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Abstract

Patterns of migration and habitat use in diadromous fishes can be highly variable among individuals. Most investigations
into diadromous movement patterns have been restricted to populations in regulated rivers, and little information exists for
those in unregulated catchments. We quantified movements of migratory barramundi Lates calcarifer (Bloch) in two large
unregulated rivers in northern Australia using both elemental (Sr/Ba) and isotope (87Sr/86Sr) ratios in aragonitic ear stones,
or otoliths. Chemical life history profiles indicated significant individual variation in habitat use, particularly among
chemically distinct freshwater habitats within a catchment. A global zoning algorithm was used to quantify distinct changes
in chemical signatures across profiles. This algorithm identified between 2 and 6 distinct chemical habitats in individual
profiles, indicating variable movement among habitats. Profiles of 87Sr/86Sr ratios were notably distinct among individuals,
with highly radiogenic values recorded in some otoliths. This variation suggested that fish made full use of habitats across
the entire catchment basin. Our results show that unrestricted movement among freshwater habitats is an important
component of diadromous life histories for populations in unregulated systems.

Citation: Walther BD, Dempster T, Letnic M, McCulloch MT (2011) Movements of Diadromous Fish in Large Unregulated Tropical Rivers Inferred from
Geochemical Tracers. PLoS ONE 6(4): e18351. doi:10.1371/journal.pone.0018351

Editor: Richard K.F. Unsworth, University of Glamorgan, United Kingdom

Received December 1, 2010; Accepted February 27, 2011; Published April 6, 2011

Copyright: � 2011 Walther et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: BDW and MTM gratefully acknowledge support by the ARC Centre of Excellence for Coral Reef Studies (http://www.coralcoe.org.au/). ML and TD were
supported by an award from the Hermon Slade Foundation, grant number HSF 07/10 (http://www.hermonslade.org.au/). The funders had no role in study design,
data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: bwalther@mail.utexas.edu

Introduction

Diadromous fishes often travel extensive distances between their

spawning and maturation habitats. By definition, these movements

traverse salinity gradients at some life history stage, theoretically in

order to continually maximize growth and survival despite

ontogenetic shifts in risks and requirements [1–2]. While some

diadromous species adhere to strict schedules of ontogenetic

habitat shifts, others display a portfolio of tactics within a species or

population, often including individuals that never cross major

salinity gradients during their lifetime. This flexible portfolio of life

histories may confer resilience in the face of unpredictable

disturbances that render a given pattern of habitat use unsustain-

able for a period of time [3–4]. Diversity in habitat use patterns

therefore represents a bet-hedging strategy, which may be of

critical importance in the face of anthropogenic activities that

increase the frequency, duration or intensity of disturbances.

Resilience to disturbances is particularly important for diadromous

species, which face a wide range of anthropogenic threats that

have contributed to worldwide population declines [5–7].

Elucidating variation in diadromous life history strategies has

been aided by the advent of high precision chemical analytical

techniques that probe compositional variation across aragonitic

fish ear stones, or otoliths [8]. Because otoliths are metabolically

inert after formation [9], grow through the sequential accretion of

layers [10], and incorporate certain elements in proportion to their

ambient abundance [11–12], movements through chemically

distinct bodies of water can be effectively reconstructed. Otolith

chemistry has been particularly valuable for identifying the

presence and timing of movements across substantial salinity

gradients in diadromous fishes [13–15]. However, determining

movements among habitats within fresh water using otolith

chemistry has proved more challenging. This is principally due

to reduced chemical gradients within tributaries compared to

those found between fresh and marine biomes. However, when

significant freshwater chemical gradients exist due to geological

heterogeneity, movements between particular freshwater habitats

can be retrospectively identified [16–18].

A variety of chemical tracers in otoliths have been used to

reconstruct movements across salinity regimes. For example,

gradients in 87Sr/86Sr can identify residence in fresh or marine

habitats [17,19–21]. The utility of these isotope ratios derives from

the range of geologically-determined freshwater endmembers.

Depending on streambed geological composition, these end-

members can vary significantly between or even within river

systems [16,22]. In addition, many freshwater endmembers are

measurably distinct from the globally homogenous marine value of

0.7092 [23]. Because there is no significant trophic fractionation in
87Sr/86Sr ratios [24] (which in our study is corrected via the

normalization to 86Sr/88Sr) and otoliths faithfully record ambient

environmental ratios [17,25], this tracer is an unambiguous

marker of diadromous movements. Unfortunately, mixing curves
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between fresh and marine endmembers tend to flatten out at

salinities of 5 to 15, rendering movements between mesohaline

and fully marine habitats analytically indistinguishable [20].

