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Functional neural connectivity is drawing increasing attention in neuroscience research. To infer functional connectivity from
observed neural signals, various methods have been proposed. Among them, phase synchronization analysis is an important and
effective one which examines the relationship of instantaneous phase between neural signals but neglecting the influence of their
amplitudes. In this paper, we review the advances in methodologies of phase synchronization analysis. In particular, we discuss
the definitions of instantaneous phase, the indexes of phase synchronization and their significance test, the issues that may affect
the detection of phase synchronization and the extensions of phase synchronization analysis. In practice, phase synchronization
analysis may be affected by observational noise, insufficient samples of the signals, volume conduction, and reference in recording
neural signals. We make comments and suggestions on these issues so as to better apply phase synchronization analysis to inferring
functional connectivity from neural signals.

1. Introduction

Segregation and integration are two fundamental organiza-
tion principles of neural systems in brain [1]. The neural
organization can be investigated with functional neural
connectivity in both local and global brain regions. The
connectivity in local regions reflects specialized functions
of local cortex, while the connectivity among spatially
separated brain regions plays important roles in advanced
cognitive function [2–7]. Various measures, such as phase
synchronization index (PSI), mutual information, corre-
lation coefficient, coherence, and partial directed coher-
ence, have been applied to inferring neural connectivity
among brain units at multiple temporal and spatial scales
with neural signals including electroencephalography (EEG),
magnetoencephalography (MEG), functional magnetic res-
onance imaging, and local field potential [8–13]. These
measures can be classified into several families such as
correlation/coherence family, phase synchronization family,
and Granger causality family. The measures in the same
family usually yield results with strong correlation to each

other and thus could provide little additional information
on neural connectivity, while some measures belonging to
different families may have weak correlation to each other in
inferring neural connectivity, which implies that they each
could characterize interdependence of signals in different
aspects [13].

Among these measures, PSI quantifies the relationship
between instantaneous phases (IP, represents the rhythm of
oscillation or signal wave) of coupled systems/brain units
but neglects the effect of their amplitude. PSI has been
demonstrated to be effective in inferring neural connectivity,
especially when the connectivity is too weak to be detected
by other measures [8, 14]. Note that there are other types
of synchronization, such as complete synchronization and
generalized synchronization [14, 15]. But most of them are
defined for theoretical models of coupled oscillators and
difficult to be applied to neural signal analysis. The coupled
systems/units are claimed to be in phase synchronization
(PS) when the difference of IPs is bounded with respect
to time. PS is ubiquitous in both natural and man-made
systems, such as neural oscillations [4, 16], coupled chaotic
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oscillators [17], chaotic laser arrays [18], and electrochemical
oscillations [19]. In addition, two metrics of PS, that is, the
phase-lock interval and the lability of global synchronization,
hold power law probability distributions for both simulation
systems (i.e., the Ising model and the Kuramoto model)
and brain networks at a broadband frequency. These results
imply that the IP association among multiple units or brain
regions hold the property of criticality [20].

PSI, also called phase-locking value in literature, is
proposed to quantify the level of PS and has been applied to
a wide range of neuroscience research [3, 5]. For example,
PSI has been used to examine the alternation of cortical
connectivity prior to seizures [21] and neuronal synchrony
after ischemic stroke [22], to identify mental states in
brain-computer interface [23, 24], to investigate cognitive
dysfunctions of mental disorder [25], and to gain new
strategies for clinical treatment [22, 26]. However, to get a
reliable estimation of PSI from observed neural signals is
not so easy, especially when the signals are with a small
number of samples and/or contaminated by noise [10, 11,
27, 28]. Note that, in literature, other measures, such as phase
clustering index, used different definition of phase, which is
not within the framework of IP [29, 30]. In this paper, we
review the methodology of PS analysis in inferring functional
neural connectivity from the following aspects.

(1) IP definition. To detect PS in a pair of signals, various
IP definitions have been proposed. Most of these
IP definitions are based on particular transforms,
such as the Hilbert transform [17] and the wavelet
transform [31]. But actually, these IP definitions can
be unified into one framework which defines IP with
specific filter applied to signals [32].

(2) PSI and its significance test. We will introduce two
commonly used PSIs, which are based on entropy
[2, 33] and circular statistics [34, 35], respectively.
We will further introduce several strategies to provide
significance test for the estimated PSI.

(3) Practical problems in PS detection. The estimation of
PSI is affected by observational noise, volume con-
duction, the number of samples in observed signals,
reference, and other factors. We will summarize the
advances on these issues and give suggestions for a
better PS detection.

(4) Extensions of PS analysis. Lots of extensions/varia-
tions of PS analysis have been proposed for multitrial
signals and multivariate signals. We will give a brief
overview of these methods and some comments to
their applications in neural signal analysis.

2. Definition of Instantaneous Phase

Before estimating the level of PS, the IP of each signal
should be defined (Figure 1). The most basic definition of
IP is based on the Hilbert transform [14, 17, 36], which
can be directly applied to coherent signals (i.e., narrow
band signals with one prominent spectral component). But,
for noncoherent data such as raw neural signals, this IP

definition may yield negative instantaneous frequency (IF,
defined as the derivative of IP with respect to time), which
is physically meaningless [37–39]. One way is to process
noncoherent signal with a specific narrow bandpass filter.
An alternative way is to define IP based on other transforms
such as the wavelet transform [18, 19, 31, 40]. PS detection
based on these IP definitions has been compared numerically
with both simulation data and experimental signals, yielding
similar connectivity [10, 11]. In addition, an analytical study
on these IP definitions has unified them into one framework
which defines IP with a specific bandpass filter applied
[32]. In this section, we will briefly introduce issues on IP
definition based on results in [32].

2.1. Definitions of Instantaneous Phase

2.1.1. IP Definition Based on the Hilbert Transform. For a
given signal s(t), its analytic signal is defined as

s(h)(t) = s(t) + js̃(t), (1)

where

s̃(t) =H[s(t)] = 1
π

P.V.
∫∞

−∞
s(τ)
t − τ dτ (2)

is the Hilbert transform of s(t) (here P.V. means that the
integral is taken in the sense of the Cauchy principal value).
Then the IP of s(t) is defined as

φ(h)(t) = arg
[

s(h)(t)
]

= arctan
s̃(t)
s(t)

. (3)

In the frequency domain, s(h)(t) appears as S(h)( f ) =
S( f )B(h)( f ), where S( f ) is the Fourier transform of s(t) and

B(h)( f
) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

2, if f > 0

1, if f = 0

0, if f < 0

(4)

is the Fourier transform of b(h)(t) = δ(t) + j(1/πt). Then in
numerical implementation, the estimation of analytic signal
s(h)(t) can be obtained by the inverse Fourier transform of
S(h)( f ). In the time domain, s(h)(t) can be expressed as the
convolution of s(t) with the complex-response filter b(h)(t);
that is,

s(h)(t) = s(t)∗ b(h)(t). (5)

