
Heliyon 6 (2020) e03984

Contents lists available at ScienceDirect

Heliyon

www.elsevier.com/locate/heliyon

Research article

Impact of observational error on heart rate variability analysis

Monika Petelczyc a,∗, Jan Jakub Gierałtowski a, Barbara Żogała-Siudem b, Grzegorz Siudem a
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An observational error of heart rate variability (HRV) may arise from many factors, such as a limited sampling 
frequency, QRS complexes detection process, preprocessing procedures and others. In our study, we focused 
on the first two origins of measurement error. We introduced a model of observational error and suggested 
universal descriptors for the assessment of its resultant magnitude in terms of time, frequency as well as nonlinear 
parameters. For this purpose, we applied Monte Carlo simulations which showed that the most sensitive to 
observational error are: pNN50 (the proportion of pairs of successive RR intervals that differ by more than 
50 ms) and markers obtained from frequency analysis. On the other hand, the most resistant are other time 
domain parameters as well as the short and long-term slopes of Detrended Fluctuation Analysis (DFA). We 
postulate that the observational error should be considered in population studies, when different recorders are 
used in the research centres. Additionally, in the case of patients with similar etiology of disease but with 
different heart rhythms abnormalities the scatter of HRV parameters will also be observed due to the subject’s 
the time series variability.
1. Introduction

The development of electrocardiographic measurement technology 
has been rapid. Nowadays, even cheap, basic electrocardiographic de-

vices have quite high sampling rates, and so errors in RR interval 
measurement, stemming solely from the sampling frequency, is rather 
low. There are, however at least two additional sources of measure-

ment errors. The first is the false positive detection of the R peak in 
the electrocardiography (ECG) measurements obtained from mobile de-

vices. This is mainly due to the muscle movement, which introduces 
amplitudes higher than the measured ECG signal. The second one oc-

curs according to the detection of RR intervals not from the ECG signal, 
but from other physiological data such as photoplethysmography (opti-

cal measurement using green LEDs), which are popular in smartwatches 
for runners. One should note that such blood light-absorbing signal is 
much smoother with a prominent R peak. The detection of the R peak 
position in such signals may cause low data reliability.

As 20 years ago the recommended sampling frequency was only 
larger than 100 Hz, nowadays, in clinical practice, the sampling fre-

quency should be larger than 512 Hz. In the case of 512 Hz, the ECG 
measurement is burdened by a 2 ms measurement error. For older 
recordings, where the sampling frequency was 128 Hz, the measure-
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ment error was four times larger in magnitude. One ought to note that 
this relation between the magnitudes of the observational error and 
the sampling frequency does not take into account preprocessing pro-

cesses – such as QRS detection, artefact interpolation, trend removal 
or filtering procedures (these aspects were discussed in detail in [1, 
2, 3]). Unfortunately, many researchers are not aware of the signifi-

cance of observational errors in their final results. Every stage of the 
data processing propagates the error, whose magnitude in the compu-

tational procedure is usually unknown and difficult to estimate. Thus, 
the results of the analysis might be unreliable. The determined HRV 
parameters might differ in their sensitivity to observational error, es-

pecially in case of nonlinear methods, which require many calculation 
steps. Reliable assessment of the HRV parameters is related to the fi-

nite sampling of electrocardiographic signal. Low sampling frequencies 
distort the R-peak waveform [4] and then such error is propagated dur-

ing QRS detection. For example, Hejjel and Roth [5] resampled model 
tachograms with different rates and compared the obtained HRV pa-

rameters. Authors suggested 1 kHz as the optimum rate to get accurate 
values of time domain HRV parameters without interpolation. It was 
demonstrated [5] that pNN50 is the most sensitive to a low ECG sam-

pling. For frequency parameters, Ziemssen et al. [6] noticed that low 
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sampling influences the results of patients with reduced RR interval 
variability.