Additional tracers are required to identify residence in particular

salinity regimes.

Dissolved trace elemental ratios such as Sr/Ca and Ba/Ca

generally differ in fresh and marine habitats. Ba derives primarily

from terrigenous sources and dissolved concentrations are typically

highest at low to moderate salinities due to desorption from

particles in estuarine mixing zones [26–27]. Marine surface waters

are depleted in Ba due to its nutrient-like distribution in the water

column [28–29]. High ambient Ba is therefore indicative of

estuarine or fresh water masses. In contrast, Sr is typically elevated

in marine habitats compared to freshwater, although this

relationship depends strongly on the freshwater endmember of

the tributary, which is in turn determined by the surficial and

bedrock geology [30–31]. For most systems, though, high ambient

Sr usually indicates marine water masses. The contrasting

relationships of these two elements with salinity make their

combined use a potentially powerful way to discriminate

movement across a range of salinities. McCulloch et al. [21]

combined 87Sr/86Sr and Sr/Ba ratios to estimate habitat use

patterns of barramundi Lates calcarifer (Bloch) in eastern Queens-

land to identify individuals that moved between fresh and marine

regions and those that resided in transitional estuarine habitats.

Extending this approach to elucidate use of freshwater habitats

may provide further insight into the ecology of diadromous fish.

Barramundi are large and long-lived catadromous latid fish

widely distributed across the Indo-West Pacific, including northern

Australia. Due to its recreational and commercial importance,

much work has focused on distribution patterns, large and fine-

scale movements and habitat preferences [32]. Chemical compo-

sitions of scales [33–34] and otoliths [20,35] have been used to

detect spawning frequency and identify individuals that spend

variable amounts of time in marine habitats prior to migration into

fresh water. Extending this approach to elucidate the use of

freshwater habitats may provide further insight into the ecology of

diadromous fishes.

To test whether it is possible to distinguish between the different

freshwater habitats used by barramundi in large, un-regulated

rivers in northern Australia, we combined measurements of

elemental (Sr/Ba) and isotope (87Sr/86Sr) ratios in otoliths. These

large river systems include geologically heterogeneous regions,

suggesting that movements among regions within rivers may be

chemically detectable. The seasonally intermittent nature of

streamflow in the Victoria River meant that we could collect fish

with known residence periods in disconnected water holes, thus

allowing us to determine spatial variation in 87Sr/86Sr and Sr/Ba

ratios by analyzing otolith edge regions. Our specific aim was to

test the following hypothesis: does otolith 87Sr/86Sr and Sr/Ba

vary sufficiently among river sections to indicate intra-riverine

movements?

Methods

Study systems
We collected barramundi from two large unregulated rivers in

the Northern Territory (NT) of Australia (Figure 1). The Daly

River is the third largest river system in NT with a catchment size

of approximately 53,000 km2 and a length of over 560 km from

the mouth to its headwaters. Due to continuous discharge from

three underlying aquifers, the mainstem of the Daly River is

perennially free-flowing and has the highest base flow of all NT

rivers [36]. The Victoria River is the longest NT river (over

700 km from mouth to headwaters) and has a large catchment size

of nearly 88,000 km2. Flow in the Victoria River mainstem is

highly seasonal. During the dry season (April/May to November)

minimal precipitation and evaporative loss reduces baseflow until

water remains only in isolated waterholes. Waterholes are isolated

for between 3–7 months, depending on their location, before the

onset of monsoonal precipitation restores habitat connectivity.

Streambed geology of the river systems is highly diverse

(Figure 2). The Victoria River catchment contains a mix of

unconsolidated alluvia, sandstones, shales, limestones, laterised

sediments, and basalts. Geological ages are generally ancient for

the majority of rock types, including large regions of Proterozoic

and Cambrian formations. This heterogeneity of rock types and

ages should therefore be reflected in a diversity of dissolved

elemental and isotopic compositions across the catchment,

particularly between the calcareous and basaltic regions.

Fish collections
Barramundi were collected in October and November of 2008

at the end of the dry season prior to significant rainfall in the

region. Fish were sampled from five separate waterholes along the

Victoria River (Figure 1), where they had been resident for a

minimum of 3–7 months to due waterhole isolation (Table 1). Fish

were also collected from one location, Oolloo, in the Daly River,

although perennial flow meant fish were not necessarily resident at

the collection location for any known length of time. Fish were

sampled using hook and line, measured (total length) and dissected

for otoliths. Otoliths were rinsed and stored dry prior to analyses.

