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Abstract: As COVID-19 dispersion occurs at different levels of gradients across geographies, the ap-
plication of spatiotemporal science via computational methods can provide valuable insights to direct
available resources and targeted interventions for transmission control. This ecological-correlation
study evaluates the spatial dispersion of COVID-19 and its temporal relationships with crucial demo-
graphic and socioeconomic determinants in Malaysia, utilizing secondary data sources from public
domains. By aggregating 51,476 real-time active COVID-19 case-data between 22 January 2021 and 4
February 2021 to district-level administrative units, the incidence, global and local Moran indexes
were calculated. Spatial autoregressive models (SAR) complemented with geographical weighted
regression (GWR) analyses were executed to determine potential demographic and socioeconomic
indicators for COVID-19 spread in Malaysia. Highest active case counts were based in the Central,
Southern and parts of East Malaysia regions of Malaysia. Countrywide global Moran index was 0.431
(p = 0.001), indicated a positive spatial autocorrelation of high standards within districts. The local
Moran index identified spatial clusters of the main high–high patterns in the Central and Southern
regions, and the main low–low clusters in the East Coast and East Malaysia regions. The GWR
model, the best fit model, affirmed that COVID-19 spread in Malaysia was likely to be caused by
population density (β coefficient weights = 0.269), followed by average household income per capita
(β coefficient weights = 0.254) and GINI coefficient (β coefficient weights = 0.207). The current study
concluded that the spread of COVID-19 was concentrated mostly in the Central and Southern regions
of Malaysia. Population’s average household income per capita, GINI coefficient and population
density were important indicators likely to cause the spread amongst communities.

Keywords: spatial analysis; regression modelling; COVID-19; Malaysia

1. Introduction

Place, person and time forms the cornerstone of epidemiological investigations to-
wards determining the distribution and determinants of disease occurrence in a particular
population [1]. The revolution of infectious-disease epidemiology has enabled outbreak
investigators to potentially navigate from using conventional “spot maps” to a more robust
computational measurement maneuvered via geographical information systems (GIS), that
fundamentally yields “heat maps or choropleths” for visualizing patterns and distribution
of disease outbreaks in modern public health practice [2]. Population health data science,
real-time data interpretation via GIS and big data applications fundamentally can provide
continuous information flow in routine surveillance output for rapid interventions [3,4].
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But during pandemic times, as dispersion of infections penetrate even at the smallest
level of administrative units within the population, it would be worthwhile to implement
mitigation or suppression interventions targeted based on the intensity of the outbreak in a
particular place. Having generalized interventions to the whole population would not be
cost effective, as governments need to optimize available healthcare supplies and strategies
to break the chain of transmissions.

The ongoing coronavirus disease 2019 (COVID-19) has accelerated investments in
global health security to mitigate the spread of transmissions at the country and inter-
national level. But the biological structure of the virus studied via genomic sequencing
have alarmed nations worldwide that the COVID-19 virus will undergo rapid mutations
at a pace never seen in history of pandemics, with emerging variants being more likely
to cause unprecedented outbreaks in human populations [5,6]. To avoid wide-ranging
socioeconomic disruptions, many countries are accelerating vaccination programs for their
population, and opted to name COVID-19 as a disease of “endemicity” [7]. As vaccine
effectiveness (duration of protection) has yet to be confirmed, individuals will be consis-
tently susceptible to infections. Outbreaks may be precipitated to occur at a logarithmic,
exponential or geometrical sequence [8,9]. Under these circumstances, it is crucial to plan
and execute targeted interventions by taking into account the space of inhabitants, in the
quest to equilibrize between lives and livelihoods.

