. 5f). A second cis-acting 

composite mutant (TP53R277K-E282K) similarly promoted a transcriptional program distinct 

from its constituent mutations (Extended Data Fig. 5g). Importantly, TP53R277T-E284D was 

not associated with increased growth in vitro or survival in vivo compared to the individual 

mutations (Extended Data Fig. 5h–i). Collectively, these data suggest that cis-acting TP53 
composite mutations tune mutant p53 transcriptional phenotypes, leading to a selection of 

function absent from null-like single TP53 mutations.

Conditionally dependent mutant alleles

The residue-specific transcriptional phenotypes of TP53 composite mutants suggest broader 

allele-specific selection among composite mutations. We therefore identified individual 

alleles exhibiting an excess of composite mutations (see Methods). In total, 86 mutant 

residues in 24 cancer genes were enriched for arising as composite variants (Q < 0.01) (Fig. 

4a, Supplementary Table 4). Nearly 70% of these mutations occurred in only four genes 

(TP53, PIK3CA, APC, and EGFR), with few reaching saturation for discovery at the current 

cohort size, and 56% also arising as individually significant hotspot mutations (Fig. 2b and 

Extended Data Fig. 6)13. As with TP53, several TSGs had mutant allele-specific enrichment 

that may suggest selection for something other than conventional loss-of-function. In 
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PIK3CA, mutations enriched for composite mutants (E726, E453, K111, R108, R93) were 

nearly always in cis when phase-able and often arose through APOBEC-associated 

mutagenesis (Extended Data Fig. 7). Notably, composite PIK3CA mutations drive elevated 

PI3K activity, downstream signaling, cell proliferation, tumor growth, and may increase 

PI3K inhibitor sensitivity18, confirming that in addition to introducing passenger mutations, 

APOBEC and other mutational processes create numerous functional driver mutations.

Multiple significant residues appeared to be conditional alleles, rarely arising without a 

second cis activating mutation (Extended Data Fig. 8a). Among these were EGFR-mutant 

residues (E709, V834, and L833)19 and the TERT promoter mutation 205G>A (Fig. 4a). 

TERT promoter mutations are common in human cancer20 and create novel GABPA binding 

sites that promote aberrant telomerase activity21. 205G>A was the sixth most common 

TERT promoter mutant and exclusively arose in cis (n = 13 of 13) with either the highly 

prevalent 228G>A or 250G>A hotspots which, despite their frequency, were never together 

in composite (Extended Data Fig. 8b). To test if 205G>A synergizes with existing promoter 

mutations to enhance TERT expression, we expressed constructs with a luciferase reporter 

engineered to contain various TERT promoter mutations alone or as cis composite mutants 

in three melanoma cell lines (A375, Sk-Mel2, and Sk-Mel30). TERT205G>A induced modest 

TERT expression compared to wildtype, but less than TERT228G>A or TERT250G>A alone. 

Consistently, TERT205G>A creates a novel motif that GAPBA binds with lower affinity than 

those created by canonical TERT hotspots (Extended Data Fig. 8c). The selective pressure 

for TERT205G>A is therefore likely based on the cooperativity of tandem motifs associated 

with it and canonical promoter hotspots bound by GABPA heterotetramer complexes21. 

When expressing TERT205G>A as a cis-composite with either TERT228G>A or TERT250G>A, 

thereby modeling the 205G>A-mutant human tumors, TERT expression increased relative to 

either mutation alone (Fig. 4b). These data suggest that 205G>A is hypermorphic, driving 

modestly elevated TERT expression that is weakly selected for and therefore does not arise 

as an individual hotspot mutation, but is instead a conditionally dependent composite allele.

Our results indicate that composite mutations are driver alterations whose selective 

advantage appears to be primarily determined by their allelic configuration and context. No 

single model explains the context-dependent phenotypic consequences of composite 

mutations. In some cancer genes whose function is dosage-dependent, cis-acting composite 

mutants are additive and arise predominantly in weakly oncogenic alleles and genes (e.g. 

PIK3CA22–24). This suggests an evolutionary model whereby the second mutation arises 

through selection for hypermorphic activity beyond the level sufficient for activation by the 

first allele. In other genes like TP53 whose phenotypic consequences are manifold, cis 
mutants seem to drive functional innovation. There, the evolutionary advantage consistent 

with our results is via tuning subtle phenotypic differences conferred by the asymmetric 

combination of the output of individual mutations. Mutant cancer genes must ultimately be 

considered, both biologically and clinically, in their allelic context, with implications for our 

understanding of cancer gene function, malignant phenotypes, and therapy.
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Methods

Prospective sequencing cohort

Somatic mutation data consisted of 34,650 tumor and matched normal specimens from 

31,359 patients with prospectively characterized solid cancers. All patients provided written 

informed consent and were prospectively sequenced as part of their active care at Memorial 

Sloan Kettering Cancer Center (MSKCC) between Jan. 2014 and Apr. 2019 as part of an 

Institutional Review Board-approved research protocol (NCT01775072). Details of patient 

consent, sample acquisition, sequencing and mutational analysis have been previously 

published25,26. Briefly, matched tumor and blood specimens for each patient were sequenced 

using MSK-IMPACT, a custom hybridization capture-based next-generation sequencing 

assay. All samples were sequenced with one of three incrementally larger versions of the 

assay encompassing 341, 410, and 468 cancer-associated genes, respectively. The study 

cohort consisted of tumors samples with one of 429 distinct cancer subtypes. For the 

purposes of grouping histological subtypes into primary cancer diagnosis, we utilized the 

OncoTree structured classification of disease (http://oncotree.mskcc.org). Histologic 

subtypes of fewer than 50 tumor samples were aggregated into a miscellaneous category and 

non-solid tumor types were excluded from the study cohort (as well as from analyses of The 

Cancer Genome Atlas data), resulting in a final cohort of 41 distinct tumor types.

