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ABSTRACT

Objective: We help identify subpopulations underrepresented in randomized clinical trials (RCTs) cohorts with

respect to national, community-based or health system target populations by formulating population represen-

tativeness of RCTs as a machine learning (ML) fairness problem, deriving new representation metrics, and

deploying them in easy-to-understand interactive visualization tools.

Materials and Methods: We represent RCT cohort enrollment as random binary classification fairness prob-

lems, and then show how ML fairness metrics based on enrollment fraction can be efficiently calculated using

easily computed rates of subpopulations in RCT cohorts and target populations. We propose standardized ver-

sions of these metrics and deploy them in an interactive tool to analyze 3 RCTs with respect to type 2 diabetes

and hypertension target populations in the National Health and Nutrition Examination Survey.

Results: We demonstrate how the proposed metrics and associated statistics enable users to rapidly examine

representativeness of all subpopulations in the RCT defined by a set of categorical traits (eg, gender, race, eth-

nicity, smoking status, and blood pressure) with respect to target populations.

Discussion: The normalized metrics provide an intuitive standardized scale for evaluating representation across

subgroups, which may have vastly different enrollment fractions and rates in RCT study cohorts. The metrics

are beneficial complements to other approaches (eg, enrollment fractions) used to identify generalizability and

health equity of RCTs.

Conclusion: By quantifying the gaps between RCT and target populations, the proposed methods can support

generalizability evaluation of existing RCT cohorts. The interactive visualization tool can be readily applied to

identified underrepresented subgroups with respect to any desired source or target populations.
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BACKGROUND AND SIGNIFICANCE

Inequitable representation and evaluation of diverse subgroups in

randomized clinical trials (RCTs) and other clinical research may

generate unfair and avoidable differences in population health out-

comes.1–4 In an analysis of trials conducted by Pfizer between 2011

and 2020, scientists found an urgent need for solutions to enhance

diverse representation across all populations within clinical re-

search.5 Similarly, health inequity attracted great public attention

during the COVID-19 pandemic.6–8 For example, race and ethnicity

are identified factors associated with risk for COVID-19 infection

and mortality.9–11 Representative enrollment of participants with di-

verse race and ethnicity is required in clinical trials to ensure valid

treatment effect conclusions and to support reliable generalizability

of clinical trial results across subpopulations.

A well-designed RCT is considered the most reliable way to esti-

mate cause–effect relationships between treatments and out-

comes.12,13 The randomization process, which makes RCTs gold

standards of treatment effectiveness, contains 2 randomization pro-

cesses, the random sampling from source population to trial cohort

and the random assignment from trial cohort to different experi-

mental groups.14,15 The random sampling is critical to the applica-

bility and generalizability of clinical findings16–18 but has received

much less attention than random assignment. Figure 1 demonstrates

that if a latent patient trait guides the patient enrollment into the

study and affects the outcome, then the study generalizability to

other reference populations may be limited from a causal inference

perspective.

Population representativeness and previous works
We define RCT representativeness as the similarity between an RCT

cohort and an investigator-defined target population with the spe-

cific goal of understanding the representation differences within sub-

populations. The target population for an RCT may be different

from the population of all individuals who have a particular health

condition. For example, Pradhan et al19 reported that the level of

trial representativeness changes if the target population shifts from

patients with type 2 diabetes who are eligible to receive liraglutide

to all patients with type 2 diabetes, since the potential subjects be-

come younger and are less likely to have comorbidities. Thus, the

first step is to let investigators define the target population based on

an appropriate real-world data source, such as an Electronic Health

Record (EHR) system, or a nationally representative population

sample, such as the National Health and Nutrition Examination

Survey (NHANES).

Our goal is to calculate representation metrics for all possible

subgroups created by the multiple traits and then focus on visualiza-

tions and statistical methods that enable users to effectively identify

significantly underrepresented subgroups with respect to the target

population. Our work complements currently available measure-

ments of trial representativeness. For instance, sGIST, mGIST,

Figure 1. The causal models of truly randomized clinical trials and biased randomized clinical trials. X represents the subject covariates; Y is the sampling of a

subject to a trial; T indicates the treatment; and Z is the outcome. The black arrows represent causal dependencies between variables. A. In the causal model for

truly randomized clinical trials, no dependency should exist between X and Y. Thus, the observed probability of outcome Z given the treatment is a good estimate

of whether the treatment causes the outcome. B. In the causal model for biased randomized clinical trials, an arrow exists between X and Y0, which indicates the

dependence. Thus, invalid causal inferences may be estimated for treatment efficacy among some subpopulations and result in unfair and avoidable population

health disparities.