The bulk of COVID-19 literature to date at the time of writing were mostly prediction
and deterministic models of stochasticity related to reproduction numbers, epidemiological
features and mortalities [10–15]. Although these works are essential to estimate policy
and response capacity of health systems during pandemic times, they were not powered
to explore the diffusion of the COVID-19 spread according to space [16]. Understanding
the aspects of transmissibility based on place would be crucial to execute disease control
and harm reduction strategies. While the spatial dispersion of COVID-19 has observed
specific flows within regions or territories from different countries [17–23], their temporal
relationships vary, in particular to those related to social determinants of health as a
medium of spread for COVID-19 [18,22,24]. Malaysia was nearly successful in containing
the outbreak in the previous two waves [25,26], but the current third wave of the pandemic,
likely to be caused by spillover effects of a regional state election in late 2020 [27], seemed
difficult to contain. To date, there were no spatial epidemiological studies in Malaysia,
although incidence cases were heterogenous across different geographies in the country. As
spatial dynamics of disease outbreaks were primarily observed within different gradients,
determined by location and influenced by local attributes, the current study was aimed
to analyze patterns of COVID-19 dispersion in Malaysia and to subsequently determine
their relationships with potential demographic and socioeconomic indicators via multiscale
autoregressive and geographical weighted regression models.

2. Materials and Methods
2.1. Study Population, Design and Setting

Between 22 January and 4 February 2021, a nationwide ecological-correlation study was
conducted in Malaysia, involving 51,476 active COVID-19 cases spread across 144 districts in
13 states, 3 Federal Territories, and 5 regions (Northern, Central, East Coast, Southern, and
East Malaysia) (Figure 1).
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Figure 1. District-wise distribution across states and regions in Malaysia. Dark boundaries represent
borders between states; light boundaries represent borders between districts; color shaded areas
represent regions.

2.2. Data Source and Indicators

District-wise 14-days moving data of COVID-19 active cases was retrieved from the
Ministry of Health Malaysia COVID-19 official webpage (http://covid-19.moh.gov.my,
accessed on 4 February 2021); retrieval point—4 February 2021 [28]. The data was obtained
during Malaysia’s third wave of the pandemic, just before the re-enactment of a country-
wide lockdown. A revised overall forecast of Malaysia’s population stratified by region and
district in 2019 was obtained from the Malaysian Population and Housing Census [29]. The
total area in square kilometers (km2) was obtained from the Malaysian Survey and Map-
ping Department [30]. Administrative shapefiles and district coordinates were obtained
from the Malaysia-Subnational Administrative Districts Data, United Nations Office for
Coordination of Humanitarian Affairs [31]. States within Malaysia’s regional boundaries
were classified according to the National Population Housing Scheme (PRIMA) [32].

Population density was calculated as the total number of inhabitants in each district
per square kilometer [33]. District-level national socioeconomic indicators such as the
GINI coefficient and average household income per capita were extracted from the 2019
Household Income and Basic Amenities Survey Report [34]. Ethnic proportions for each
district were obtained from the Department of Statistics Malaysia [35]. List of government
health clinics that provide coverage to primary healthcare services were retrieved from
Malaysia Open Data Portal [36].

2.3. Statistical Analysis

All districts were chosen as the unit of analysis. The total estimated population for all
districts in Malaysia as of 2019 was 33,531,200 people [29]. COVID-19 incidence by adminis-
trative districts was the main outcome measure in this study. As cases retrieved were count
data, the numerical values were subjected to a transformation process in order to facilitate
direct applications of spatial analytics method with continuous variables such as Moran’s I
statistics [37]. Based on this limitation, district-wise incidence of COVID-19 was calculated
as the ratio between absolute numbers of cases in each district (numerator) and the total
resident population at risk of that particular district according to the 2019 Population and
Housing Census of Malaysia (denominator), with the constant set as 10,000 inhabitants.
The QQ-plot (Figure 2) showed that the incidence of COVID-19 distribution in this study
was not Gaussian, hence a log transformed procedure was applied for the continuous
variable to approach a normal distribution. Such techniques were utilized to study spatial
structures of COVID-19 in recent investigations [38,39]. Following these requirements,
the current study’s main outcome measure was thus the logged transformed COVID-19
incidence; hereinafter, regarded as “COVID-19 incidence” throughout this paper.