Mutational data and annotation

Somatic nonsynonymous substitutions and small insertions and deletions (indels) were 

identified with a clinically validated pipeline as previously described26,27. Each mutation 

was classified as likely functional if it was previously reported as a mutational hotspot12,13 

or was part of a cluster of spatially co-located residues that arose in physical proximity in 

the folded protein in three dimensions28. Truncating variants were considered likely 

functional if they arose in known tumor suppressor genes based on gene function curated by 

OncoKB29. Finally, any additional somatic mutations not satisfying the aforementioned 

criteria were similarly annotated as likely functional if previously curated via literature 

mining by OncoKB as oncogenic, likely oncogenic, or predicted oncogenic29.

For all composite mutants where one or both mutations were a known therapeutic target or 

known resistance mutation as defined by OncoKB levels 1–4, R1, or R2 alterations 

(annotation as of April 2019), each mutation was manually reviewed and classified as a 

likely resistance mutation based on the cancer type of the affected tumor sample, the 

existence of known resistance mutations to commonly-used targeted therapies indicated for 

the given cancer type, and if available, review of the clinical histories of affected patients. 

Composite mutations in which one mutation was an established second-site mutation (e.g. 

EGFR T790M in non-small cell lung cancer17 and AR mutations in prostate cancer 

mediating resistance to anti-androgen therapy) were always classified as resistance 

mutations. Notably, composite mutations in only 3.4% of cases in this advanced and post-

treatment cohort have been associated with therapy resistance, indicating that prior therapy 

exposure alone cannot explain their prevalence. However, as detailed clinical histories 

including prior lines of treatment and response phenotypes were not available for all 
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patients, a small number of composite mutations are likely misclassified as non-resistance-

associated.

Mutational burden classification

Tumor samples were classified as hypermutated if they harbored either microsatellite 

instability/mismatch repair deficiency, DNA polymerase epsilon (POLE)-mediated ultra-

mutation, or temozolomide (TMZ)-induced hypermutation30. Microsatellite instability 

(MSI) was considered present for any tumor with an MSISensor31 score of greater than or 

equal to 10 as previously clinically validated32. Tumor samples with POLE, MMR, and 

TMZ-induced hypermutation were identified by mutational signature decomposition 

analysis. Briefly, in each tumor specimen with 20 or more substitutions, the proportion of 

mutations attributable to each of 30 known somatic mutational signatures were calculated 

based on a basin-hopping algorithm (https://github.com/mskcc/mutation-signatures)33. This 

method uses the distribution of 96 unique trinucleotides generated by 6 possible C or T-

normalized single-nucleotide substitutions (i.e. C>A, C>G, C>T, T>A, T>C, T>G) and their 

5’ and 3’-adjacent bases to estimate the fraction of mutations attributed to each mutational 

signature in each specimen. Tumor specimens for which at least 20% of its substitutions 

were attributed to POLE (signatures 10 or 14), TMZ (signature 11), or MMR (signatures 6, 

15, 20, 21, 26) were classified as hypermutated.

To classify tumor specimens with a high mutational burden compared to the majority of 

cancers of that type, but that otherwise lack one of these known mechanisms of 

hypermutation, we performed in each individual cancer type of greater than 50 tumor 

specimens 1-dimensional k-means clustering of the mutational burden of all tumors 

(nonsynonymous exonic mutations per Mb). Between 1 and 9 clusters were inferred to best 

describe the distribution of mutational burden per cancer type. The cluster of lowest 

mutational burden centered at 20+ mutations/Mb and accounting for <10% of the samples in 

tumor type established the threshold for high mutational burden, and all tumor specimens in 

this cluster or those clusters with higher mutational burden were considered high mutational 

burden.

Composite mutation identification and annotation

For the purposes of this analysis, a composite mutation was the occurrence of two or more 

somatic mutations to the same gene within a single sequenced tumor specimen. Carriers of 

pathogenic germline variants with a second somatic mutation were not considered here. We 

identified composite mutations as arising due to somatic hypermutation or high mutational 

burden of unknown etiology (as defined above), or a mechanism of resistance to targeted 

therapy per the aforementioned annotation in non-hypermutated tumors. Any composite 

mutation arising in a hypermutated tumor was considered separately and excluded from 

primary analyses unless otherwise noted. All composite mutations not meeting these criteria 

were analyzed further.

Population, gene, and residue-specific composite mutation enrichment testing

Multiple somatic mutations will accumulate in a gene in the absence of selection at a rate 

that correlates with the mutational burden and mutational mechanisms of a given tumor. 
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Using a permutation-based framework, we simulated the burden of composite mutations for 

a given tumor mutation burden. Briefly, the true number of tumor specimens harboring a 

composite mutation was calculated (ntrue). We assembled an m x 2 matrix, where m is the 

total number of nonsynonymous somatic mutations in our cohort. Each row in the matrix 

identified the sample and the gene in which a particular mutation arose. We constructed a 

null distribution by randomly permuting the second column of this matrix 100,000 times, 

thereby preserving the mutation burden of each gene and each tumor specimen. Upon each 

iteration, the number of tumor specimens harboring a composite mutation was reassessed. 

An empirical p-value was calculated as the fraction of permutations satisfying ni ≥ ntrue. We 

used the same procedure for assessing the enrichment of composite mutations for tumor 

samples in ranges of specific mutational burdens.