An approximate entropy (ApEn) and the Recurrence-Plot-Derived 
Indices were explored in [7]. It was showed that not only the finite 
resolution but also the variability of the signal have an impact on the 
resultant error of the analysis (these factors were introduced as the sig-

nal to resolution of the neighbourhood ratio (SRN)). The errors due to 
the resolution of the time series in ApEn or indices derived from the re-

currence plots can be very high, when the SRN is close to an integer 
number. Another study [8] focused on the influence of the QRS com-

plex detection errors on ApEn and Sampling entropy (SampEn). The 
authors concluded that even for high QRS detection (above 98%), dis-

crimination among classes of signals based on these measures might be 
inaccurate by even a few outliers.

In this paper we focused on the problem of the propagation of 
observational error during the computations of the time domain, the 
frequency domain and selected nonlinear parameters of HRV. We as-

sumed that each RR interval was burdened with an observational error 
and we postulated its form. Taking into account the experimental data 
recordings, we generated artificial data and determined HRV parame-

ters. These are well-known methods in cardiological practice. Finally, 
we proposed a unified procedure to assess impact of the observational 
error on the HRV analysis.

2. Methods

Let us consider a random variable 𝑋𝑖 proposed as follows:

𝑋𝑖 =𝑅𝑅𝑖 + 𝜉𝑖, (1)

where 𝜉𝑖 is an observational error and 𝑅𝑅𝑖 intervals are determined 
from ECG signal. We assumed that the errors are independent and 
normally distributed with zero mean and standard deviation 𝜎 i.e. 
𝜉𝑖 ∼  (0; 𝜎). The 𝑋𝑖 distribution is also normal:  (𝑅𝑅𝑖; 𝜎) with the 
mean equal to 𝑅𝑅𝑖. We proposed a Gaussian distribution of the obser-

vational error as a continuation of the study from [9], where a uniform 
distribution was proposed. We assumed that 𝜎 has a range of millisec-

onds in real applications (see the discussion about the relation between 
measurement error and sampling frequency in the Introduction). Please 
note that observational error for RR intervals consists not only of the un-

certainty related to the sampling frequency as well as the uncertainty 
related to QRS detection procedure [10]. Usually, the preprocessing 
(such as filtering) of the time series is a common procedure in HRV 
analysis, during which magnitudes of propagated errors would increase 
significantly.

2.1. Medical data

We performed computations on the real data from the MIT-BIH 
Arrhythmia Database [10] – the most popular set of signals used for 
scientific tests, which contains 48 half-hour excerpts of two-channel am-

bulatory ECG recordings. Before computations, for each ECG signal, the 
RR intervals were determined. We detected QRS complexes with open 
source software [11], which took part in the PhysioNet Challenge 2014. 
Here, we decided to perform the computations using all RR intervals 
from the database.

Usually, the HRV parameters are determined only from NN inter-

vals (sinus rhythm). We proposed a unified and simplified methodology 
to estimate of the influence of the measurement error on popular HRV 
indices. We did not remove or replace arrhythmias in our simulations, 
because the raw signal (without preprocessing procedures) works as the 
ground truth [12] required for comparison. What is more, the prepro-

cessing depends on the type of disturbances [3] in the time series. Such 
an approach has limited application to the assessment of autonomic 
control and further clinical interpretation.
2

2.2. Simulation procedure

For this paper, we made the working assumption that the original 
RR intervals detected from the MIT-BIH Arrhythmia Database record-

ings are not burdened by any observational error. According to Eq. (1), 
for each real RR interval, we added a random variable from a Gaussian 
distribution with 𝜎 = 1, 2, 3, … , 8 ms. As a result, we obtained new data 
with artificial observational noise. We generated a thousand signals af-

fected by such error, which are a statistical sample in the Monte Carlo 
(MC) algorithm. Further, we performed computations on the artificial 
time series to determine HRV parameters for each dataset separately. Fi-

nally, we proposed a quantitative characterisation of the impact of the 
introduced observational error on resultant HRV markers in relation to 
the original time series.

2.3. HRV parameters

For each ‘noisy’ time series, we computed five time domain parame-

ters [13]: mean RR, SDRR, standard deviation of successive differences 
of RR intervals (SDSD), root mean square of successive differences of RR 
intervals (RMSSD), pRR50. It should be noted that we used the abbrevi-

ation pRR50 instead of pNN50 and SDRR instead of SDNN, because our 
computations were not solely limited to NN.