Otolith analyses
Otoliths were embedded in epoxy and sectioned through the

transverse midplane using a low speed diamond wafering saw.

Sectioned otoliths were then polished and mounted on petro-

graphic slides for analysis. Otoliths were analyzed on both single

and multiple collector inductively coupled plasma mass spectrom-

eters (ICP-MS) in sequence, each coupled to a 193 nm ArF

excimer laser. Prior to measurement on both instruments, analysis

tracks were preablated to remove approximately 5 mm from the

surface and exposing material free from contaminants. The laser

was operated using an 80 mm spot size, a 5 hz repetition rate, a

laser energy of 50 mJ with a 50% partially reflecting mirror, and a

scan speed of 6 mm.s21.

Otolith transects, hereafter referred to as life history profiles,

were ablated from the core to the distal edge across the ventral

lobe. Elemental (Sr/Ca, Ba/Ca) ratios were quantified with a

Varian 820 ICP-MS by continuously monitoring 43Ca, 86Sr and
138Ba. Analyses were done in blocks of four to six otoliths

bracketed by NIST glass standards 612 and 610. Background

counts of monitored isotopes were collected for sixty seconds

before and after each block for offline subtraction of background

intensities. Elemental intensities were normalized to Ca and

corrected for elemental bias using interpolations of NIST612

following Sinclair et al. [37] to obtain molar ratios. External

precisions based on repeated measurements of NIST 610 over all

analyses (n = 14) were 2.3% for Sr/Ca and 1.2% for Ba/Ca.

Because Sr/Ca and Ba/Ca typically vary inversely across salinity

gradients, ratios of Sr/Ba (ppm) were calculated to maximize

detection of movement through mesohaline habitats.

After elemental ratio analyses, parallel tracks were ablated on

each otolith to quantify 87Sr/86Sr ratios with a Thermo Neptune

multi-collector ICP-MS. Analytical methods followed those

described by McCulloch et al. [21] with the following modifica-

tions. Briefly, the masses 83Kr, 84Sr, 85Rb, 86Sr, 87Sr and 88Sr

along with the mass positions 82.5, 83.5 and 86.5 were measured

Barramundi Movement in Unregulated Rivers
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Figure 1. Map of river systems and sampling locations. Map of fish collection locations in the Northern Territory of Australia. (a) Watershed
regions for the Victoria (black) and Daly (gray) rivers. The single sampling location in the Daly River is indicated. (b) Victoria River catchment with
sample locations indicated.
doi:10.1371/journal.pone.0018351.g001
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Figure 2. Map of Victoria River catchment geology. Catchment geology of the Victoria River. Map displays (a) streambed geological
composition and (b) geological ages. Sampling locations are indicated by circles.
doi:10.1371/journal.pone.0018351.g002
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continuously and simultaneously with the nine-cup multi-collector

array. Direct isobaric interferences of 87Rb on 87Sr and krypton

isotopes on 84Sr and 86Sr were corrected for using the directly

measured value of 85Rb/87Rb = 2.463. The krypton interference

was corrected using a blank subtraction procedure with on-peak

baselines measured before each sample. A Tridacna shell sample

was measured between each sample to assess the validity of the

interference correction procedure by monitoring 84Sr/86Sr ratios,

which are most sensitive to Kr interference. The mean measured

and corrected 84Sr/86Sr ratio of the Tridacna standard was

0.056660.0001 (SD) and within one standard deviation of the

accepted value (0.0565). The mean measured and corrected
87Sr/86Sr ratio (normalized to 86Sr/88Sr = 0.1194) was 0.709166

0.00006 (SD), within one standard deviation of the global marine

value (0.70918).

Data analysis
Chemical analyses based on Sr/Ba and 87Sr/86Sr ratios enabled

life history profiles to be derived for individual fish. Because the

sampling frequency for ablations of 87Sr/86Sr ratios was lower

than that of Sr/Ba ratios, the unreduced Sr/Ba ratio profiles had a

higher density of data points across the profile length. To compare

profiles of comparable data densities, Sr/Ba ratios were reduced

by averaging adjacent values to obtain densities matching those of
87Sr/86Sr ratio profiles (approximately 1 measurement per

65 mm). Reduced Sr/Ba profiles were used for all subsequent

analyses.