http://covid-19.moh.gov.my
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At the descriptive level, exploratory spatial analysis was used to generate thematic
quintile maps. Next, spatial dependence was tested based on the global Moran index, which
identifies spatial autocorrelation that varies between −1 (a negative spatial autocorrelation
that identifies occurrence of COVID-19 approaching a scattered pattern) and +1 (a positive
spatial autocorrelation that identifies occurrence of COVID-19 approaching a clustered
pattern), while a value near zero (0) refers to the occurrence of COVID-19 approaching
towards a random distribution (absence of spatial autocorrelation), subjecting that the
values were to be statistically significant at p < 0.05 [38]. Subsequently, local autocorrelation
(local index of spatial association—LISA) was tested using the local Moran index, which
verifies the weightage value of the districts with its neighbors through determination of
spatial patterns [38]. The generated LISA significance maps would principally identify
four quadrants according to the local Moran index values: high–high (districts with high
rates of COVID-19 incidence surrounded by neighbors with high rates), low–low (districts
with low rates of COVID-19 incidence surrounded by neighbors with low rates), high–low
(districts with high rates of COVID-19 incidence surrounded by neighbors of low rates)
and low–high (districts with low rates of COVID-19 incidence surrounded by neighbors of
high rates), by taking into consideration values of p < 0.05 as statistically significant. The
high–high and low–low groups were classified as areas of conformity, while high–low and
low–high groups indicated epidemiologically transitional areas of COVID-19 incidence [38].
The bivariate Moran’s I was determined to examine correlates of COVID-19 incidence.

Multivariate global and local regression models were performed to yield potential
indicators of COVID-19 incidence in Malaysia. In view of socioeconomic vulnerabilities,
demography and potential barriers to healthcare access during pandemic times, the fol-
lowing indicators were tested as potential predictors for COVID-19 spread in Malaysia:
race (percentage of Bumiputera, Chinese and Indians) [35]; GINI coefficient; average house-
hold income per capita; coverage of primary healthcare; and population density (logged).
The Ordinary Least Square (OLS) model is a global regression model set as a baseline for
comparison to other models. OLS excludes weightage of geographical distribution of the
pandemic; however, it is capable of determining the relationship between independent
variables and COVID-19 incidence counts. To control for spatial effects, additional Spatial
Autoregressive (SAR) models were fitted: Spatial Lag Model (SLM) and Spatial Error Model
(SEM). Finally, to consider a model that takes into account neighboring cases (local model),
a Geographically Weighted Regression (GWR) analysis was conducted. The GWR model
has the ability to analyze events based on areal-level variability, hence it is better regarded
as a local model. GWR capitalizes the concepts of heterogeneity and nonstationarity over
space, hence describes regression coefficients’ variability for each spatial unit over the
studied region. For this study, the coefficients synthesized were for each administrative
district of Malaysia. The magnitude of the coefficients may actually suggest if an indi-
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cator in the model would be protective or being at risk for COVID-19 spread [38]. The
diagnostic performance of all models was assessed, and the model that yielded the lowest
Akaike Information Criterion (AIC) and the highest R2 value was considered as the best
fit model [38]. Statistical significance was set at p < 0.05. Analyses was conducted using R
Studio version 2021.09.2 +382 (R Studio Team, PBC, Boston, MA, USA) [40], Geo Da version
1.18 (Center for Spatial Data Science University of Chicago, IL, USA) [41] and a python
implementation of MGWR version 2.2.1 software (ASU School of Geographical Sciences
and Urban Planning, AZ, USA) [42].

2.4. Conference Presentation

Findings from this study were presented at the 14th National Conference for Clinical
Research, 18–20 August 2021, National Institutes of Health, Selangor, Malaysia.