In clinical practice, three determinants are widely used as noninva-

sive parameters to characterise the autonomic nervous system activity: 
the power spectrum of the low frequency band (LF), the high frequency 
band (HF) and their ratio: LF/HF [14]. Following the discussion given 
in [1] and [15], we calculated the frequency markers using the Lomb 
Scargle periodogram. The signals were not resampled and the ectopic 
beats were not removed from the original series. This reflects our as-

sumption that the original RR intervals are set to be the ground truth in 
MC simulations. Additionally, we considered four nonlinear parameters: 
SampEn, ApEn [16] and two scaling exponents of Detrended Fluctua-

tion Analysis (DFA) – short 𝛼1 and longterm 𝛼2 [17].

2.4. Estimation of impact of observational error on HRV parameters

We obtained some unique sample distributions of HRV parameters 
(specified in sec. HRV parameters) from the MC simulations. We deter-

mined the standard deviation 𝛽 of each distribution as the magnitude 
of the method error. The method error is one that occurs from propa-

gation of the observational error during the successive computations of 
the HRV parameters. Subsequently, it was possible to compare the stan-

dard deviation 𝜎 of observational error used in MC simulations and 𝛽. 
In order to assess the sensitivity of the HRV parameters to the observa-

tional error, we proposed the percentage descriptor 𝑝𝑘, which provides 
information about the maximal (total) error of HRV parameter 𝑌𝑘 :

𝑝𝑘 =
⟨||𝑌𝑘(𝑅𝑅+ 𝜉) − 𝑌𝑘(𝑅𝑅)||⟩+ 𝛽

𝑌𝑘(𝑅𝑅)
⋅ 100%, (2)

where 𝑌𝑘 are

𝑌𝑘 ∈ {mean RR [ms], SDRR [ms], SDSD [ms], RMSSD [ms], pRR50 [%],

ApEn [–], SampEn [–], 𝛼1[–], 𝛼2[–], LF [%], HF [%], LF/HF [–]}

The component ⟨||𝑌𝑘(𝑅𝑅+ 𝜉) − 𝑌𝑘(𝑅𝑅)||⟩ in Eq. (2) represents the dis-

crimination between the HRV parameters computed for the time series 
without observational error and the ‘noisy’ RR data. The variable 𝛽
characterises the scatter of a single HRV parameter. The sum in the 
nominator should be interpreted as follows: it assesses the potential 
maximal error of the calculations of the HRV parameter by taking into 
account two factors – the deviation of the 𝑌𝑘 parameter from the true 
value according to random variable 𝜉 (first component of the sum in 
Eq. (2)) and the propagation of the observational error in parameter 
computations (component 𝛽). The normalisation by 𝑌𝑘(𝑅𝑅) is proposed 
to obtain the percentage value.



M. Petelczyc et al. Heliyon 6 (2020) e03984

Table 1

The ratios of the total error 𝑝𝑘 ± 𝑆𝐷 for the HRV parameters with increasing magnitude of observational 
error 𝜎. The 𝑝𝑘 values in the table are normalised and presented in %, following Eq. (2). The results are 
obtained from the MC simulations repeated 103 times for each signal of the MIT BIH Database separately.