2.1.2. IP Definition Based on Gaussian Filter. Another
method defines IP as

φ(g)(t) = arg
[

s(g)(t)
]

, (6)

where

s(g)(t) = s(t)∗ b(g)(t) (7)

is the convolution of s(t) with a narrow-band Gaussian filter
b(g)(t) = (1/

√
2πT)e−t2/(2T2)e j2π fnt, which is shifted by the
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Figure 1: Schematic diagram of phase synchronization (PS) analysis. For broadband raw signals (a), a bandpass filter is first applied to
extracting signal waves in specific frequency band (b). Then analytic signals of signal waves may be defined based on the Hilbert transform
((c) and (d)), and the argument of the analytic signals are defined as instantaneous phase (IP) of the corresponding signal waves. The IPs
could be wrapped into the range [−π,π] (e). In some cases as marked by dotted rectangle in (e), the estimated analytic signal [s(t) + js̃(t)]
may be ill-defined due to noisy data and does not always rotate counterclockwise around origin in the complex plane, resulting in non-
monotonic IP “jump” at the time when the trajectory of analytic signal crosses through the origin. Signals with too many IP “jumps” are
not suitable for PS analysis. With the differences of IPs which are wrapped in the range [−π,π], PS index (PSI), which quantifies the level of
PS, could be estimated according to the distribution of IP difference (g). In addition, significance test could provide a significance threshold
(the black bar in (h)) for estimated PSI. If the estimated PSI is greater than the threshold, then the corresponding signal wave pair is claimed
to be in significant PS with a certain confidence level. For some cases, the amplitudes of analytic signals may be rather weakly correlated (f),
but the corresponding PSI is with relatively large value. For the case in (f) and (g), the correlation coefficient between the amplitudes (i.e.,
A1 versus A2) of two signal waves is −0.07, while the corresponding MPC-based PSI is 0.44.
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nominal frequency fn [18]. In the frequency domain, s(g)(t)
can be expressed as S(g)( f ) = S( f )B(g)( f ), where B(g)( f ) =
e−2π2T2( f− fn)2

. PS analysis based on this IP definition has
successfully detected PS in coupled laser arrays, which was
not revealed by IP defined with the Hilbert transform [18].
The possible reason is that the Gaussian filter extracts the
components of the laser data in a particular frequency band
which are in PS, while PS analysis based on the Hilbert
transform does not use filter to extract the components,
and thus the underlying PS level is submerged by noise and
components in other bands.

2.1.3. IP Definition Based on the Wavelet Transform. With the
Gabor wavelet ψ(t) = g(t)e j2πνt, IP is defined as

φ(w)(t) = arg
[

s(w)(t)
]

, (8)

where

s(w)(t, a) = s(t)∗ b(w)(t) (9)

is the convolution of s(t) with b(w)(t) = f 1/2
n g( fnt)e j2π fnt,

and g(t) = (T2π)−1/4e−t2/(2T2) is the envelope [31]. The
difference between IP definitions based on the Gaussian filter
and on the wavelet transform lies in that the filters b(w)(t) and
b(g)(t) are with Gaussian windows of different amplitudes
and width; that is, b(w)(t) is scaled by fn. In the frequency
domain, g(t) appears as G( f ) = (4πT2)1/4e−2π2 f 2T2

, and
b(w)(t) is B(w)( f ) = f −1/2

n G(( f / fn)− 1).

2.1.4. Unified Framework for IP Definitions. The IP defini-
tions discussed above all can be expressed as the argument
of the signal after a specific filter. In other words, these IP
definitions can be unified into one common framework [32];
that is,

φ(b)(t) = arg
[

s(b)(t)
]

, (10)

where

s(b)(t) = s(t)∗ b(t). (11)

Here b(t) = g(t)e j2π fnt is a filter with envelope g(t) =
(1/
√

2πT)e−t2/(2T2), nominal frequency fn, and response
duration T . The filter assures that the extracted signal wave
is coherent. s(b)(t) is analytic in an asymptotic sense as the
bandwidth of b(t) is smaller than 2 fn [36, 41, 42]. This
method is exactly the one based on a Gaussian filter when
the envelope g(t) is a Gaussian function. Filter b(t) can be
expressed as

B
(

f
) =

∫∞

−∞
b(t)e− j2π f tdt = G

(

f − fn
)

(12)

in the frequency domain, where G( f ) = e−2π2 f 2T2
is the

Fourier transform of g(t).
The analytic signal s(b)(t) = s(t)∗b(t) can be interpreted

as a combination of the Hilbert transform and a real

bandpass filter. Let s(r)(t) = s(t) ∗ [g(t) cos(2π fnt)], where
g(t) cos(2π fnt) is the real part of b(t). Then s(r)(t) appears as

S(r)( f
) = S

(

f
)

[

1
2
G
(

f + fn
)

+
1
2
G
(

f − fn
)

]

(13)

in the frequency domain. With (4), the analytic signal of
s(r)(t) can be obtained by performing the inverse Fourier
transform to S(r)( f )B(h)( f ); that is,

F −1
[

S(r)( f
)

B(h)( f
)

]

= F −1
{

S
(

f
)

[

1
2
G
(

f + fn
)

+
1
2
G
(

f − fn
)

]

B(h)( f )
}

= F −1[S
(

f
)

G
(

f − fn
)]

= s(t)∗
[

g(t)e j2π fnt
]

= s(b)(t),
(14)

where F −1(·) denotes the inverse Fourier transform opera-
tor.

Beside IP definitions within this framework, there are IP
definitions proposed in other aspects [43, 44]. For example,
the IP and PSI based on Rihaczek distribution are more
robust to noise than the method based on the wavelet
transform [43].

2.2. Constraints for IP Definition. For a real signal s(t) =
R[A(t)e jφ(t)], its imaginary counterpart I[A(t)e jφ(t)] is usu-
ally unobservable, where R(·) and I(·) denote the real and
the imaginary parts of the complex variable (·), respectively.
Generally, the imaginary part is estimated from s(t) by a
certain operation; that is, I[A(t)e jφ(t)] = ˜H[s(t)]. Among
various operators ˜H(·) proposed, the Hilbert transform
H(·) is the only one that satisfies the following three
conditions [45].

(i) The associated amplitude A(t) is continuous and
differentiable.

(ii) The IPs of signals s(t) and c · s(t) is the same; that is,
the operator should possess the property ˜H[c·s(t)] =
c · ˜H[s(t)], where c is a constant.