To test for enrichment or depletion for composite mutations within cancer types (in cancer 

types with greater than 50 profiled tumors), we used a modified permutation analysis 

controlling for the underlying gene-specific tendency for mutated genes within each cancer 

type to harbor a composite. To do so, we defined a mutation event to be a tumor sample-

mutated gene tuple. A mutation event (s,g) occurs when a tumor sample s was found to 

harbor one or more mutations to a gene g. Then, we implemented a permutation analysis that 

shuffles mutations across samples in a manner that preserves 1) gene mutation burden, 2) 

tumor sample mutation burden, and 3) the total number of mutation events that were 

observed in that cancer type using the permatswap function in the R package vegan34. This 

final constraint enforces that the number of non-zero entries in the mutation event matrix 
(the binary matrix of patients and genes) remains constant for each permutation. This 

constraint is particularly relevant in cancer types whose mutation burden is dominated by 

genes that are depleted of composite mutations (e.g. KRAS in pancreatic cancer, BRAF or 

KRAS in thyroid cancer).

We evaluated the enrichment of composite mutations in each gene by modeling composite 

mutation burden as a function of genomic covariates, testing the likelihood of the observed 

number of composite mutations (corresponding to the probability of observing this burden of 

composite mutations by chance) using a binomial test. To parametrize p (the background 

rate of composite mutations in the absence of selection for each gene g), we estimated the 

expected number of composite mutated samples in a gene nc from the total number of 

samples with an observed mutation in the gene ns, such that pg = nc
g/ns

g. Dropping the 

superscript for clarity, nc was estimated for each gene using negative binomial regression to 

model the observed number of composite-mutant samples in a gene nc as a function of the 

global background rate of composite mutations across all genes, adjusted for multiple 

covariates per gene including its replication timing r, coding sequence length l, the percent 

of GC content g and the chromatin state of the gene h. Coding sequence length and percent 

of GC content were obtained from the Biomart community portal35 for Ensembl human 

reference genome GRCh37. For the purposes of statistical testing, the non-coding promoter 

region of TERT was added as a distinct unit (gene) for which we computed distinct values of 

percent GC content and length for the region targeted by the MSK-IMPACT assay design. 

Replication timing and chromatin state for each gene were obtained from previous 

estimates9. Additional covariates included the version of the MSK-IMPACT assay in which 
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the gene was introduced i, and the average total DNA copy number of the gene across its 

mutated samples t. As the composite mutation rate for a gene depends on both the number of 

composite mutant tumors and the number of samples mutated (i.e. the exposure for the count 

of composite mutants), an offset term was added to the model that represents the log-number 

of tumor samples harboring mutations in the gene of interest. The observed number of 

composite mutant tumors for a gene was therefore modelled:

nc NB r + l + g + ℎ + i + t + offset log ns

Using this model, we predicted the number of composite mutant tumors for each gene 

arising by chance nc, calculating the expected fraction of samples with a composite mutation 

(out of the total number of mutated samples) in each gene p. We then used a binomial test to 

evaluate the null hypothesis that for each gene the observed number of composite mutations 

arose due to random chance. Here, we modeled the incidence of composite mutations per 

gene using a binomial distribution, and calculated the probability of ns tumor specimens 

harboring composite mutations in nc tumor specimens by chance given p:

Pr X ≥ nc = ∑
i = nc

ns ns
i pi 1 − p ns − i

Our parameterization p was estimated using nonsynonymous mutations, including those 

under positive selection in cancer (e.g. hotspots), which may reduce overall model 

sensitivity. We therefore evaluated one of multiple alternative parameterizations of p, 

including using 1) nonsynonymous mutational data that excludes known hotspot mutations 

under selection, and 2) only synonymous mutations. Neither alternative parameterization 

produced a qualitatively distinct result for genes originally detected as significantly enriched 

but did increase the overall sensitivity of the test. To ensure appropriate control for potential 

false positive findings, we leveraged the parameterization from the complete dataset on 

nonsynonymous mutational data. Moreover, we observed no difference in the rate of 

synonymous mutations among genes that were either enriched for composite mutations or 

not (P = 0.2, Mann-Whitney U test), indicating there was little evidence for the 

accumulation of variants in the absence of selective pressure.

Finally, all unique individual mutant residues present in five or more non-hypermutated 

cases excluding known or likely resistance mutations were also assessed for the significance 

of their enrichment for arising as composite mutations. All missense, nonsense, splice-site, 

and translation start-site mutations at a given residue were included, as were unique mutant 

positions in the promoter of TERT and in-frame indels spanning known hotspots of clustered 

indels13. For each residue in a given gene, we assessed whether it arose as part of a 

composite mutation significantly more often than all other mutant residues in the same gene 

using a right-sided Fisher’s exact test. Mutant residues were considered significant at FDR-

corrected Q < 0.01 (see below).
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Attributing mutations to mutagenic processes

We attributed the individual variants that comprise composite mutations to a mutational 

origin using one of 30 established mutational signatures36,37. Mutational signature 

decomposition in each tumor was performed as described above and a signature was 

considered present if it accounted for five or more substitutions in the affected specimen (to 

ensure high confidence decompositions in targeted sequencing data with comparatively 

fewer mutations relative to broader-scale sequencing). Multiple signatures of the same 

etiology were merged by combining the frequency distribution of trinucleotide contexts 

(APOBEC signatures 2 and 13; MMR signatures 6, 15, 20, 21, and 26; Smoking-associated 

signatures 4, 18, 24, and 29). A substitution was attributed to a mutational signature present 

in a given case if the probability weight of the relevant trinucleotide exceeded 10%. For 

substitutions attributed to multiple signatures present in an affected tumor, it was attributed 

to the signature that was most frequently associated with the affected cancer type. To adjust 

for the non-specificity of trinucleotide context probabilities for smoking-associated 

signatures, C>A mutations regardless of trinucleotide context were considered smoking-

associated in tumors for which mutational signature decomposition identified a smoking 

signature (in esophageal squamous and adenocarcinomas; head and neck squamous; 

hepatobiliary; hepatocellular; lung squamous, adenocarcinoma, and adeno-squamous, oral 

cavity, and renal cell carcinoma)38. Substitutions of a trinucleotide context of insufficient 

probability in any signature in an affected tumor was considered of ambiguous origin and 

not attributable while those mutations that could be attributed to aging and another signature 

present in a given tumor was considered non-separable and classified has being of multiple 

signatures.