HRV parameter 𝜎 = 2 ms 𝜎 = 4 ms 𝜎 = 5 ms 𝜎 = 8 ms

MeanRR 0.005 ± 0.0005 0.01 ± 0.001 0.01 ± 0.001 0.02 ± 0.002
SDRR 0.07 ± 0.06 0.21 ± 0.19 0.3 ± 0.28 0.66 ± 0.66
RMSSD 0.13 ± 0.15 0.4 ± 0.51 0.58 ± 0.75 1.3 ± 1.78
pRR50 1.98 ± 2.37 4.14 ± 5.09 5.94 ± 8.77 15.0 ± 24.3
𝛼1 0.13 ± 0.10 0.32 ± 0.30 0.42 ± 0.43 0.83 ± 0.97
𝛼2 0.15 ± 0.11 0.34 ± 0.25 0.44 ± 0.34 0.79 ± 0.67
ApEn 1.37 ± 1.23 2.27 ± 2.26 3.04 ± 3.09 6.13 ± 6.02
SampEn 1.79 ± 1.45 2.79 ± 2.39 3.71 ± 3.21 7.47 ± 6.42
LF 12.89 ± 21.56 25.86 ± 32.53 28.88 ± 35.42 37.94 ± 41.97
HF 4.69 ± 5.44 10.49 ± 11.47 11.39 ± 12.00 14.85 ± 15.22
LF/HF 18.04 ± 28.20 36.86 ± 45.13 41.35 ± 49.46 54.51 ± 59.66
Fig. 1. The computations for RR intervals of ECG file no. 101 from MIT-BIH Ar-

rhythmia Database [10]. Each box-plot represents 1000 values of 𝛼2 parameter 
obtained from the time series with added Gaussian noise (MC simulation). The 
Gaussian noise has zero mean and standard deviation 𝜎 given in milliseconds. 
Horizontal dotted line marks the parameter 𝛼2 for the original recording.

3. Results

We have divided our results into two subsections. In the first part, 
we present some typical MC simulations on a selected recording. In the 
second, we discuss in detail the magnitudes of the total HRV parameter 
errors (Eq. (2)) associated with certain scales of observational error (𝜎).

3.1. MC simulation results for a typical HRV recording

In Fig. 1, we show the results for the RR intervals of ECG file no. 
101 from the MIT-BIH Arrhythmia Database. The selected recording 
contains 99% NN intervals (sinus rhythm). As an example, we present 
the results for 𝛼2 computed with the MC simulation. Each box-plot 
represents the distribution of 1000 values of the longterm scaling expo-

nent 𝛼2. The standard deviation 𝜎 is from a narrow range of milliseconds 
(from 1 to 8 ms). Please note that 𝛼2 for the original RR intervals (hori-

zontal dotted line) is much larger than 0.5. Consequently, the 𝛼2 median 
experiences a decreasing trend due to increasing 𝜎. The increment of the 
magnitude of observational error changes the properties of the analysed 
time series. The data start to resemble uncorrelated noise for which 
𝛼2 = 0.5. Therefore, if the original data were characterized by 𝛼2 = 0.76, 
then with increasing 𝜎, the 𝛼2 parameter decreases for artificial data 
with additive Gaussian noise. Conversely, if 𝛼2 was smaller than 0.5, 
then 𝛼2 exponent would increase with the magnitude of observational 
error 𝜎. The extension of box-plots with increasing 𝜎 (Fig. 1) indicates 
that 𝛽 becomes larger too, but not excessively (the ranges in the vertical 
line are small). This result shows that during computational procedures 
3

the observational error is propagated but exponent 𝛼2 has low sensitiv-

ity to observational noise.

3.2. Quantitative estimation of observational error impact on total HRV 
parameter error

We have expressed the results according to the 𝑝𝑘 ratios, which are 
the total errors of the HRV parameters. The total error reflects a relation 
to the observational error, which occurs due to device recording and 
due to methods required for QRS detection.

In Table 1, we show 𝑝𝑘 for all 𝑌𝑘 markers used in the computations, 
except SDSD as the results did not differ from the SDRR parameter in 
range of 𝑝𝑘. The smallest sensitivity to observational error is determined 
for the time domain parameters: mean RR, SDRR, SDSD and RMSSD. 
This small sensitivity is expressed by low 𝑝𝑘 means, not exceeding 3%
for the largest observational noise (𝜎 = 8 ms). It should be stated that 
computations for the time domain parameters are the simplest among 
all of the markers presented here, and so the low complexity of calcula-

tion may explain the low total error.

For all HRV parameters, there is an increase in the mean of 𝑝𝑘 and 
its standard deviation with 𝜎 (see 𝑝𝑘 and its standard deviation (SD) 
given in Table 1). The largest observational error influence on the HRV 
parameter is for pRR50 and for frequency domain markers. The lim-

ited sampling frequency in the recorded ECG signal is associated with 
imprecise determination of pRR50. We estimated that the pRR50 val-

ues computed by the software for HRV analysis might differ from the 
true value by more than 15%. Such a result is in agreement with [5], 
whereby low reliability of this parameter was demonstrated to result 
from finite sampling.