(iii) For any constant amplitude A > 0, frequency ω >

0, and phase ψ, the operator satisfies ˜H[A cos(ωt +
ψ)] = A sin(ωt + ψ).

In addition, the Bedrosian theorem gives more con-
straints on IP definition based on the Hilbert transform
[36, 42]. This theorem states that the relation

H[l(t)h(t)] = l(t)H[h(t)] (15)

holds for a low-frequency term l(t) and a high-frequency
term h(t) whose spectra do not overlap in the frequency
domain. For real signal s(t) = A(t) cosφ(t), s(q)(t) =
A(t)e jφ(t) is its quadrature model. It seems that φ(t) in this
model is a good candidate for definition of IP. However, it is
difficult to estimate A(t) and φ(t) from only the observable
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signal s(t) with this model. There is a difference between
s(q)(t) and the analytic signal s(h)(t) (1). This difference
approaches zero in an asymptotic sense as A(t) and cosφ(t)
fulfill the Bedrosian theorem [42]. Note that the Bedrosian
theorem sets a constraint to the signal, which is similar to
the second condition; that is, ˜H[c · s(t)] = c · ˜H[s(t)],
that set on the operator. For noncoherent signal, bandpass
filter b(t) is usually applied, so that the extracted signal
wave s(b) = s(t) ∗ b(t) is coherent and fulfills the Bedrosian
theorem. The effective bandwidth of filter b(t) is Δ f =
1/(2

√
2πT), which should be less than 2 fn [32]. As the filter

b(t) becomes narrower close to delta function (i.e., δ( f −
fn)) in the frequency domain, the IF (1/2π)(dφ(b)(t)/dt) of
the components in the pass band approaches the nominal
frequency fn in an asymptotic sense [46].

Generally, to infer functional connectivity with PS anal-
ysis, we would recommend to define IP by combining the
Hilbert transform with specific bandpass filter; that is, a
bandpass filter is first applied to extracting the neural signal
waves in specific frequency band, and then IP is defined
based on the Hilbert transform.

3. Phase Synchronization Analysis

3.1. Phase Synchronization Indexes. Let φ1(t) and φ2(t)
denote the cumulative IP of signals observed from two
coupled units, respectively. Then the signal pair is said to be
in p : q PS when the inequality |pφ1(t) − qφ2(t)| < const.
holds, where p and q are positive integers. In this paper,
we focus on the case of 1 : 1 PS, which is defined based on
samples of one trial in the time domain. Most conclusions for
1 : 1 PS can be easily extended to the case of p : q PS [47, 48].
In neuroscience research, the estimated PSI is usually taken
as one kind of functional connectivity in neural signals. Here
we introduce two PSIs which have been commonly used to
quantify the functional connectivity of neural signals. They
are based on entropy [2, 33] and circular statistics [34, 35],
respectively. Let s(n) denote s(nΔt), that is, the observation
of s(t) at time nΔt, and let ̂φ(n) denote the estimation of φ(t)
at time nΔt, where Δt is the sampling interval.

(i) The entropy-based PSI is estimated by

ρ = (Qmax −Q)
Qmax

, (16)

where Q = −∑K
i=1 Pi ln(Pi) is the entropy of

distribution P(ϕ̂), ϕ̂(n) = ̂φ1(n)− ̂φ2(n),Qmax = lnK ,
and K is the number of bins of distribution [2, 33].

(ii) The mean phase coherence (MPC) of IP difference
ϕ(t) = φ1(t) − φ2(t) is another commonly used PSI.
It is defined as λ = |E[e jϕ]| and can be estimated via

λ = 1
N

∣

∣

∣

∣

∣

∣

N−1
∑

n=0

e jϕ̂(n)

∣

∣

∣

∣

∣

∣

, (17)

where {ϕ̂(n)}N−1
n=0 is the estimation of ϕ(t) and N is

the number of samples.

These two PSIs quantify how concentrated the distribu-
tion of IP difference is. Their values are in [0, 1], with PSI = 1
implying that the signal pair is with exact rhythm locking and
PSI = 0 indicating no PS at all. Beside these two indexes, other
measures, such as the index based on conditional probability
[2] and the index based on mutual information [49],
have also been applied to the quantification of relationship
between IPs. More discussions on PSI can be found in [8].

3.2. Significance Tests for PSI. In inferring neural connectiv-
ity, a highly concerned question is whether the estimated PSI
could indicate that the signal pair is with significant connec-
tive strength or not. This question is also concerned in brain
network research, as brain network is constructed by setting
edges between nodes (i.e., brain regions) with connective
strength over a predefined threshold. Accumulated studies
show that both functional and structural brain networks is of
small-worldness with sparse edge number [28, 50–55]. The
topology of brain networks are dependent on the number of
edges, that is, the number of connectivity with significantly
big strength. One way to decide the value of this common
threshold is based on significance test for estimated PSI
[8, 34, 49, 56]. Here we introduce three different strategies
in providing significance threshold for PS analysis.

3.2.1. Artificial Surrogate Tests. The first strategy is based on
artificial surrogate data. Surrogate methods usually produce
artificial data by randomizing the concerned property but
keeping as much as possible other properties of the original
signal [49, 57]. Then whether the original signal possesses the
concerned property could be tests with the artificial surrogate
data. Various surrogate methods have been proposed [8,
57–61]. For example, surrogate method based on autore-
gressive model generates surrogate realizations by fitting
an autoregressive model of the original signals and using
independent white noise as the inputs to the model. The
surrogate data generated by this method are linear stochastic
processes and have the same power spectra of the original
signals [57, 60]. In another study, a method named twin
surrogate is proposed based on the recurrence properties. It
is demonstrated to be suitable to provide significance test for
PS in Rössler oscillators [61].

In [28], four different surrogate methods, which generate
artificial surrogate data by shuffling the rank order, the
phase spectra, the IP of original EEG signals, are compared
in significance test for PS analysis. Results show that the
phase-shuffled surrogate method is workable for PS analysis.
This method generates surrogate data by shuffling the
phase spectra of original signal but keeping the amplitude
spectra unchanged. Let {S(k)}N−1

k=0 denote the discrete Fourier
transform of original signal {s(n)}N−1

n=0 ; that is,

S(k) =
N−1
∑

n=0

s(n)e− j2πkn/N , k = 0, 1, . . . ,N − 1. (18)
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Then a surrogate realization of {s(n)} is generated by the
inverse discrete Fourier transform of ˜S(k); that is,

s̃(n) = 1
N

N−1
∑

k=0

˜S(k)e j2πkn/N , n = 0, 1, . . . ,N − 1, (19)

where

˜S(k) = |S(k)|e jν(k), (20)

with a uniform random sequence {ν(k)}N−1
k=0 [57, 58].