Finally, we also considered several additional mechanisms that can drive site-specific 

mutation rates as potential sources of composite mutations39,40,41. First, we estimated the 

mutation rate within 1kb up- and downstream of all nucleosome dyads (obtained from 

https://bitbucket.org/bbglab/nucleosome-periodicity/src/master/) mapping to regions 

sequenced in the MSK-IMPACT panels. Having fit a spline to the mutation rate distribution, 

we calculated the full-width-half-maximum distances from the dyad and compared the rate 

of singleton and composite mutations within this region (Extended Data Fig. 2b). We 

conducted a similar analysis on the potential effect of active coding transcription factor 

binding sites (TFBSs) on composite mutations. We obtained the positions of active TFBS in 

coding regions of the genome via integration with DHS binding sites in human melanocytes 

following an established procedure40. The mutation rate within 1kb of these active TFBS 

were inferred using TCGA cutaneous melanoma samples from the TCGA MC3 dataset to 

increase the total number of mutations among melanoma samples. We then assessed the 

proximity of singleton and composite mutations to the elevated mutation rate at TFBS sites 

as described for nucleosome dyads (Extended. Data Fig. 2).

To investigate the effect of APOBEC3A-mediated mutagenesis, we obtained the position of 

the optimal stem-loop DNA structure favored by APOBEC3A from published sources41. We 

investigated the overlap of such optimal sites with those mutant alleles enriched for arising 

as a composite mutation. In total, only 1 of 86 significant residues enriched for arising as 

composite mutations was at the position of the optimal APOBEC3A substrate (ARID1A 
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S2264). Finally, we compared the rate of composite mutations involving known hotspot 

mutations as described above with those derived from an orthogonal method optimized to 

reduce false positive mutations due to site-specific mutagenesis42. Controlling for 

overlapping gene content, there was no difference between the proportion of composite 

mutations involving hotspot mutations based on the origin of the hotspot mutations [percent 

and 95% CI are: 9.6 (9.2–10) versus 10 (9.6–10.5), P = 0.2, two-sample Z-test], indicating 

no excess of false positive hotspots due to site-specific mutagenesis are driving the results 

described here.

Phasing composite mutations

The allelic configuration of composite mutations (phase), in cis (arising on the same allele) 

or in trans (arising on different alleles), was inferred primarily from sequencing read 

support. Briefly, for each pair of somatic mutations in a composite mutant, all reads 

spanning the relevant loci were re-aligned to the reference genome (hg19) by pairwise 

sequence alignment using a Needleman-Wunsch algorithm43. The number of unique reads 

supporting both wildtype alleles (AB), both mutant alleles (ab), or a mixture of mutant and 

wildtype alleles (aB, Ab) were subsequently tabulated. For the purposes of the present study, 

composite mutations were classified in cis when: 1) three or more spanning reads supported 

both mutant alleles (ab ≥ 3), and 2) at least one of these variants was called by two or fewer 

spanning reads that called the other variant as wildtype (aB ≤ 2 | Ab ≤ 2). Composite 

mutations were classified in trans when: 1) each variant was supported by three or more 

reads that were simultaneously wildtype for its partner mutation (aB ≥ 3 and Ab ≥ 3), and 2) 

two or fewer reads called both mutant alleles (AB ≤ 2), and 3) the mutations arose in the 

same tumor cell population based on their cancer cell fractions (CCFs, see above). We note 

that there is an inherent difference in the sensitivity of detection for cis and trans variants, 

specifically that trans variants must satisfy at least two read-support positive criteria (aB ≥ 3 

and Ab ≥ 3) and are required to be in the same cell, whereas cis variants require only a 

single positive criterion (ab ≥ 3) without any constraint of evidence for arising in the same 

cell. This difference in sensitivity for detection likely explains, to some extent, the increased 

number of cis relative to trans composite mutations. To determine the effect of this 

sensitivity bias, we also phased variants with at least one synonymous mutation. We 

observed no difference in the rate of synonymous composite mutations in oncogenes versus 

tumor suppressors (5% vs 7%, P = 0.2, Mann-Whitney U test), in contrast to the significant 

difference in nonsynonymous composite mutations (14% vs 35%, P <10−6). To control for 

differences in the sensitivity of detection of cis and trans mutations, analyses of the effects of 

allelic configuration on composite mutations compared the relative fraction of cis/trans 

mutations between two defined groups (e.g. oncogenes vs. TSGs).

We additionally inferred the phase of select composite mutants associated with therapeutic 

resistance mutations in regions of clonal loss of heterozygosity [(copy-neutral-) LOH]. 

Composite mutants spanned by LOH were assumed in cis if the spanning locus had a minor 

copy number of zero and a total copy number of one or more (LOH via heterozygous loss, 

copy-neutral LOH, or the latter combined with subsequent genomic gains) inferred from the 

aforementioned purity-corrected integer copy number data from FACETS. These must also 

have arisen in the same tumor cell population as estimated from CCFs (as described above) 
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and their observed mutant allele frequencies (MAFs) were approximately equal to the 

expected MAFs for a given copy number state in a cis allelic configuration (95% CIs of the 

observed MAF overlap the expected MAF of the given copy number configuration, 

controlling for tumor purity). Composite mutations not satisfying any of the aforementioned 

conditions were not able to be unambiguously phased.