3. Results
3.1. Spatial Autocorrelation of COVID-19 Incidence

Between 22 January and 4 February 2021, Malaysia reported 51,476 active COVID-19
cases. In an average Malaysian district, there were approximately 10.5 active COVID-19
cases per 10,000 population. The spatial heterogeneity for COVID-19 incidence across
144 districts could be observed from the dual evidenced quintile (Figure 3a) and LISA
(Figure 3b,c) maps. The quantile map in Figure 3a showed that approximately 29 districts
reporting high rates of COVID-19 incidence (more than 15.03 cases per 10,000 popula-
tion), with the top 5 districts (mainly concentrated within the states of Selangor, Johor
and Sarawak) were Sepang (63.7 cases per 10,000 population), Kulai Jaya (49.48 cases
per 10,000 population), Dalat (49.34 cases per 10,000 population), Song (48.55 cases per
10,000 population) and Kanowit (44.67 cases per 10,000 population). Only five districts
reported zero COVID-19 incidence cases, all in the state of Sarawak. The highest COVID-
19 incidence was mainly concentrated in the Central and Southern regions of Peninsu-
lar Malaysia.

In the spatial autocorrelation analysis, the global Moran index was 0.431, with p = 0.001,
indicating a positive spatial autocorrelation. Subsequently, the local Moran index identified
spatial clusters of the main high–high patterns across districts within the state of Selangor
and Kuala Lumpur in the Central region, Johor in the Southern region and parts of Sarawak
in East Malaysia, while the main low–low clusters were concentrated across rural districts
in the East Coast region and the state of Sarawak in East Malaysia (Figure 3b). The LISA
enumerates the significance of these clusters (Figure 3c).

3.2. Spatial Relationship between National Indicators and COVID-19 Incidence

Table 1 shows the values of Moran’s I results that explored the spatial relationships
between probable indicators with COVID-19 incidence for all 144 districts across Malaysia
through bivariate LISA analysis. Moran’s I was the highest with respect to average house-
hold income per capita (Moran’s I = 0.46, p = 0.001), followed by population density
(Moran’s I = 0.41, p = 0.001), percentage of Indians (Moran’s I = 0.36, p = 0.001), percent-
age of Bumiputera (Moran’s I = 0.28, p = 0.001), percentage of Chinese (Moran’s I = 0.20,
p = 0.001) and GINI coefficient (Moran’s I = 0.10, p = 0.008).

Table 1. Bivariate Moran’s I of COVID-19 Incidence According to National Indicators.

Indicators Moran’s I Value (p-Value)

GINI coefficient 0.10 (0.008)
Average household income per capita 0.46 (0.001)

Coverage to primary healthcare 0.01 (0.396)
Percentage of Bumiputera 0.28 (0.001)

Percentage of Chinese 0.20 (0.001)
Percentage of Indian 0.36 (0.001)

Population density (Logged) 0.41 (0.001)
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3.3. Multiscale Spatial Regression Models of COVID-19 Incidence

Table 2 exhibits results of Spatial Autoregressive Models (SAR) that include Ordinary
Least Squares (OLS), Spatial Lag Model (SLM), Spatial Error Model (SEM) and the Geo-
graphically Weighted Regression (GWR) model. The OLS regression analysis yielded three
significant indicators for COVID-19 incidence spread in Malaysia, namely the GINI coeffi-
cient, average household income per capita and population density. To further consider
spatial dependence, complementary spatial models (SLM and SEM) were yielded. Model
diagnostics suggested that SEM performed better than priori models with autoregressive
coefficient (error lag value λ = 0.46) indicating a significantly higher spatial clustering of
COVID-19 occurrence in Malaysia. In addition, the analysis of OLS residual showed spatial
dependence with I = 0.2615 (p < 0.05), thus subjecting hypothesized national indicators to
the requirement for an analytical application of a GWR model. The GWR model concluded
that COVID-19 incidence spread in Malaysia was highly caused by population density
(β coefficient weights = 0.269), followed by average household income per capita (β coeffi-
cient weights = 0.254) and GINI coefficient (β coefficient weights = 0.207). The GWR model



Int. J. Environ. Res. Public Health 2022, 19, 2082 7 of 13

significantly outweighed the OLS, SLM and SEM models, being the best performing model
(R2 = 0.661; AIC = 229.435).