A (1 − α) × 100% level of significance corresponds
to a probability α of a false rejection. A larger number
of surrogate realizations could offer a greater power in
discrimination [57]. In [28], 99 surrogate pairs are generated
for each original EEG signal pair. Then if the PSI of one
original signal pair is larger than the 5th biggest in all the
100 PSIs (i.e., the PSIs of the original signal pair and its
99 surrogate pairs), the original signal pair is claimed to
be in PS with a 95% level of significance. Figure 2 shows
the histogram of the MPC-based PSIs λ for 435 original
EEG signal pairs and their phase-shuffled surrogate pairs for
one subject, where one common significance threshold is
estimated for all 435 original signal pairs in each case.

3.2.2. Analytical Significance Test. The second strategy is
based on the distribution test of IP series [34, 56]. When
the distribution of PSI is well approximated by an analytical
model, a significance threshold then could be offered ana-
lytically. Empirical distributions of IP difference of coupled
Rössler systems have been tested under the assumption
that IP obeys specific distributions and the IPs of different
samples are independent [56]. But this is applicable only for
special cases, as the distribution of IP difference may vary
with respect to different dynamical systems. In another study,
the IP difference is formulated as an increment process under
the assumption that the increments could be represented
by an α-mixing process. A theoretical significance level is
proposed for the MPC-based PSI. Simulation results show
that the significance level is workable when the time series is
with enough samples and two dependent parameters could
be reliably estimated [34].

3.2.3. Surrogate Test Based on Intersubject Signal Pairs.
The third strategy is based on the assumption that the
neural signals of different subjects are independent. In [28],
intersubject EEG signal pair denotes two EEG signals from
two different subjects, and intra-subject EEG signal pair
denotes two EEG signals from the same subject. Then under
this assumption, the intersubject EEG signal pairs can be
used as surrogate pairs for intra-subject EEG signal pairs.
Compared with above artificial surrogate data, intersubject
surrogate pairs seem to possess more inherent features of
EEG signals but with no association between each other.
Then significance test based on intersubject EEG signal
pairs may be used as a standard criterion in evaluating the
performance of artificial surrogate methods. Significance test
with this strategy shows that the histogram of the MPC-
based PSIs λ for intersubject surrogate pairs and intra-
subject EEG signal pairs is similar to that based on the

phase-shuffled surrogate method (Figure 2) [28], and the
significance threshold suggested by intersubject surrogate
pairs is close to that by the phase-shuffled surrogate method.
This implies that the phase-shuffled surrogate method is
workable in providing significance test for PS analysis. In
our opinion, more studies on significance test for PS analysis
are needed, and the studies combined the three different
strategies introduced above would be promising when they
may reach consistent results.

4. Problems in Phase
Synchronization Detection

In real applications, the observed neural signals are more
or less contaminated by noise, and the samples collected
are usually limited. Obviously, the observational noise will
degrade the estimation of PSI and even submerge non-
trivial PS in neural signals. In addition, the MPC-based PSI
is a biased estimator, which implies that the reliability of
functional connectivity inferred by it will decrease as the
samples collected in signals are insufficient. To get a reliable
PS detection in real applications, we must take the issues into
consideration. In this section, we would discuss challenges of
PS analysis in practice. In particular, we would introduce the
advances on the effect of noise in PS detection, the influence
of signal duration and estimation bias of PSI, the effect of
volume conduction, and the influence of reference in PS
analysis.

4.1. Effect of Noise in PS Detection. The effect of noise
in PS detection has been examined by both numerical
computation [10, 11, 27, 33, 62, 63] and analytical study
[32]. A bandpass prefiltering can suppress the effect of noise
but may introduce spurious connectivity as well [33]. In this
section, we mainly review a theoretical study on the effect of
noise in IP estimation and PS detection based on the unified
framework of IP definition [32].

Let s(t) = x(t) + w(t) denote the noisy signal, where x(t)
is the clean signal and w(t) is the additive noise. The analytic
signal of s(t) can be defined with a bandpass filter b(t); that
is,

s(b)(t) = s(t)∗ b(t)

= x(t)∗ b(t) +w(t)∗ b(t)

= Ax(t)e jφ
(b)
x (t) +w(b)(t),

(21)

where w(b)(t) = w(t) ∗ b(t). Let θ(t) = ̂φ(b)
s (t) − φ(b)

x (t)
denote the estimate error of IP due to the noise term w(t),
where ̂φ(b)

s (t) denotes the estimate of φ(b)
x (t) from the noisy

signal s(t). It has been proved that the distribution of θ(t) is
a normal distribution; that is, θ ∼ N(0, σ2

θ ),

p(θ) =
(√

2πσθ
)−1

e−θ
2/(2σ2

θ ), (22)

when the instantaneous signal-to-noise ratio, defined as
r(b)(t) = A2

x(t)/[2σ2
w(b) ] in the pass band, is larger than 5.

Here σ2
w(b) is the variance of w(b)(t), and σθ = σw(b) /Ax(t).
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Figure 2: Histogram of the phase synchronization indexes (PSI) λ for 435 original EEG signal pairs and their 435 × 99 = 43 065 phase-
shuffled surrogate pairs for one subject. The results for the theta, alpha, beta, and gamma waves of six different duration, that is, 100 ms,
200 ms, 400 ms, 600 ms, 800 ms, and 1600 ms, are presented. For each subfigure, all the PSIs λ of original EEG signal pairs and their phase-
shuffled surrogate pairs are sorted in ascending order, and the black bar indicates the value (x-axis) of the one at the rank of 95% of all the
PSIs. In other words, the black bar indicates the threshold of 95% level of significance for the estimated PSIs of original EEG signal pairs in
each case.

The wrapped θ, that is, Θ = θ(mod2π), obeys the wrapped
normal distribution, Θ ∼ ˜N(0, σ2

θ ) [35, 64],

p(Θ) = 1√
2πσθ

∞
∑

k=−∞
e−(Θ+2kπ)2/(2σ2

θ ). (23)

For the MPC-based PSI, λ = |E[e jϕ]|, the effect of noise
appears as

̂λ = e−(σ2
θ1

+σ2
θ2

)/2λ; (24)

that is, the noise introduces a degrading factor, e−(σ2
θ1

+σ2
θ2

)/2,
into the true index λ. This factor is determined by only
the level of in-band noise. If σθ = σw(b) /Ax in (22) is not
a constant, θ actually obeys a conditional distribution, and
(22) turns out to be

p(θ | σθ) =
(√

2πσθ
)−1

e−θ
2/(2σ2

θ ), σθ > 0. (25)