As with other short-read sequencing data, our phasing approach is limited by the 

requirement that any two mutations arise within sufficient physical proximity in the genome 

to be spanned by common aligned sequencing reads. While the higher depth of sequencing 

coverage in our targeted clinical sequencing platform (~700-fold median in the tumor 

samples) does increase the likelihood of sequencing a fragment of tumor DNA 

encompassing both somatic mutations, and improves the quantification of CCFs by reducing 

measurement error8, this limitation cannot be overcome with short-read sequencing.

Assessing cellular context and molecular timing

We estimated the clonality of all somatic mutations in each affected tumor specimen (the 

cancer cell fraction or CCF) as described previously using the FACETS framework8. To 

ensure conservative estimates, all somatic mutations were conservatively assumed to have 

arisen on the major (more common) allele, thus minimizing the possibility of overestimating 

the CCF. To determine if the constituents of a composite mutation arose in the same cell, we 

defined a criterion based on the confidence intervals (CIs) of the CCF. Specifically, if the 

sum of the lower 95% CIs for each mutation CCF summed to greater than 1, the two somatic 

mutations in the same gene and tumor specimen were considered to exist within the same 

cancer cell population. If either of the two somatic mutations were clonal (the upper 95% CI 

overlapped 1), then both mutations were considered to have arisen in the same tumor cell 

population.

We inferred the chronological order of two somatic mutations in each composite mutation 

based on their estimated CCFs. Any mutations previously associated with acquired 

resistance to targeted therapies were excluded, as these will arise after the originating 

sensitizing lesion and skew results. Only composite mutations determined to arise in the 

same tumor cell population (based on the sum of CCFs, described above) were considered 

and required previous evidence establishing both mutations as candidate functional driver 

mutations individually. The 95% CI of the CCFs of both mutations were inferred as 

previously described44. If the lower 95% CI was greater than the upper bound of the other 

variant, then the first mutation was determined to have a greater clonality, and therefore to 

have arisen first in the tumor. Similarly, if the upper 95% CI of a mutation was less than the 

lower bound of the other mutation in the composite, it was considered to have arisen second. 

If the 95% CIs of CCFs of the two mutations in the composite overlapped, or if there was 

not sufficient evidence that the two mutations existed in the same cancer cell population in 

the affected tumor specimen, we considered their chronology to be indeterminate.

TP53 composite mutation analysis and validation studies

For the generation of MSCV-p53-IRES-GFP constructs (pMIG-p53 cDNAs), methods were 

as follows. Fragments encoding wildtype, single, or composite mutant p53 cDNAs were 
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obtained from IDT or SGI-DNA and cloned into pMIG (Addgene #9044) using standard 

restriction enzyme-based methods. Briefly, p53 cDNAs were amplified using primers that 

add BglII and EcoRI restriction sites on the 5’ and 3’ regions, respectively, and subsequently 

digested and cloned into linearized pMIG backbone harboring BglII and EcoRI cloning 

overhangs. All constructs were sequence-verified using Sanger sequencing. Primer 

sequences are available in Supplementary Table 5.

HEK293T (ATCC CRL-3216) cells were obtained from ATCC. Murine KrasG12D/+;Trp53−/− 

(KP) lung adenocarcinoma (LUAD) cells were provided by the Jacks laboratory 45. All cells 

were maintained in a humidified incubator at 37°C with 5% CO2 and grown in DMEM 

supplemented with 10% FBS and 100 IU/ml penicillin/streptomycin. For virus production, 

7.5 million HEK293T cells were plated in 15cm plates the day before transfection. The 

following day cells were transfected with 10ug pMIG-p53 cDNA (or pMIG-Empty as 

control) and 10ug of pCL-Eco (Addgene #12371) using 50uL of lipofectamine 2000 

(ThermoFisher). Twenty-four hours following transfection media was replaced with fresh 

DMEM. Two rounds of virus were harvested (at 48 and 72hrs post-transfection), pooled, and 

kept at 4°C until used for cell transduction. One million KP LUAD cells were seeded in 

10cm plates and immediately transduced with retroviral supernatants and 8ug/mL polybrene. 

Cells were grown for 48hrs before purifying using fluorescence activated cell sorting 

(FACS). All transductions were done in triplicate. Following transduction, stable GFP+ 

populations were purified by FACS on a FACSAria (BD Biosciences). 120hrs post-

transduction, total RNA was isolated using the RNeasy Mini Kit (Qiagen) following 

standard manufacturer protocols.

Purified polyA mRNA was subsequently fragmented and first and second strand cDNA 

synthesis performed using standard Illumina mRNA TruSeq library preparation protocols. 

Double-stranded cDNA was subsequently processed for TruSeq dual-index Illumina library 

generation. For sequencing, pooled multiplexed libraries were sequenced on NextSeq 

instrumentation in high-output mode, generating approximately 12 million 76bp single-end 

reads per replicate condition. The resulting RNA sequencing data was analyzed by first 

trimming adaptor sequences using Trimmomatic46. Sequencing reads were aligned to 

GRCm38.p5(mm10) using STAR47, and genome-wide transcript quantification was 

performed using featureCounts48. After removing transcripts with fewer than eight aligned 

reads (low undetected expression at given library size, n=9848 transcripts retained), 

differentially expressed genes were identified using DESeq2, with a cutoff of absolute 

log2FoldChange ≥ 1 and adjusted P < 0.01 between experimental conditions49. Mouse genes 

were mapping to human homologs using gene homologies provided by the Mouse Genome 

Database (MGD) Project50. Principal components analysis was performed with output from 

DESeq249. For fluorescent competition assays, FACS-purified KP LUAD cells stably 

transduced with either pMIG-Empty or pMIG-p53-R277T-E284D were mixed ~60:40 with 

untransduced parental cells and cultured in vitro for 10 days. The percentage of GFP+ cells 

was monitored over time using a Guava easyCyte HT flow cytometer (Millipore).