Isotope and elemental ratios from otolith edges should be

representative of residence in the isolated waterholes prior to

capture. Therefore, values from the ends of each profile reflecting

the most recent months of growth (an average distance of

208613 mm, 1 S.E.) were extracted and averaged over all fish

collected from a given location. Differences in both ratios among

locations were tested with non-parametric Kruskal-Wallis tests

followed by multiple comparisons using the non-parameteric

Dunn’s test, which allows for unequal sample sizes [38]. Variances

were calculated based on the number of fish in a given group.

Systematic shifts in values of both ratios across life history

profiles were quantified using a global zoning algorithm [39]. This

algorithm divides profiles into zones that are relatively chemically

homogeneous and distinct from adjacent zones using a recursive

process to identify shifts from one zone to another. For this study,

we refer to these zones as habitats, as they ideally reflect

movements between chemically distinct bodies of water. Zone

breaks were pruned using a cross-validation approach repeated

1000 times to avoid model over-fitting. The kernel smoother

window size was set to 0 mm, as profiles were already smoothed for

the Sr/Ba ratios and at moderately low densities for 87Sr/86Sr

ratios. Total numbers of chemically distinct habitats identified by

the zoning algorithm for both 87Sr/86Sr and Sr/Ba ratio profiles

were quantified and compared among individuals and by capture

location.

Results

Edge values corresponding to time spent in capture locations

were significantly different for both 87Sr/86Sr (P,0.001) and Sr/

Ba (P = 0.049) ratios. Non-parametric multiple comparisons

revealed statistically significant differences between ratios for some

pairs of sites but not others. In the case of 87Sr/86Sr ratios, Oolloo

fish from the Daly River were significantly different from Big

Mucka, Wickham, and Longreach fish. Fish from Big Mucka were

also significantly different from Coolibah fish. In the case of Sr/Ba

ratios, the only significant pairwise difference was between Oolloo

and Big Mucka fish. Trends in isotope and elemental ratios across

sites were observed (Figure 3). In general, lower Sr/Ba and higher
87Sr/86Sr ratios were found in fish from the most downstream

Victoria River site (Coolibah) compared to those from upstream

sites (e.g. Big Mucka). Fish from Oolloo in the Daly River had

lower Sr/Ba and higher 87Sr/86Sr ratios compared to all Victoria

River sites. Although not all of these sites were statistically

significantly different from one another, these trends indicated

detectable geological and chemical heterogeneity both between

and within rivers.

Individual life history profiles displayed high variability in both
87Sr/86Sr and Sr/Ba values (Figure 4, Figures S1, S2, S3, S4, S5,

S6). Most profiles overlapped values typical of marine habitats for
87Sr/86Sr (0.70918) and Sr/Ba [approximately 50–1000; 21]. All

individuals spent a significant amount of time in fresh water as

well. Ranges for freshwater values of both ratios were high,

indicating most fish moved across chemically heterogeneous

habitats after emigrating from estuarine habitats. Many individuals

recorded notably radiogenic (high) values of 87Sr/86Sr ratios,

exceeding 0.730 in some cases and nearly reaching 0.770 in the

case of one fish from the Daly River. Many of these values were

outside the range constrained by those from otolith edges,

suggesting fish movements over their lifetime were not restricted

to those particular capture locations.

A few distinct types of movement patterns were observed

(Figure 5). Some individuals resided in fully marine habitats for an

extended period before emigrating to fresh water (Figure 5a). In

this case, Sr/Ba ratios indicated gradual movement across salinity

gradients while 87Sr/86Sr ratios remained steady at marine values.

Other profiles indicated rapid movement into estuarine and

freshwater habitats, where they remained for the duration of their

life (Figure 5b). Finally, movements between highly distinct

freshwater chemical habitats were clear, and many individuals

moved through high 87Sr/86Sr regimes after immigration into

fresh water (Figure 5c).

The zoning algorithm was effective at identifying large scale

changes in values across 87Sr/86Sr and Sr/Ba ratio profiles. Short-

term excursions were not detected, due to the smoothing nature of

the algorithm. Estimates of the number of chemical habitats across

profiles are therefore conservative, as they exclude short-term

excursions to chemically distinct locations. Frequency distributions

of the number of habitats identified by the zoning algorithm were

similar for 87Sr/86Sr and Sr/Ba ratios (Figure 6a). The mean

number of habitats identified in profiles from fish collected in the

Victoria River was 3.660.2 (1 S.E.) for 87Sr/86Sr ratios and

3.660.2 for Sr/Ba ratios. Profile habitat numbers varied

Table 1. Waterhole collection locations, river distance from
the mouth, months of waterhole isolation prior to sampling,
sample sizes and mean total lengths (cm) for analyzed fish.