For observed signal {s(n)}, the distribution of IP error is a
scale mixture of normal distributions (SMN) with different

variances. If the probability density function of {σθ(n)} is
known, the empirical distribution of IP error {θ(n)} can be
approximated as

pm(θ) =
K
∑

k=1

p(θ | σk)πk, (26)

where {πk}Kk=1 are the respective empirical probabilities
which are estimated from {Ax(n)} [65]. Note that Ax(n)
is the instantaneous amplitude of the clean signal, and
thus it is difficult to obtain its distribution with only the
observed noisy signal {s(n)}. Simulations are performed by
considering the SMN of the IP error as a normal distribution
with constant standard deviation σw(b) /max{Ax(n)}; that is,
σθ = σw(b) /max{Ax(n)}, and computational outputs support
the theoretical results (24). When the in-band noise level is
not so high (signal-to-noise ratio greater than 10 dB), the
estimated PSI is not much affected by observational noise
[32].
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4.2. Influence of Signal Duration and Estimation Bias. Anoth-
er question in PS analysis is how long a epoch of signals is
enough to get a reliable quantification of neural connectivity?
One microstate of EEG signals usually lasts 50 to 200 ms [3,
9, 66]. However, various durations (from 100 ms to 10 ms)
of EEG signals have been used in examining functional
connectivity [12, 24, 67, 68]. A comprehensive study has been
performed regarding this issue based on both surrogate tests
and intersubject EEG surrogate test [28]. Results show that
a duration of EEG waves of 3 ∼ 18 wave cycles is suitable
for PS analysis. The value of PSI is not only determined by
the relationship between two IP sequences but also highly
affected by the duration of signals used for PSI estimation.
Too short duration of signals will result in too large PSI, while
too long duration of signals will yield too small PSI, both
of which may not offer a good indication on the level of PS
(Figure 2) [28].

In another study, the IP difference of a signal pair with no
synchrony is assumed to obey uniform distribution. Under
this assumption, the expected value of the MPC-based PSI is

E{λ} ≈ 1√
N

, (27)

where N is the number of samples used for PSI estimation
[43, 69]. This means that the MPC-based PSI λ is a positively
biased estimators for finite sample sizes [70]. More samples
used will result in a less biased PSI. Then even for the same
duration of signals, signals observed with higher sampling
rate will yield a better estimation of the MPC-based PSI than
those with lower sampling rate. The effect of sampling rate
on both the MPC-based PSI and the entropy-based PSI has
been evaluated. Results demonstrate that the MPC-based PSI
λ is less affected by sampling rate than the entropy-based
PSI and thus is recommended for PS analysis of EEG signals
measured with low sampling rate [28].

In many experimental studies, the number of samples or
trials of measured data is limited. Bias will be unavoidable in
PSI estimation due to insufficient samples. In addition, even
when the observed signals are with sufficient samples, they
may be nonstationary. In this case, we still want to estimate
PSI with samples in short time window, so as to obtain
functional connectivity with a certain degree of temporal
resolution. Regarding this problem, a new measure called
pairwise phase consistency has been proposed [71]. This
measure is defined as the mean of the cosine of IP difference
across all given signal pairs; that is,

ξ = 2
N(N − 1)

N−1
∑

i=1

N
∑

k=i+1

cos
(

φi − φk
)

. (28)

Pairwise phase consistency quantifies the similarity of relative
IP among trials or samples and is bias-free. In addition, it is
demonstrated that pairwise phase consistency is equivalent
to the squared MPC-based PSI in population statistic [71].

4.3. Influence of Volume Conduction. The activities of a single
source within the brain can be observed by many sensors on
the scalp [72]. This is usually referred as volume conduction.

Then the PSI between signals measured by different sensors,
especially by spatially adjacent sensors, may be a trivial
artefact due to volume conduction, but not a true interaction
of the underlying brain activities [73]. There are two ways to
tackle this problem. One way is to estimate the true sources of
underlying brain activities with observed EEG/MEG signals
using inverse method and then quantify the relationship of
the estimated sources rather than the relationship of the
observed signals. However, the true sources are usually not
easy to be obtained by inverse methods.

An alternative way is based on the imaginary part of
coherency of observed signals. We assume that two signals
si(t) and s j(t) collected by sensors i and j are from a
linear superposition of K independent sources xk(t), and the
mapping of each source to sensors is instantaneous with no
distortion [74]. Then in the frequency domain, si(t) can be
expressed as

Si
(

f
) =

K
∑

k=1

aikXk
(

f
)

, (29)

where Si( f ) and Xk( f ) are the Fourier transform of si(t) and
xk(t), respectively, and aik are the contribution coefficient of
xk(t) to si(t). The cross-spectrum of si(t) and s j(t) is

Cij
(

f
) = E

{

Si
(

f
)

S∗j
(

f
)

}

=
∑

kk′
aikajk′E

{

Xk
(

f
)

X∗k′
(

f
)

}

=
∑

kk′
aikajk′δkk′E

{
∣

∣Xk
(

f
)∣

∣
2
}

=
∑

k

aikajkE
{
∣

∣Xk
(

f
)∣

∣
2
}

,

(30)

where δkk′ denotes the Kronecker-delta function. HereCij( f )
is real, which implies that volume conduction of multiple
sources strongly affects the real part of the cross-spectrum
between si(t) and s j(t) but does not affect the imaginary part
[75, 76].

The complex coherency of si(t) and s j(t) is defined as

Ω
(

f
) = Cij

(

f
)

[

Cii
(

f
)

C∗j j
(

f
)

]1/2 . (31)

In [75], the imaginary part of Ω( f ) is defined as a
synchronization measure for si(t) and s j(t) in the frequency
domain. The mean ofΩ( f ) over all frequencies is equal to the
mean of the cross-correlation of the corresponding analytic
signals over time [76]; that is,

〈

Ω
(

f
)〉

f =
〈

Ai(t)Aj(t)e j(φi(t)−φj (t))
〉

t
[

〈

A2
i (t)

〉

t

〈

A2
j (t)
〉

t

]1/2 , (32)

where 〈·〉 f and 〈·〉t denote the average, respect to frequency
and time respectively. Then the imaginary part of 〈Ω( f )〉 f is

I
[

〈

Ω
(

f
)〉

f

]

=
〈

Ai(t)Aj(t) sin
[

φi(t)− φj(t)
]〉

t
[

〈

A2
i (t)

〉

t

〈

A2
j (t)
〉

t

]1/2 . (33)
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However, it has been demonstrated that the imaginary part
of 〈Ω( f )〉 f is not a good index of PS as it depends on the
amplitudes of signals [76, 77]. Further, a measure called
phase lag index,

η =
∣

∣

∣

〈

sign
[

φi(t)− φj(t)
]〉

t

∣

∣

∣, (34)

was proposed based on the consideration that “the existence
of a consistent, nonzero phase lag between two times series
cannot be explained by volume conduction from a single
strong source” [76]. Recently, it is demonstrated that the
performance of phase lag index could be degraded by small
perturbations [70]. To deal with this problem, a weighted
phase lag index is defined as

ζ =
∣

∣

∣E
{

I
[

Si
(

f
)

S∗j
(

f
)

]}∣

∣

∣

E
{∣

∣

∣I
[

Si
(

f
)

S∗j
(

f
)

]∣

∣

∣

} . (35)

Compared with phase lag index, the weighted phase lag index
is demonstrated with “reduced sensitivity to additional,
uncorrelated noise sources and increased statistical power to
detect changes in phasesynchronization” [70].