All mouse experiments were approved by the MSKCC Internal Animal Care and Use 

Committee. No pre-specified sample size was required, and 5 or 10 mice per condition were 

utilized. Mice were maintained under specific pathogen-free conditions and food and water 
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were provided ad libitum. Mice (Hsd:Athymic Nude-Foxn1nu, abbreviated Nu/Nu) were 

purchased from Envigo (stock #069). For experiments involving orthotopic transplantation 

of KrasG12D/+;Trp53−/− lung adenocarcinoma (KP LUAD) cells, 100,000 cells stably 

transduced with either empty vector (pMIG-Empty) or p53 mutant cDNAs (pMIG-p53-

R277T, pMIG-p53-E284D, or pMIG-p53-R277T-E284D) were resuspended in 200uL of 

PBS and tail vein injected into 6–8 week old Nu/Nu female mice. These stable cell 

populations were generated and FACS-purified as described above, and injected 120hrs post-

transduction.

TERT promoter mutation analysis and validation

TERT promoter mutations present in five or more patients, accounting for multiple samples 

per patient, were assessed for co-occurrence and mutual exclusivity among composite 

mutations via two-sided Fisher’s exact test. A pair of somatic mutations with P < 0.01 were 

considered co-occurring (or mutually-exclusive) if their log odds ratio was greater (or less) 

than zero. To predict the affinity for GABPA to bind TERT promoter mutant alleles, 31-bp 

DNA sequences for wildtype or mutant TERT centered on each of 205G>A, 228G>A, and 

250G>A (chr5:1295205G>A) mutations were extracted and generated by editing the 

appropriate base. The position frequency matrix for GABPA binding profiles in humans was 

acquired from JASPAR201851 (Matrix ID: MA0062.1), and scores quantifying the predicted 

affinity of GABPA for each TERT promoter sequence were calculated using TFBSTools52. 

Only binding site motifs overlapping the relevant locus in each of the wildtype and mutant 

sequence were retained. P-values quantifying the likelihood of a GABPA binding site in 

each sequence to arise by chance were calculated using TFMPvalue53.

To assess the effect of TERT promoter composite mutations on TERT expression, A375, Sk-

Mel2, and Sk-Mel30 melanoma cell lines were obtained (kindly provided by Rosen and 

Merghoub laboratories). pGL4.0-TERT WT, G228A, and G250A plasmids were provided by 

the Costello laboratory (Addgene plasmids #84924, #84926, #84925)21. pGL4.0-TERT 

G205A, G205A/G228A, and G205A/G250A plasmids were generated using Q5 Site-

Directed mutagenesis kit (NEB, E0554S). All plasmids were verified using Sanger 

sequencing. Thereafter, 1 × 104 cells from A375, Sk-Mel2, and Sk-Mel30 were seeded into 

each well of 96-well plates. Cells were transiently transfected with pGL4.0-empty vector 

(Promega), TERT WT, or mutant plasmids (180ng/well) along with pGL4.74[hRluc/TK] 

Vector (18ng/well, Promega) as internal control using Lipofectamine 3000 (Thermo Fisher). 

Dual luciferase activity measurement was performed 48 hours after transfection using the 

Dual-Luciferase Reporter Assay System (Promega) following the manufacturer’s 

instructions. The firefly luciferase activity of individual wells was normalized relative to 

Renilla luciferase activity. Experiments were performed in biological tetraplicates or 

pentaplicates. To quantify the effect of a specific TERT variant, we compared individual 

genotypes (e.g. G205A to WT) using linear models of Luciferase expression, where we 

controlled for the baseline telomerase expression of each cell line, i.e. luc ~ variant + cell 
line + constant where variant is a binary term encoding the presence/absence of a genotype 

(relative to the chosen reference), and cell line is a factor introduced to control for the 

contribution of each cell line’s baseline expression. All cell lines utilized for either the 
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TERT or TP53 functional validation experiments were authenticated by short tandem repeat 

analysis and confirmed negative for mycoplasma.

Statistical analyses and figures

All statistical analyses were performed using the R statistical programming environment 

(version 3.5.0). Figures were generated using either base R or the ggplot2 library. Error bars 

indicate the 95% binomial CIs calculated using the Pearson-Klopper method, unless 

otherwise noted. CIs for the down-sampling analysis were calculated using the loess.sd 

function from the msir library. P-values for the difference in proportions were calculated 

using Fisher’s exact test or two-sample Z-tests, unless otherwise noted. P-values were 

corrected for multiple comparisons using the Benjamini-Hochberg method and reported as 

Q-values when applicable.

Data and code availability

All mutational data from the prospective sequencing cohort is available at http://

download.cbioportal.org/composite_mutations_maf.txt.gz. Mutational data from The Cancer 

Genome Atlas was acquired from https://gdc.cancer.gov/about-data/publications/

pancanatlas. RNA sequencing data were deposited in the GEO with accession number 

GSE136295. All other genomic and clinical data accompanies the manuscript and is 

available as Extended Data and Supplementary Information. All other materials are available 

upon request from the authors. Source code for these analyses is available at https://

github.com/taylor-lab/composite-mutations.