River Location

Distance
upstream
(km)

Months
isolated n TL (SE)

Victoria Big Mucka 578 7 4 66 (2)

Victoria Longreach 424 6 7 62 (2)

Victoria Pigeonhole 406 6 5 60 (1)

Victoria Wickham 339 5 5 50 (4)

Victoria Coolibah 221 3 8 55 (7)

Daly Oolloo 277 0 6 44 (5)

doi:10.1371/journal.pone.0018351.t001
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depending on capture location for Victoria River fish, with an

increasing trend in the numbers of habitats identified in profiles

from fish captured at the most downstream (Coolibah) to the

furthest upstream location (Big Mucka; Figure 6b).

Discussion

We detected significant heterogeneity in lifetime elemental and

isotope ratios recorded in barramundi otoliths, indicating

individually variable patterns of habitat use both across salinity

gradients and within fresh water. Entry times into fresh water

were variable, with some individuals moving quickly upstream

and others lingering in estuarine or fully marine habitats. Once in

fresh water, fish exhibited highly variable life history profiles,

suggesting movement between distinct chemical regions within

the rivers. These results indicate that fish make full use of multiple

regions throughout a river when unimpeded by anthropogenic

obstructions.

A central challenge for interpretations of otolith chemistry is

identifying the source of variation in the selected elemental or

isotope markers [40]. The two elements examined here, Sr and

Ba, are thought to be primarily derived from water sources

[11–12]. Although elemental incorporation rates can be modified

by exogenous and endogenous factors including temperature,

growth rate and physiological status [41–43], these effects are

typically small in magnitude compared to those driven by the large

gradients in dissolved ambient concentrations between fresh and

marine habitats. Significant shifts in Sr/Ca and Ba/Ca ratios in

barramundi otoliths were detected after experimental manipula-

tion of water chemistry as well as transfer between fresh and

marine waters [44]. Otolith 87Sr/86Sr ratios are also primarily

determined by ambient values. Ratios of 87Sr/86Sr do not appear

to fractionate trophically or during incorporation into biogenic

structures [24,45], although the routine normalization to specified
88Sr/86Sr values in order to account for instrumental fractionation

also removes any natural mass dependent fractionation, if present

[23,46]. Regardless, otolith 87Sr/86Sr ratios have been repeatedly

demonstrated to be effective recorders of ambient dissolved
87Sr/86Sr ratios making them powerful tags of residence in

isotopically distinct habitats [16–17,25,47]. Thus, we are confident

the chosen tracers for this study should be overwhelmingly driven

by changes in water chemistry.

A related difficulty in interpreting otolith chemistry profiles is

distinguishing between actual movement between chemically

distinct locations and temporal fluctuations in ambient chemistry

around stationary fish. Temporal fluctuations in water chemistry

may be driven in part by seasonally variable stream flow. Flow-

related alterations in ambient 87Sr/86Sr may be due to differential

weathering of specific mineral types during various flow conditions,

and the increased contribution of upstream values during high flow,

provided those upstream tributaries are isotopically distinct. The

evidence for flow-related variations in 87Sr/86Sr ratios is mixed. For

instance, while some workers observed temporal stability in local

dissolved freshwater 87Sr/86Sr ratios [48–50], others have reported

significant relationships between water 87Sr/86Sr ratios and

discharge rates [51–53]. These conflicting relationships are likely

due to catchment–specific mineralogies, their spatial arrangement

and flow dynamics. Solving this problem requires extensive spatial

and temporal sampling of water or some other stationary biogenic

proxy for local water chemistry in order to constrain estimates of

seasonal and temporal variation in composition at a given location.

Because of the remoteness of our study location, such a sampling

effort was not feasible.

An alternative explanation for the patterns we observed is that

the variations in otolith chemistry were the result of variable flow

conditions. Although we cannot rule out the potential influence of

Figure 3. Edge otolith compositions. Isotope and trace element ratios from exterior edges of otoliths from Victoria River barramundi grouped by
capture location.
doi:10.1371/journal.pone.0018351.g003
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Figure 4. Boxplots of individual life history profiles. Boxplot summaries of otolith life history profiles grouped by capture location. Boxplots
show (a) Sr/Ba and (b) 87Sr/86Sr ratios from individual profiles.
doi:10.1371/journal.pone.0018351.g004
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variable flow rates on the otolith chemistry patterns we observed,

several lines of evidence suggest that movement between river

reaches is a more likely explanation. First, individual profiles were

highly variable, with only some fish recording highly radiogenic
87Sr/86Sr ratios. If these values were the result of higher

discharge altering downstream water chemistry around stationary

fish, we would expect to see similar ranges in values for all

individuals from a particular capture location. If this were the

case, fish resident in a particular location would all experience the

same fluctuations in environmental chemistry, regardless of their

age. This would lead to comparable magnitudes of otolith

chemical variation for all fish collected from a given location.