4.4. Influence of Reference. The influence of reference on EEG
signals is a long-lasting problem in quantifying functional
connectivity [78–80]. Various reference strategies, such as
bipolar EEG [81], average common reference EEG [82],
and Laplacian EEG [73], have been proposed. However, the
cautions on these reference strategies have been extensively
reported as well [81, 83].

The influence of reference has been examined with both
analytical analysis and computational simulation [68]. Let
u(t) = Vr(t) denote the reference signal, where V > 0 is
coefficient and r(t) is time-dependent. Let yi(t) denote the
scalp signal measured by the ith sensor, and, si(t) = u(t) −
yi(t) denote the signal yi(t) rereferenced to u(t). For analytic
signal si(t) defined with the Hilbert transform, we have

lim
V →+∞

φsi(t)

= lim
V→+∞

arctan
s̃i(t)
si(t)

= lim
V →+∞

arctan
(1/π)P.V.

∫ +∞
−∞
[

(Vr(τ)/t−τ)−(yi(τ)/t−τ
)]

dτ

Vr(t)−yi(t)

= lim
V →+∞

arctan
(1/π)P.V.

∫ +∞
−∞
[

(Vr(τ)/t−τ)−(yi(τ)/t−τ)]dτ
Vr(t)

= lim
V→+∞

arctan
(1/π)P.V.

∫ +∞
−∞ (Vr(τ)/t − τ)dτ
Vr(t)

= lim
V→+∞

arctan
(1/π)P.V.

∫ +∞
−∞ (r(τ)/t − τ)dτ
r(t)

.

(36)

Then we have

lim
V→+∞

λs1s2 = lim
V →+∞

∣

∣

∣E
{

e j[φs1 (t)−φs2 (t)]
}∣

∣

∣ = 1, (37)

as limV →+∞φs1 (t)− limV→+∞φs2 (t) = 0. This result indicates
that the coefficient V has a great influence on the MPC-
based PSI λ. A sufficiently large V will lead to larger PSI

λs1s2 for referential signals than that for nonreferential signals
[68]. Simulation study demonstrates that the PSI λs1s2 of
two referential signals may monotonically increase to 1 or
decrease first and then increase to 1 as the coefficient V
increases from 0 to ∞. In addition, a method based on
independent component analysis has been demonstrated to
be an appropriate method to generate reference for EEG
signals in quantifying connectivity [84].

5. Extensions of Phase
Synchronization Analysis

Various extensions of PS analysis have been proposed to
infer the relationship in multivariate or multitrial signals
based on the concept of IP [85–90]. For example, a method
named frequency flow analysis has been used to examine the
global synchronization of multivariate signals [88]. If the IF,
derived from IP, of each variable almost equals to the IFs of
other variables in a certain frequency band for a duration,
the multivariate signals are called in PS accordingly. In this
section, we will further introduce two extensions/variations
of PS analysis, that is, the trial-based PSI [85, 86] and the
partial PSI [87].

A trial-based PSI is proposed to examine the variation
of IP difference between signal channels across trials under
repeated stimulus [85, 86]. For a data set of K trials and each
trial with N samples, the trial-based PSI is defined as

λsis j (t) =
1
K

K
∑

k=1

e j[φsi (t,k)−φsj (t,k)], (38)

where φsi(t, k) and φsj (t, k) are the IPs of the channels si and
s j in the kth trial. The PSI λsis j (t) measures the intertrial
variability of IP difference between channels s1 and s2 at
instant t. The PSI λsis j (t) with value close to 1 implies that
the IP difference varies little across trials at instant t, while
the PSI λsis j (t) with value close to zero means that the IP
difference varies approximately uniformly across trials.

The pairwise PSI discussed above can infer the strength
of connectivity in two signals but cannot indicate whether
the connectivity is induced by the direct coupling between
them or due to the indirect interaction mediated by other
units. To deal with this problem, a measure called partial PSI
is generalized from PS analysis following the idea of partial
coherence [87, 91]. Combined with the pairwise PSI, the
partial PSI can be used to distinguish the direct and indirect
interdependencies among interacted systems/units [87]. For
a set of time series {si(n)}, i = 1, 2, . . . ,L, a matrix is defined
with PSIs of bivariate signals as

R =

⎛

⎜

⎜

⎜

⎜

⎝

1 λs1s2 . . . λs1sL
λ∗s1s2 1 . . . λs2sL

...
...

. . .
...

λ∗s1sL λ∗s2sL . . . 1

⎞

⎟

⎟

⎟

⎟

⎠

. (39)
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Let Γ = R−1 denote the inverse matrix of R. Then a measure
called partial PSI is defined as

λi j|Z =
∣

∣

∣Γi j
∣

∣

∣

[

ΓiiΓ j j
]1/2 , (40)

for {si(n)} and {s j(n)}, conditioning on the remaining
processes {SZ | Z = 1, 2, . . . ,L,Z /= i, j} [87]. A partial PSI
λi j|Z ≈ 0 would imply that the association is induced by
indirect coupling if the pair-wise PSI λsis j between {si(n)}
and {s j(n)} is significant.

6. Discussions and Conclusions

We give a technical review on PS analysis in this paper. In
particular, we discuss IP definitions, PSI estimation and its
significance test, the issues that may affect PS detection, and
extensions of PSI. PS analysis is a method to quantify the
mutual rhythmic interaction of coupled systems/units and
has been used to infer functional connectivity from observed
neural signals such as EEG and MEG. The main advantage
of PS analysis is that it could detect weak interaction
between signal pairs by only taking the IPs of signals into
consideration but neglecting the influence of instantaneous
amplitudes of signals. In addition, PS analysis could work for
nonstationary signals. These merits imply that PS analysis
is suitable for neuroscience research, as we are usually
interested in the relationship between neural oscillations in
particular frequency bands such as beta waves ([12, 30] Hz)
and gamma waves ([30, 80] Hz) rather than the interaction
between broadband raw signals.