The results presented in Table 1, for LF, HF and for the LF/HF ratio 
should be analyzed and interpreted with particular caution. Accord-

ing to [1], the procedure of resampling incorporates error itself, and so 
the observational error is a component of the total error in frequency 
parameters. In our computations no resampling and no ectopic beats re-

moval were applied. As a result, the spectral parameters presented here 
cannot be used for the proper estimation of autonomic nervous system 
activity [1].

Among nonlinear parameters, the entropies are the most sensitive 
to observational error, although the short and longterm exponents of 
DFA are characterised by a small total error. Entropies are well known 
to be sensitive to non-stationarity in the form of outliers [16]. Such 
outliers are exacerbated due to the observational noise added in MC 
simulations. As a result, the total error increases. The low sensitivity 
of DFA slopes to the observational error can be explained by two main 
factors: i) the methodology of DFA, which prefers averaging in widows, 
ii) the procedure for determining 𝛼1 and 𝛼2, which minimises Gaussian 
incorporation by fitting procedure. In many cases of 𝑝𝑘 the SDs are 
extremely large (larger than the mean). A large SD shows that there are 
major differences between time series properties in the members of the 
group, a phenomenon often obtained in clinical practise.
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4. Discussion

We have presented a study of the impact of observational error on 
the time, frequency domain and selected nonlinear HRV measures. In 
our study, the observational error is due to a limited sampling rate and 
QRS detection process. We assumed that the observational errors for 
subsequent RR intervals are independent and normally distributed with 
zero mean and standard deviation 𝜎. In order to assess the magnitude 
of the total HRV parameter errors, we applied MC simulations and used 
the data from the MIT-BIH Arrhythmia Database.

We proposed two descriptors characterising the resultant error of the 
HRV parameters: the standard deviation 𝛽 of the distributions obtained 
from the MC simulations (the method error) and the 𝑝𝑘 ratio (the total 
error). The method error results from the observational error propaga-

tion in the computations of the HRV parameters and increases with 𝜎. 
We showed that beside the spectral markers, pRR50, SampEn and ApEn 
are the most sensitive to observational error and their estimates may 
differ from the true value by more than 15%, 5% and 5% respectively 
and in case of the frequency parameters the difference is even larger. 
This deviation is caused by lack of preprocessing procedures for time 
series with the occurrence of ectopic beats. Specified percentage values 
were obtained for the data, whereby the observational error was equal 
to 8 ms. On the other hand, the time domain parameters such as SDSD, 
RMSSD are resistant to observational error. Similar results were found 
for mean RR and for the DFA parameters (𝛼1, 𝛼2).

HRV analysis has been often used for risk stratification as well as for 
the prediction of cardiovascular events. In one review [18], a summary 
of the populations studies in application to resting ECG/ambulatory 
ECG is presented. The authors indicated that the effect of decreased 
HRV indices (such as SDNN, RMSSD and frequency markers) are associ-

ated with an increased mortality risk. The comparisons in the presented 
examples are often performed by taking into account terciles and quar-

tiles of the HRV indexes. In this approach, it is possible to limit the 
influence of the sampling error while distinguishing two or more clini-

cal conditions.

Our study showed that the comparisons of time series from differ-

ent recorders should be conducted carefully while paying attention to 
the sampling frequency rates and the QRS detection procedures [12]. 
The differences in HRV results may arise due to measurement error in 
population studies, when many research centres cooperate in data col-

lection. ECG monitoring for the same patient performed by different 
ECG devices may lead to deviations in HRV characteristics. Finally, we 
indicate that patients with a similar disease etiology but with different 
heart rhythms abnormalities should also be analysed separately. In such 
cases, the low variability of the time series and outliers occurrence (like 
arrhythmic behaviour) will cause an increased total error in the HRV 
parameters.
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