Instead, we observed individually variable patterns regardless of

their collection location. Second, discharge rates are highly

seasonal, suggesting that flow-related chemical variation would be

periodic and synchronous across individuals. Periodicity and

synchronicity across otolith profiles was not observed. Third,

following intuition, the highest number of habitats was identified

for the most upstream sampling location (Big Mucka) with the

lowest numbers of habitats identified for the sampling location

furthest downsteam (Figure 6b). Fourth, previous tagging work

has shown that barramundi can make extensive and rapid

movements within rivers up to several kilometers per day in

Northern Territory rivers [54–55]. These lines of evidence

together suggest that the source of chemical variability across

otoliths was predominantly due to individual movement patterns

between chemically distinct habitats within different reaches of

the catchments.

The highly radiogenic 87Sr/86Sr ratios recorded by some

Victoria River fish were above the range of values recorded during

the period of residence in any of the collection locations. Without a

comprehensive set of water samples from all parts of the water

course (650 km mainstem, .1200 km of tributaries), it is difficult

to specifically pinpoint where fish might have moved to experience

Figure 5. Representative life history profiles. Example life history profiles for three individual barramundi captured in the Victoria River. Profiles
are shown from (a & c) Longreach and (b) Pigeonhole. Each profile shows values of Sr/Ba (dashed line) and 87Sr/86Sr ratios (solid line) from the core to
the otolith edge. The shaded portion indicates marine residence. Fish total lengths (TL) are given in each panel.
doi:10.1371/journal.pone.0018351.g005
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correspondingly high dissolved 87Sr/86Sr ratios. However, similar

patterns of isotopic variability have also been observed in different

formations of the nearby Ord River catchment, with values

ranging from approximately 0.72 for Cambrian basalts up to

between 0.74 to 0.79 for Proterozoic granites and associated

weathered carbonates (M. McCulloch, unpublished data). Conti-

nental granitic rocks are typically enriched in Rb compared to

carbonates, leading to relatively higher 87Sr/86Sr ratios in silicates

due to decay of 87Rb to 87Sr over time [56–57]. Thus older

bedrock terranes should contain on average the most radiogenic

ratios in a region. Further, silicates typically contain broadly

heterogeneous 87Sr/86Sr ratios at a variety of spatial scales, unlike

carbonates such as limestones whose 87Sr/86Sr ratios tend to be

relatively uniform in a given formation [58]. The upper reaches of

the eastern portion of the Victoria River are dominated by

Cambrian basalts, while the middle reaches and western

Figure 6. Distributions of habitat residency patterns. Summary distributions of habitat residency patterns. (a) Frequency distribution of the
number of chemically distinct habitats recorded in each otolith life history profile from fish captured in the Victoria River. The number of habitats was
defined using the global zoning algorithm of Hedger et al. [39]. (b) Mean (61 SD) number of chemically distinct habitats in profiles from otoliths
grouped by capture location. Results are shown for both 87Sr/86Sr (filled bars) and Sr/Ba ratios (open bars).
doi:10.1371/journal.pone.0018351.g006
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tributaries span across Proterozoic sandstones, siltstones and

shales. With the majority of the river composed of silicate

formations, rock age may be a more significant variable in

controlling the dissolved 87Sr/86Sr ratios. Because the western

tributaries of the Victoria River are dominated by Proterozoic

rocks, and none of our collection locations were in this region,

those tributaries are likely candidates for habitats containing

highly radiogenic dissolved 87Sr/86Sr ratios. This hypothesis is

supported by the observation that the most radiogenic of the

collection locations, Coolibah, was the only one surrounded by

primarily Proterozoic rocks. If the dominance of Proterozoic

rocks is indeed the source of the most radiogenic 87Sr/86Sr ratios,

the barramundi otolith profiles indicate that some individuals

made significant movements between the western and eastern

branches of the Victoria River. Future work incorporating broad-

scale water and fish sampling will be required to more tightly

constrain the distribution of 87Sr/86Sr ratios throughout the river

system.