While inferring functional neural connectivity with PS
analysis, several cautions and limitations should be taken
into consideration. First, the observed neural signal is usually
with broadband spectra and unavoidably contaminated by
noise. In this case, bandpass filter should be used to extract
neural oscillations in the raw signals. Second, for spatially
adjacent neural recordings, PS would be affected by volume
conduction and so did correlation coefficient and mutual
information. In this case, the phase lag index [76] or the
weighted phase lag index [70] is recommended. Third,
PS analysis does not work in a black-box way. The PSIs
estimated with different durations of neural signals are not
recommended to be compared. Fourth, users should be
aware that PSI quantifies the variation instead of the mean
of IP difference within a period. Therefore, PS analysis might
not be suitable for analyzing those relatively stable com-
ponents in neural signals, such as event-related potentials
estimated from multiple EEG trials, as PS would ignore the
amplitudes of components in event-related potential and
miss the latencies of these components as well.

Various measures, such as cross-correlation, coherence,
nonlinear interdependence [10], mutual information [8],
partial directed coherence [9], correlation-entropy coeffi-
cient [92], and coherence entropy coefficient [13], have been
proposed in functional connectivity analysis based on EEG,
MEG signals and simulated data from various aspects [10–
13, 93–95]. Results show that they can reveal a similar

tendency of global connectivity [10]. The MPC-based PSI
has been argued to be slightly better than coherence for both
estimation and detection purposes [93]. In another study,
total 34 different measures are classified into several families
such as correlation/coherence family, mutual information
family, PS family, and the Granger causality family. These
measures are comprehensively compared, and results show
that PS measures, Granger’s causality measures and stochas-
tic event synchrony measures are only weakly correlated
with correlation coefficient, and are mutually uncorrelated
as well [13]. These results imply that these measures each
could characterize interdependence of signals from different
aspects. With this consideration, we could have a good
characterization of functional connectivity between neural
signals with only a few representative measures of different
families.

Acknowledgments

This work was supported by the National Natural Sci-
ence Foundation of China (nos. 60901025, 61174045, and
60935001), National Basic Research Program of China
(973 Program) (no. 2011CB013304), and the International
Science and Technology Cooperation Program of China (no.
2011DFA10950).

References

[1] G. Tononi, O. Sporns, and G. M. Edelman, “A measure
for brain complexity: relating functional segregation and
integration in the nervous system,” Proceedings of the National
Academy of Sciences of the United States of America, vol. 91, no.
11, pp. 5033–5037, 1994.

[2] P. Tass, M. G. Rosenblum, J. Weule et al., “Detection of n:m
phase locking from noisy data: application to magnetoen-
cephalography,” Physical Review Letters, vol. 81, no. 15, pp.
3291–3294, 1998.

[3] F. Varela, J. P. Lachaux, E. Rodriguez, and J. Martinerie, “The
brainweb: phase synchronization and large-scale integration,”
Nature Reviews Neuroscience, vol. 2, no. 4, pp. 229–239, 2001.

[4] R. T. Canolty, E. Edwards, S. S. Dalal et al., “High gam-
ma power is phase-locked to theta oscillations in human
neocortex,” Science, vol. 313, no. 5793, pp. 1626–1628,
2006.

[5] J. Fell and N. Axmacher, “The role of phase synchronization in
memory processes,” Nature Reviews Neuroscience, vol. 12, no.
2, pp. 105–118, 2011.

[6] B. He, L. Yang, C. Wilke, and H. Yuan, “Electrophysiological
imaging of brain activity and connectivity—challenges and
opportunities,” IEEE Transactions on Biomedical Engineering,
vol. 58, no. 7, pp. 1918–1931, 2011.

[7] P. J. Uhlhaas and W. Singer, “Abnormal neural oscillations and
synchrony in schizophrenia,” Nature Reviews Neuroscience,
vol. 11, no. 2, pp. 100–113, 2010.

[8] J. M. Hurtado, L. L. Rubchinsky, and K. A. Sigvardt, “Statistical
method for detection of phase-locking episodes in neural
oscillations,” Journal of Neurophysiology, vol. 91, no. 4, pp.
1883–1898, 2004.

[9] M. Ding, S. L. Bressler, W. Yang, and H. Liang, “Short-
window spectral analysis of cortical event-related potentials



Computational and Mathematical Methods in Medicine 11

by adaptive multivariate autoregressive modeling: data pre-
processing, model validation, and variability assessment,”
Biological Cybernetics, vol. 83, no. 1, pp. 35–45, 2000.

[10] R. Q. Quiroga, A. Kraskov, T. Kreuz, and P. Grassberger,
“Performance of different synchronization measures in real
data: a case study on electroencephalographic signals,” Physical
Review E, vol. 65, no. 4, Article ID 041903, 14 pages, 2002.

[11] T. Kreuz, F. Mormann, R. G. Andrzejak, A. Kraskov, K. Lehn-
ertz, and P. Grassberger, “Measuring synchronization in cou-
pled model systems: a comparison of different approaches,”
Physica D, vol. 225, no. 1, pp. 29–42, 2007.

[12] L. Astolfi, F. De Vico Fallani, F. Cincotti et al., “Estimation
of effective and functional cortical connectivity from neuro-
electric and hemodynamic recordings,” IEEE Transactions on
Neural Systems and Rehabilitation Engineering, vol. 17, no. 3,
pp. 224–233, 2009.

[13] J. Dauwels, F. Vialatte, T. Musha, and A. Cichocki, “A compar-
ative study of synchrony measures for the early diagnosis of
alzheimer’s disease based on EEG,” Neuroimage, vol. 49, no. 1,
pp. 668–693, 2010.

[14] A. Pikovsky, M. Rosenblum, and J. Kurths, Synchronization: A
Universal Concept in Nonlinear Sciences, Cambridge University
Press, Cambridge, UK, 2001.

[15] R. Brown and L. Kocarev, “A unifying definition of synchro-
nization for dynamical systems,” Chaos, vol. 10, no. 2, pp. 344–
349, 2000.

[16] M. Le Van Quyen and A. Bragin, “Analysis of dynamic
brain oscillations: methodological advances,” Trends in Neu-
rosciences, vol. 30, no. 7, pp. 365–373, 2007.

[17] M. G. Rosenblum, A. S. Pikovsky, and J. Kurths, “Phase
synchronization of chaotic oscillators,” Physical Review Letters,
vol. 76, no. 11, pp. 1804–1807, 1996.

[18] D. J. DeShazer, R. Breban, E. Ott, and R. Roy, “Detecting
phase synchronization in a chaotic laser array,” Physical Review
Letters, vol. 87, no. 4, Article ID 044101, 4 pages, 2001.

[19] I. Z. Kiss, Q. Lv, and J. L. Hudson, “Synchronization of non-
phase-coherent chaotic electrochemical oscillations,” Physical
Review E, vol. 71, no. 3, Article ID 035201, 4 pages, 2005.