Extended Data
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Extended Data Fig. 1: Study cohort and rates of composite mutations.
a) Distribution of cancer types in the study cohort. b) The rate of composite mutations 

(22.7% of all tumors) compared to a simulated background rate (black, P = 10−5 from one-

sided permutation test for enrichment with 100,000 random permutation-based simulations 

(no permutation exceeded observed value). c) The observed rate of composite mutations in 

the primary untreated cancers of The Cancer Genome Atlas cohort (n=10,908 solid tumors) 

when controlling for gene content for consistency with the targeted sequencing panel of the 

prospective cohort studied here. In black, null distribution from sampling (see Methods). d) 
The observed and expected rate of composite mutations in tumors of the indicated tumor 

mutational burden (as in Fig. 1b, n=30,505 biologically independent tumor samples with 

TMB ≤ 40, P = 1×10−9 from two-sided Wilcoxon signed-rank test.
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Extended Data Fig. 2: Sources of local hypermutation.
a) The number of composite mutations comprised of two or more constituent variants (top) 

and the distribution of likely causative mutational signatures among them (bottom, see 

legend). Composite mutants comprised of greater than three mutations were increasingly 

produced by APOBEC-associated mutagenesis indicative of localized hypermutation54,55, 

but accounted for a minority of events cohort-wide. b) Left, the somatic mutational data in 

the study cohort reflected the elevated mutation rates previously observed at both the 

positions closest to the nucleosome dyad as well as DNA bound to active transcription factor 

binding sites39,40. However, mutations arising in composite events were proportionally less 

often proximal to such sites (defined here as within the full width at half maximum of the 

peak of mutation rate (red) than were singleton mutations (right, P = 10−27 and 10−47, 

respectively; two-sided two-sample Z-test, n=323,883 single-nucleotide substitutions arising 

in 471 biologically distinct melanoma samples).
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Extended Data Fig. 3: Number and distribution of composite events across genes.
a) The number and percent of cases in the study cohort harboring composite mutations in the 

indicated genes (right) juxtaposed to their overall mutation rate (left). Shown are the genes 

with a significant enrichment of composite mutations (Q < 0.01, FDR-adjusted P values 

from one-sided binomial test for enrichment, n=26,997, as in main text Fig. 2b), limited to 

the top 10 genes by significance in each category of gene function unless fewer. b) The 

significance of enrichment for composite mutations (n and statistical tests as described 

above and in main text Fig. 2b) limited to 168 oncogenes.
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Extended Data Fig. 4: Cis composite secondary resistance mutations.
The cis composite mutations classified as arising in post-treatment specimens due to 

acquired resistance to one of several molecularly targeted therapies in the study cohort.
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Extended Data Fig. 5: Phenotypic characterization of TP53 composite mutants.
a) TP53 R270T-E287D mutant lung adenocarcinoma. Left, mutant allele fractions of clonal 

TP53 mutations consistent with loss of WT TP53 (error bars, 95% binomial CIs). Expected 

mutant allele fractions of different copy number states are shown as horizontal lines. Mutant 

KEAP1 in the same tumor (with LOH) is shown for reference. Right, spanning reads 

indicating cis mutations. b) Right and left, TP53 and CDKN1A mRNA expression in 

KrasG12D/+ p53Mut mouse lung cancer cells expressing distinct p53 genotypes. Bars, average 

of three replicates, error bars are 95% confidence intervals. c) The aggregate Z-score per 

replicate for the mRNA expression of canonical p53 target genes [n=3 replicates per allele; 

box center is median, edges are 25 and 75% quartiles, whiskers are minima/maxima of the 

most extreme values]. d) Principal component analysis (PCA) of the transcriptomes of TP53 
genotypes (n=3 replicates shown per condition). e) Dendrogram as in main text Fig. 3f 

indicating the genes of interest [effectors of the AP-1 transcription factor network 

(PID_AP1_PATHWAY; Q = 1.4e-7 based on mSigDB’s computed overlap with n=5,501 

gene sets from the curated C2 collection)]. f) The prevalence of TP53 R280T and E287D 

mutations (top) and the fraction arising as composite mutants (bottom). In parentheses, 

corresponding mouse alleles. g) PCA of the transcriptomes of the TP53 R277K-E282K 

composite mutation genotypes (as in panel d, n=3 replicates per allele). h) The percentage of 

GFP+ FACS-purified KP LUAD cells stably transduced with pMIG-Empty or pMIG-p53-

R277T-E284D and cultured in vitro for 10 days in a 60:40 mixture with untransduced 
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parental cells (bar indicates mean, error bars are standard deviation, n=3 independent 

infections). i) Overall survival of the indicated genotypes stably transduced in FACS-purified 

KP LUAD cells (n=100,000 cells) and injected into the tail vein of immuno-compromised 

mice.
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Extended Data Fig. 6: Saturation analysis of genes for composite mutation detection.
Down-sampling indicates the number of residues identified as enriched for arising in 

composite mutations in each of four genes (Q < 0.1, FDR-adjusted one-sided Fisher’s exact 

tests as in Fig. 4a; n=1,000 – 26,997 patients per down-sample) as a function of the number 

of tumors sequenced (loess fit is shown with 95% confidence interval). Four genes shown 

that accounted for the greatest proportion of all enriched residues detected (main text Fig. 