Our results are consistent with previous research on barramundi

movements prior to maturation in northern Australia. Juvenile

barramundi primarily make use of tidal swamps and estuarine

habitats before moving upstream into fresh water [59–63]. While

fish in Papua New Guinea take up to three years to enter

freshwater [64] and Queensland fish may not enter until four years

of age, fish in the Van Diemen Gulf and the Gulf of Carpentaria

were observed to enter freshwater within only one year [62]. Our

data similarly suggest that fish in the Victoria and Daly rivers

move rapidly into fresh water, although the precise timing of this

migration appears individually variable. This limited time between

spawning and fresh water entry promotes genetic structuring on a

regional scale in northern Australia [65–66], although mixing

among adjacent rivers may be facilitated by larval or juvenile

transport by flood plumes [65]. The variability in fresh water entry

times observed here is sufficient to support the notion that some

individuals may inhabit marine environments long enough to

allow such transport.

Importantly, our work quantified movements of immature

individuals, indicating habitat use during pre-spawning periods.

Further, for the Victoria River fish, these movements were

quantified for individuals moving in unregulated systems. The

ecological effects of river regulation are wide ranging and can

significantly alter the structure and diversity of riverine commu-

nities [67]. Diadromous species worldwide have had to contend

with severe reductions in available freshwater habitats either by

anthropogenic barriers or extraction of surface water and

groundwater [68]. For catadromous species like barramundi, this

range reduction can restrict the available habitat for juveniles and

pre- or post-spawning adults. Griffin [55] found that while mature

males and females tended to reside in downstream brackish areas

of the Daly River, immature males dominated farther upstream.

This work, however, did not include sites upstream of Oolloo. In

one of the few surveys of barramundi distributions in the upper

reaches of NT catchments, Letnic and Connors [69] compiled

historical and contemporary records and found barramundi

distributions extended far inland in unobstructed systems. Our

data similarly demonstrate that immature barramundi in both the

Daly and Victoria rivers make extensive movements throughout

the entire catchment.

Access to fresh water during immature life history stages is

important for a variety of reasons. First, the productivity of

freshwater habitats promotes higher growth of older juveniles and

sub-adults [70–71]. Second, impoundments that restrict immature

and adult fish to the lower reaches increases local densities and

therefore competition for resources and cannibalism of juveniles

[55]. Third, natural variation in flow rate itself cues the timing of

migratory movements both upstream and downstream [62].

Barramundi are impeded by barrages even when fishways are

provided for passage [72]. Unrestricted access to the extensive

freshwater sections of river systems is therefore important for the

persistence of barramundi populations. The otolith chemistry

profiles from these unrestricted rivers in the Northern Territory

demonstrate that variable movement patterns within fresh water

habitats may represent life history plasticity that ensure robust

barramundi populations in dynamic environments. The role of

heterogeneous habitat use within fresh water should be integrated

into theories that explore the effects of life history portfolios on the

sustainability of diadromous species.

Supporting Information

Figure S1 Individual life history profiles from Oolloo.
Profiles are shown for all fish captured at Oolloo in the Daly River.

Values of Sr/Ba (dashed line) and 87Sr/86Sr ratios (solid line) are

shown from the core to the otolith edge. Fish total lengths (TL) are

given in each panel. The ranges of some axes vary in order to

accommodate the full range of individual data.

(TIF)

Figure S2 Individual life history profiles from Cool-
ibah. Profiles are shown for all fish captured at Coolibah in the

Victoria River, excluding those shown in Figure 5. Values of Sr/

Ba (dashed line) and 87Sr/86Sr ratios (solid line) are shown from

the core to the otolith edge. Fish total lengths (TL) are given in

each panel. The ranges of some axes vary in order to

accommodate the full range of individual data.

(TIF)

Figure S3 Individual life history profiles from Wick-
ham. Profiles are shown for all fish captured at Wickham in the

Victoria River. Values of Sr/Ba (dashed line) and 87Sr/86Sr ratios

(solid line) are shown from the core to the otolith edge. Fish total

lengths (TL) are given in each panel. The ranges of some axes vary

in order to accommodate the full range of individual data.

(TIF)

Figure S4 Individual life history profiles from Pigeon-
hole. Profiles are shown for all fish captured at Pigeonhole in the

Victoria River, excluding those shown in Figure 5. Values of Sr/

Ba (dashed line) and 87Sr/86Sr ratios (solid line) are shown from

the core to the otolith edge. Fish total lengths (TL) are given in

each panel. The ranges of some axes vary in order to

accommodate the full range of individual data.