[20] M. G. Kitzbichler, M. L. Smith, S. R. Christensen, and E.
Bullmore, “Broadband criticality of human brain network
synchronization,” Plos Computational Biology, vol. 5, no. 3,
article e1000314, 2009.

[21] M. Chávez, M. Le Van Quyen, V. Navarro, M. Baulac, and J.
Martinerie, “Spatio-temporal dynamics prior to neocortical
seizures: amplitude versus phase couplings,” IEEE Transactions
on Bio-medical Engineering, vol. 50, no. 5, pp. 571–583, 2003.

[22] W. Wu, J. Sun, Z. Jin et al., “Impaired neuronal synchrony after
focal ischemic stroke in elderly patients,” Clinical Neurophysi-
ology, vol. 122, no. 1, pp. 21–26, 2011.

[23] E. Gysels and P. Celka, “Phase synchronization for the recog-
nition of mental tasks in a brain-computer interface,” IEEE
Transactions on Neural Systems and Rehabilitation Engineering,
vol. 12, no. 4, pp. 406–415, 2004.

[24] C. Brunner, R. Scherer, B. Graimann, G. Supp, and G.
Pfurtscheller, “Online control of a brain-computer interface
using phase synchronization,” IEEE Transactions on Biomedical
Engineering, vol. 53, no. 12, pp. 2501–2506, 2006.

[25] P. J. Uhlhaas and W. Singer, “Neural synchrony in brain
disorders: relevance for cognitive dysfunctions and pathophys-
iology,” Neuron, vol. 52, no. 1, pp. 155–168, 2006.

[26] C. Hammond, H. Bergman, and P. Brown, “Pathological
synchronization in parkinson’s disease: networks, models and
treatments,” Trends in Neurosciences, vol. 30, no. 7, pp. 357–
364, 2007.

[27] M. Winterhalder, B. Schelter, J. Kurths, A. Schulze-Bonhage,
and J. Timmer, “Sensitivity and specificity of coherence and
phase synchronization analysis,” Physics Letters Section A, vol.
356, no. 1, pp. 26–34, 2006.

[28] J. Sun, X. Hong, and S. Tong, “Phase synchronization analysis
of EEG signals: an evaluation based on surrogate tests,” IEEE
Transactions on Biomedical Engineering. Submitted.

[29] R. A. Dobie and M. J. Wilson, “Analysis of auditory evoked
potentials by magnitude-squared coherence,” Ear and Hearing,
vol. 10, no. 1, pp. 2–13, 1989.

[30] S. Kalitzin, J. Parra, D. N. Velis, and F. H. Lopes Da
Silva, “Enhancement of phase clustering in the EEG/meg
gamma frequency band anticipates transitions to paroxysmal
epileptiform activity in epileptic patients with known visual
sensitivity,” IEEE Transactions on Biomedical Engineering, vol.
49, no. 11, pp. 1279–1286, 2002.

[31] A. E. Hramov and A. A. Koronovskii, “An approach to chaotic
synchronization,” Chaos, vol. 14, no. 3, pp. 603–610, 2004.

[32] J. Sun and M. Small, “Unified framework for detecting phase
synchronization in coupled time series,” Physical Review E, vol.
80, no. 4, Article ID 046219, 2009.

[33] L. Xu, Z. Chen, K. Hu, H. E. Stanley, and P. C. Ivanov, “Spuri-
ous detection of phase synchronization in coupled nonlinear
oscillators,” Physical Review E, vol. 73, no. 6, Article ID 065201,
2006.

[34] B. Schelter, M. Winterhalder, J. Timmer, and M. Peifer,
“Testing for phase synchronization,” Physics Letters Section A,
vol. 366, no. 4-5, pp. 382–390, 2007.

[35] S. R. Jammalamadaka and A. SenGupta, Topics in Circular
Statistics, World Scientific Publishing, Singapore, 2001.

[36] E. Bedrosian, “A product theorem for Hilbert transform,”
Proceedings of the IEEE, vol. 51, no. 5, pp. 868–869, 1963.

[37] P. J. Loughlin, “Spectrographic measurement of instantaneous
frequency and the time-dependent weighted average instanta-
neous frequency,” Journal of the Acoustical Society of America,
vol. 105, no. 1, pp. 264–274, 1999.

[38] P. M. Oliveira and V. Barroso, “Definitions of instantaneous
frequency under physical constraints,” Journal of the Franklin
Institute, vol. 337, no. 4, pp. 303–316, 2000.

[39] T. Pereira, M. S. Baptista, and J. Kurths, “Phase and average
period of chaotic oscillators,” Physics Letters Section A, vol. 362,
no. 2-3, pp. 159–165, 2007.

[40] G. V. Osipov, B. Hu, C. Zhou, M. V. Ivanchenko, and J.
Kurths, “Three types of transitions to phase synchronization
in coupled chaotic oscillators,” Physical Review Letters, vol. 91,
no. 2, Article ID 024101, 4 pages, 2003.

[41] D. Vakman, “Computer measuring of frequency stability and
the analytic signal,” IEEE Transactions on Instrumentation and
Measurement, vol. 43, no. 4, pp. 668–671, 1994.

[42] A. H. Nuttall and E. Bedrosian, “On the quadrature approx-
imation to the hilbert transform of modulated signals,”
Proceedings of the IEEE, vol. 54, no. 10, pp. 1458–1459, 1966.

[43] S. Aviyente and A. Y. Mutlu, “A time-frequency-based ap-
proach to phase and phase synchrony estimation,” IEEE
Transactions on Signal Processing, vol. 59, no. 7, pp. 3086–3098,
2011.

[44] M. Wacker and H. Witte, “Adaptive phase extraction: incor-
porating the Gabor transform in the matching pursuit algo-
rithm,” IEEE Transactions on Biomedical Engineering, vol. 58,
no. 10, pp. 2844–2851, 2011.

[45] D. Vakman, “On the analytic signal the teager-kaiser energy
algorithm and other methods for defining amplitude and
frequency,” IEEE Transactions on Signal Processing, vol. 44, no.
4, pp. 791–797, 1996.



12 Computational and Mathematical Methods in Medicine

[46] L. Cohen, Time-Frequency Analysis, Prentice-Hall, Englewood
Cliffs, NJ, USA, 1995.

[47] D. Hoyer, O. Hoyer, and U. Zwiener, “A new approach to
uncover dynamic phase coordination and synchronization,”
IEEE Transactions on Biomedical Engineering, vol. 47, no. 1, pp.
68–74, 2000.

[48] M. Wacker and H. Witte, “On the stability of the n:m phase
synchronization index,” IEEE Transactions on Biomedical
Engineering, vol. 58, no. 2, pp. 332–338, 2011.
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