4a). EGFR appears to reach saturation for discovery of residues enriched for arising in 

composite, whereas the other genes have not yet reached saturation for discovery at the 

current cohort size.
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Extended Data Fig. 7: Mutational signature attribution among composite mutations.
a) The fraction of all composite mutations identified here in which one or both individual 

mutations could be unambiguously attributed to an established mutational signature. The 

majority of composite variants could not be directly attributed to APOBEC, UV, smoking, or 

other known mutational signatures. b) The fraction of composite mutations per gene in 

which one or both variants could be attributed to an established mutational signature.
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Extended Data Fig. 8: Conditional mutant alleles.
a) The number of affected cases harboring each of the indicated somatic mutations in TERT, 

EGFR, or PIK3CA as either individual mutations (top) or as part of composite mutants 

(bottom). Conditional mutations were defined as those statistically enriched for arising as 

part of composite mutations, but seldom as individual hotspot mutations in cancer 

(predominantly accompanied by a second somatic mutation). b) The incidence of TERT 
promoter mutations and the fraction arising as composite mutations (orange). Bottom, the 

co-occurrence and mutual exclusivity of composite mutations in the TERT promoter (Ps for 

annotated tiles are: five, 0.002; six, 3×10−7; zero, 1×10−25; two-sided Fisher’s exact test, 

n=29,507 patients). c) Transcription factor GABPA binding affinity for mutant and wildtype 

TERT promoter sequences at the 228G>A, 250G>A and the conditional 205G>A allele.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1: Composite mutations in human cancers.
a) Schematic representation of composite mutation discovery and characterization. b) Top, 

statistically significant enrichment (P < 10−5) for composite mutations in tumors of 

increasing tumor mutational burden. Nominal P based on one-sided permutation tests for 

enrichment (100,000 permutations) applied independently to the subset of tumors with each 

indicated TMB (bottom, number of cases), n=30,505 biologically independent tumor 

samples with TMB ≤ 40. c) Proportion of composite mutations including the fraction 

ascribed to mutational processes associated with hypermutation (MSI, microsatellite 

instability; MMR, mismatch repair; TMZ, temozolomide-associated hypermutation; POLE, 

DNA polymerase epsilon-associated hypermutation; cases excluded from analysis unless 

otherwise noted). d) Percentage of cases with composite mutations by cancer gene function. 

P<10−308 (numeric limit, two-sided McNemar’s test; n=29,507 patients). e) Types of 

composite mutations by cancer gene function (P<10−308, numeric limit, two-sided Fisher’s 

exact test; n=5,954 composite mutations). Error bars in panels d-e are 95% binomial 

confidence intervals (CIs).
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Fig. 2: Gene and residue-specific selective pressure for composite mutations.
a) Prevalence of composite mutations by affected gene and lineage (cancer types of >100 

and ≥5 total and composite-mutant cases, n=31,563 samples). Top, percent of cases with 

composite mutations and the expected value based on cohort size and mutational burden. 

Expected values are the mean percentage of 10,000 random permutations for each lineage; 

bars, 95% CIs. b) The significance of enrichment for composite mutations in cancer genes 

(FDR-adjusted P values from one-sided binomial test for enrichment, n=26,997; light gray is 

not significant). c) Hotspot mutation utilization among composite and singleton mutations 

by decreasing population-level frequency (P<10−308, two-sided Mann–Whitney U test, 

n=93,616 and 2,920 singleton and composite missense mutations respectively in 25,037 

patients). Inset, the percent of all missense mutations comprising composite and singleton 

mutants that were individually significant mutational hotspots. P, two-sided two-sample Z-

test for equal proportions, n=105,297 total single-nucleotide variants, error bars are 95% 

binomial CIs. d) Right and left are the proposed and observed temporal order of acquisition 

of two functional variants in composite mutations in oncogenes (from mutation clonality). 

TSGs shown as a negative control. P, two-sided binomial test, error bars in all panels are 

95% binomial CIs (n=336 evaluable composite mutations).
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Fig. 3: Cis- and trans-acting composite mutants.
The phase of composite mutations by their a) type and affected cancer gene (P for starred 

comparisons from left to right are 4×10−4, 2×10−5, 3×10−33, 8×10−24, 8×10−24, and not 

significant was 0.3, two-sided Fisher’s exact test, n=1,062 evaluable composite mutations 

and error bars are 95% binomial CIs); b) association or not with acquired therapy resistance 

(P, two-sided Fisher’s exact test, n=1,198 evaluable composite mutations); c) affected 

individual oncogenes and TSGs (top and bottom, known or predicted functional mutations in 

≥10 phase-able tumors, number of cases with phase-able composite mutations as indicated). 

d) The pattern of TP53 composite mutations with arcing lines indicating the position of pairs 

of mutations in ≥2 tumors; height corresponds to recurrence. At bottom, the number of 

mutated cases at each individual residue and the Q of significance (FDR-adjusted P value 

from one-sided binomial test) for each residue as arising in composite. TAD, transactivation 

domain; OD, oligomerization domain. e) Schematic of the experimental workflow for 

generating isogenic cells for phenotypic comparison of TP53 mutations. f) Heatmap of the 

top 30 differentially expressed genes between TP53R277T-, TP53E284D-, and 

TP53R277T-E284D-mutant cells.

Gorelick et al. Page 30

Nature. Author manuscript; available in PMC 2020 November 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 4: Mutant allele-specific enrichment for composite mutations.
a) Enrichment significance of individual mutant residues arising in composite mutations 

(n=1,821 distinct mutant sites tested; n=155,241 variants overall) compared to significance 

of composite enrichment among genes (Q for mutant sites is FDR-adjusted one-sided 

Fisher’s exact test and Q for genes, refer to Fig. 2b). b) The degree of TERT expression 

induced by transient transfection of the indicated mutations individually or as cis composite 

in three melanoma cell lines. Shown is average and standard error (error bars) across n=4 or 

5 replicates per allele. P, two-way ANOVA assessing expression as a function of genotype 

and baseline expression of each cell line (see Methods); at bottom, P<10−8 values from left 

to right are 3×10−9, 1×10−9, 2×10−9, and 2×10-11.
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