The GWR coefficients quantile maps in Figure 4 have shown similar directions as
the relationships found in the global regression models in Table 2. The GINI coefficient,
average household income per capita and population density were positively associated
with COVID-19 incidence cases. Although population density directed a homogenous pat-
tern with incidence cases being highly concentrated within the Central region of Malaysia,
dissimilarities of socioeconomic variables, particularly weightage strengths of GINI coeffi-
cient and average household income per capita across neighborhood districts have shown
heterogenous patterns correlated with COVID-19 incidence in Malaysia (Figure 4).
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Table 2. Cont.

Indicators
OLS Model SLM Model SEM Model GWR Model

β SE p-Value β SE p-Value β SE p-Value β (Mean)

Model Performance

Number of observations 144 144 144 144
Log likelihood −117.936 −112.277 −108.317 −105.645

Akaike Information Criterion (AIC) 251.871 242.553 232.635 229.435
R square 0.552 0.593 0.630 0.661

Lag Coefficient (ρ) - 0.264 - -
Error Lag Value (λ) - - 0.460 -

Jarque–Bera 12.584 (p = 0.002) - - -
Breusch–Pagan 15.805 (p = 0.027) 15.832 (p = 0.026) 15.868 (p = 0.026) -

Koenker–Bassett 13.446 (p = 0.006) - - -

OLS—Ordinary Least Squares; SLM—Spatial Lag Model; SEM—Spatial Error Model (SEM); GWR—
Geographically Weighted Regression.

4. Discussion

The current study was the first in Malaysia to examine the spatial distribution of
COVID-19 spread and its relationship with selected population level demographic and
socioeconomic indicators of the country. The multiscale regression models yielded three
substantial indicators, particularly the GINI coefficient, average household income per
capita and population density as probable catalysts that accelerated the unexpected geo-
metrical progression of the third COVID-19 pandemic wave in the country.

Spatial distribution of COVID-19 cases across districts and regions in Malaysia in-
dicated that the spread was not propagating in a uniform pattern. The socioeconomic
heterogeneity between districts occupied within regions in Malaysia may have influenced
the uneven chaotic spreads, as marked spatial heterogeneity of incidence cases were ob-
served between the East Coast region, East Malaysia (particularly the state of Sarawak)
and the Central region of Malaysia, among which the latter represents a highly industri-
alized, economic and financial epicenter of the country. This finding was consistent with
previous studies from Brazil [38], India [43], China [44], Malawi [22] and England [19].
Plausible explanations for such consistencies can be attributed to selective migration of
people, facilitating large territorial flows from neighboring regions or states to the Cen-
tral region of the country to capture potential commercial or labor markets that could
have substantially cultivated dense populations in those areas, causing greater human
mobility and interactions. Such relocation behaviors on existing geographical networks
sustains a super-spreader incubator for pathogenic events within densely contemporary
societies [33,45]. With industrialization being highly clustered within the Central region
of Malaysia, the implementation of mass testing policy by the government in factories,
industries and migrant workers have substantially reported a greater number of cases [46].
Consistent with the impact of urban population density, coupled with economic develop-
ment and integrated public transportation services that catalyzed higher human mobility,
these elements could have escalated opportunities for spatial transmission of COVID-19.

In contrast, the relatively lower incidence of COVID-19 cases across the spatial gradi-
ent of rural districts in the East Coast and East Malaysia regions may be explained by lower
testing rates as compared to urbanized regions, similarly argued in a previous study [21].
The current study finding was consistent with a previous study from Malawi [22]. Migra-
tory behaviors to urban areas are often observed in younger aged populations in the quest
to capture the job market within fast economic growing cities and metropolitans [22], while
older populations are more comfortable to reside in their home villages within the rural
gradient, mainly inclined with agriculture, fishing or forestry activities. These occupations
somewhat sustain lower mobility and interactions amongst people; thus, they have lower
probability or reduced transmission rates of infection.