(TIF)

Figure S5 Individual life history profiles from Long-
reach. Profiles are shown for all fish captured at Longreach in the

Victoria River, excluding those shown in Figure 5. Values of Sr/

Ba (dashed line) and 87Sr/86Sr ratios (solid line) are shown from

the core to the otolith edge. Fish total lengths (TL) are given in

each panel. The ranges of some axes vary in order to

accommodate the full range of individual data.

(TIF)

Figure S6 Individual life history profiles from Big
Mucka. Profiles are shown for all fish captured at Coolibah in

the Victoria River. Values of Sr/Ba (dashed line) and 87Sr/86Sr

ratios (solid line) are shown from the core to the otolith edge. Fish

total lengths (TL) are given in each panel. The ranges of some

axes vary in order to accommodate the full range of individual

data.

(TIF)
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57. Krabbenhöft A, Eisenhauer A, Böhm F, Vollstaedt H, Fietzke J, et al. (2010)

Constraining the marine strontium budget with natural strontium isotope
fractionations (87Sr/86Sr*, d88/86Sr) of carbonates, hydrothermal solutions and

river waters. Geochim Cosmochim Acta 74: 4097–4109.
58. Palmer MR, Edmond JM (1992) Controls over the strontium isotope

composition of river water. Geochim Cosmochim Acta 56: 2099–2111.
59. Russell DJ, Garrett RN (1983) Use by juvenile barramundi, Lates calcarifer

(Bloch), and other fishes of temporary supralittoral habitats in a tropical estuary

in northern Australia. Aust J Mar Freshw Res 34: 805–811.
60. Russell DJ, Garrett RN (1985) Early life history of barramundi, Lates calcarifer

(Bloch), in North-eastern Queensland. Aust J Mar Freshw Res 36: 191–201.
61. Russell DJ, Garrett RN (1988) Movements of juvenile barramundi, Lates calcarifer

(Bloch), in North-eastern Queensland. Aust J Mar Freshw Res 39: 117–123.

62. Davis TLO (1985) Seasonal changes in gonad maturity, and abundance of
larvae and early juveniles of barramundi, Lates calcarifer (Bloch), in Van Diemen

Gulf and the Gulf of Carpentaria. Aust J Mar Freshw Res 36: 177–190.

63. Davis TLO (1988) Temporal changes in the fish fauna entering a tidal swamp

system in tropical Australia. Environ Biol Fishes 21: 161–172.
64. Moore R, Reynolds LF (1982) Migration patterns of barramundi, Lates calcarifer

(Bloch), in Papua New Guinea. Aust J Mar Freshw Res 33: 671–682.

65. Keenan CP (1994) Recent evolution of population structure in Australian
barramundi, Lates calcarifer (Bloch): an example of isolation by distance in one

dimension. Aust J Mar Freshw Res 45: 1123–1148.
66. Salini J, Shaklee JB (1988) Genetic structure of barramundi (Lates calcarifer) stocks

from northern Australia. Aust J Mar Freshw Res 39: 317–329.

67. Walker KF (1985) A review of the ecological effects of river regulation in
Australia. Hydrobiologia 125: 111–129.

68. Doupé RG, Pettit NE (2002) Ecological perspectives on regulation and water
allocation for the Ord River, Western Australia. River Res Appl 18: 307–320.

69. Letnic M, Connors G (2006) Changes in the distribution and abundance of
saltwater crocodiles (Crocodylus porosus) in the upstream, freshwater reaches of

rivers in the Northern Territory, Australia. Wildl Res 33: 529–538.

70. Staunton-Smith J, Robins JB, Mayer DG, Sellin MJ, Halliday IA (2004) Does
the quantity and timing of fresh water flowing into a dry tropical estuary affect

year-class strength of barramundi (Lates calcarifer)? Mar Freshw Res 55: 787–797.
71. Robins J, Mayer D, Staunton-Smith J, Halliday I, Sawynok B, et al. (2006)

Variable growth rates of the tropical estuarine fish barramundi Lates calcarifer

(Bloch) under different freshwater flow conditions. J Fish Biol 69: 379–391.
72. Kowarsky J, Ross AH (1981) Fish movement upstream through a central

Queensland (Fitzroy River) coastal fishway. Aust J Mar Freshw Res 32: 93–109.

Barramundi Movement in Unregulated Rivers

PLoS ONE | www.plosone.org 12 April 2011 | Volume 6 | Issue 4 | e18351