As spatial unevenness or “centralization” of societies are fundamentally dependent on
resources for livelihoods (e.g., job opportunities, food, housing) and communities’ social
developmental factors (urban or rural setting), their dissimilarities could be temporally
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attributed to the measures of economic theory, the GINI coefficient [47]. The current
study was sufficiently powered to establish the temporal relationship between GINI co-
efficient and COVID-19 spread across geographically weighted demographic densities of
the Malaysian population, consistent with previous studies from Brazil [48,49]. A notable
real-life interpretation of the GINI coefficient predominantly lies in the relatively lower
metric for Malaysia [29]. As populations’ living circumstances improved with narrowed
income inequalities, Malaysians were able to cope with the unexpected pandemic crisis, as
resources and social development were developing at an equilibrium across all regions in
Malaysia. This may have prompted equal testing opportunities and accessibility to health-
care, thus reporting a higher number of cases. Nevertheless, the caveat of such metrics
should be interpreted with caution. Firstly, as the GINI coefficient measures variations
between population counts alongside their inhabited areas, they could be intrinsically
influenced by a variety of spatial scales or measurement tools used in different studies.
Secondly, the temporal variation of population distribution is conceptually measured by
the coefficient of variation, which causes disparities of mean population abundance [50].
Such a proviso within population health metrices, although it showed significance in the
current study, may fail to establish temporality in future hypothetical associations when
other mediators or confounding variables are included in the models. However, they
could be descriptively useful to postulate variation patterns for human selective migratory
behaviors and their indirect impact on the capability to accentuate transmissions in densely
populated areas, as observed in this study.

In the GWR analysis, average household income per capita was associated with
COVID-19 incidence in Malaysia. This finding was consistent with a previous study from
Brazil [38]. Regions with higher population income would ideally exhibit greater incidence
cases as these regions would have better networks of health services, facilitating people’s
easy access to diagnostic testing for COVID-19. There was no significant relationship
between COVID-19 incidence and coverage to primary healthcare services, contradicting
the results observed in a previous study [38]. With Malaysia’s growing household income
per capita and narrowed GINI coefficient [29], it was possible to observe fair access to health
services to the whole population in terms of quality and quantity. While the urban public
could opt for health services from both subsidized government or private clinics with a
fee for health services and testing, in the rural districts of Malaysia the highly subsidized
healthcare services by the government [51] ensured the availability of free diagnostic testing
for COVID-19. With such affordability and access to health services, the non-significance
of healthcare coverage to influence incidence cases could be highly anticipated in the
regression model, as observed in the current study. In addition, rigorous contact tracing
activities executed by public health Malaysia provided early identification of COVID-19
cases within communities, thus making the accessibility or coverage to primary healthcare
facilities by local inhabitants for COVID-19 testing to have a “negligible effect,” as observed
in this study.

Studies show racial or ethnic differences are important demographic indicators for
disease transmissions, as different races represent different cultures or behaviors that could
affect contact rates, transmissions rates or perceptions to be vaccinated [52–54]. While the
current study indicated transmission rates amongst ethnic Indians to be relatively high,
compared to Bumiputera and ethnic Chinese, these associations were suppressed to a
negligible effect at the local spatial level via the regression models and GWR-weighted
analysis. Plausible explanations on higher susceptibility by ethnic Indians to disease
transmissions may be attributed to the fact that minority populations would have higher
proportions of people with lower socioeconomic status, thus escalating their risks for
susceptibility to infections [54]. In contrast, Bumiputera and ethnic Chinese differ in social
patterns, mixing within the same communities and have greater mobility during the festive
and holiday seasons. However, these attributes did not show any statistical significance in
the OLS, SLM and SER models. The coefficient weights were negative, suggesting that race
attributes had a low effect on transmission patterns at the spatial-local level. The plausibility
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of these situations may have been mediated by socioeconomic variables in the model (as
justified earlier) and community mitigation measures that were executed simultaneously
for the whole population and fairly by the government of Malaysia during the COVID-19
pandemic. But this finding was in contrast with investigations across different ethnic
origins from other countries such as Hispanics, Caucasians or African-Americans, where
transmissibility rate of infections was high and strongly influenced by the race or ethnicity
attribute as compared to Asians [54]. In this circumstance, lower susceptibility of Asians to
infections was shown to be attributed to biological factors that seemed to exhibit protective
effects [52,54].

This study facilitated an analysis using smaller administrative units (districts in
Malaysia), thus enabling more detailed clusters to be synthesized for interpretation. The
adoption of spatial autoregressions, in addition to GWR analysis has made it possible to
determine crucial population-level socioeconomic indicators that serve as catalysts for the
spread of COVID-19 in Malaysia. However, the limitations of this study should be acknowl-
edged. First, the study duration was relatively short, thus temporal patterns of COVID-19
incidence across geographies could not be explored to examine a more chronological se-
quence of the infection spread, yet to determine other probable mediating attributes such
as temperature or climatic factors, interventions over time and vaccination programs to
influence the COVID-19 spread. Second, shortcomings of data accessibility and availability
for more comprehensive analyses should be acknowledged. Data at different spatial scales
such as at states or regional levels that could not be fitted to a more local level, such as at
the district level, may have missed opportunity for exploring secondary, mediating or con-
founding effects with other demographic or socioeconomic variables. These limitations are
a common pitfall for spatial analytical studies that utilize secondary data sources. Table 3
provides a list of possible covariates that may pose secondary, mediating or confounding
effects to the current study findings, and it is recommended that these attributes be explored
in future investigations. Third, the ecological-correlation study design that used secondary
data sources could not establish causality, and only explored relationships at the population
aggregate level, not at the individual-level. Fourth, the tested variables which include
selected population demographics, socio-economic characteristics and population density
differ between countries, hence anticipating consistencies between regions would not be
possible, even if similar methodologies or variables are replicated and tested in future
studies from different countries. However, such tested variations could be evidenced as
a country-specific case study that would be crucial to implement targeted approach for
control measures based on population’s specific attributes and behaviors.

Table 3. Potential Indicators for Future Exploration.

Potential Indicators

1. Unemployment
2. Proportion of population with secondary education or less
3. Territorial (area-based) occupations
4. Proportion of older aged persons (more than 60 years old)
5. Proportion of median household income (B40 low-income group)
6. Proportion of median household income (M40 middle-income group)
7. Proportion of median household income (T20 high-income group)
8. Frequency of contacts
9. Human mobility intra-districts
10. Human mobility inter-districts
11. Proportion of urban population
12. Proportion of rural population
13. Urbanization growth rate
14. Vaccination coverage
15. Climatic factors

Note: B40—Bottom 40% household income group (household income range < MYR 4850 per month); M40—
Middle 40% household income group (household income range MYR 4850–10,959); T20—Top 20% household
income group (household income range ≥ MYR 10960) [34].



Int. J. Environ. Res. Public Health 2022, 19, 2082 11 of 13

5. Conclusions

In conclusion, the findings of this study provide an understanding of the geospatial
characteristics and distributions of the COVID-19 spread in Malaysia. The rigorous spread
of COVID-19 was mainly found in the Central, Southern and part of East Malaysia regions
in the country, most with an urbanized geography of high population density and average
income per capita. This finding could be used to plan appropriate tailored interventions
for transmission control between regions or districts in Malaysia by optimizing sufficient
resources; with territorial-based mitigation or suppression strategies to flatten the epidemic
curve by taking into account the effects of populations’ social determinants of health.
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