LAY SUMMARY

Inequitable representation of minority groups and diverse subpopulations in randomized clinical trials (RCTs) can contribute

to unfair and avoidable differences in population health outcomes. Standardized methods are needed to assess potential

representation disparities between RCT cohorts and the broader populations who could benefit from novel interventions.

We show how machine learning fairness metrics used in artificial intelligence applications can be adapted to create metrics

that quantify the representativeness of clinical trial cohorts with respect to desired trait-specific subgroups. We demonstrate

the scalable representativeness metrics by comparing subgroups in 3 landmark RCTs in diabetes and heart disease with cor-

responding prevalence in national US population. Supplementary visualizations and statistical tests built on our proposed

metrics allow a diversity of researchers from different fields such as computer scientists, clinical researchers, and physi-

cians, to rapidly discover and assess potential disparities in representation of subgroups. Our approach enables users to de-

termine underrepresentation, absence, or overrepresentation of subgroups indicating potential limitations of RCTs. Here, we

consider a posteriori evaluation of applicability of RCT results to a target population, but the method could be extended to

design of new RCTs, and monitoring of RCT enrollment in the future.
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GIST, and GIST 2.0 are a series of a priori generalizability method

that can calculate generalizability scores on multiple traits across

multiple clinical trials with explicitly consideration on eligibility cri-

teria dependences.20–23 These metrics help researchers identify un-

derrepresented subgroups due to eligibility requirements and can

thus be used to inform eligibility criteria in trial design. Our current

tool focuses on a posteriori evaluation of representativeness, and the

analyses presented here deal with simple eligibility criteria such as

age over 50 or without diabetes. Other complex eligibility criteria

including trait dependencies are left as future work to incorporate

GIST 2.0 into our framework.

Our general methodology for calculating and visualizing sub-

group representativeness and their statistical significance could also

be combined with existing methods for comparing characteristic dis-

tributions between study samples and target populations.24–27 These

include basic metrics such as the difference or ratio of subgroup pro-

portions in RCT cohorts and target populations and propensity

score methods. These basic metrics are important indicators of pop-

ulation representativeness. But extending them to handle high-

dimensional data or small-size subgroups can be challenging since

the misrepresentation may be statistically insignificant and hard to

detect in visualizations.

Our multi-faceted assessment framework to evaluate diversity,

inclusion, and equity provides a comprehensive and interpretable

subpopulation-level understanding of population representativeness

of RCTs. Our a posteriori metrics have defined a significant differ-

ence threshold and equity thresholds supported by well-developed

guidelines. We show that sunburst visualizations can explicitly pre-

sent the influence of different variables over the others thus adding

more valuable insights to the approach. By indicating the representa-

tiveness of all possible subgroups, our approach could eventually

help illuminate the “black box” of sample selection and trial gener-

alizability in clinical trials.

Machine learning fairness and previous works
Machine learning (ML) fairness metrics have been developed to

quantify and mitigate bias in ML and artificial intelligence (AI)

models.28–30 To improve the performance of existing RCT represen-

tativeness measurements, we consider sampling to the RCT a ran-

dom binary classification problem and develop standardized metrics

for RCTs based on variations of ML fairness metrics by mapping to

the context of RCTs. ML fairness metrics quantify potential bias to-

ward protected groups in trained ML classification model outcomes.

Our metrics, instead of comparing positive and negative classes

based on model outcomes, focus on the trial-subject data generation

process within the RCT. Our novel insight is to regard subject sam-

pling to an RCT as a classification function that is random and then

create variants of ML fairness metrics.

Our metrics capture how well the actual enrollment of subjects

to an RCT cohort matches a truly random sampling. The statistical

properties of the hypothetical random sampling from a target popu-

lation can be estimated using nationally representative datasets or

clinical databases of individual characteristics, such as NHANES31

or from EHRs.

Consolidated standards of reporting trials and previous

works
Our main goal is to identify all subgroups that are not well repre-

sented in RCT study samples in order to understand generalizability

with respect to a target population. Our method augments the Con-

solidated Standards of Reporting Trials (CONSORT)32,33 statement

and its extension CONSORT-Equity,34 which aims to avoid biased

results from incomplete or nontransparent research reports that

could mislead decision-making in healthcare. By appropriately de-

fining the target population (such as all individuals with the health

condition or those clinically defined by eligibility criteria), our met-

rics and visualization can support incorporating representativeness

evaluation before, during, and after any RCTs. Additionally, they

can help an Institutional Review Board (IRB) or funding agency

evaluate the equity in trial-design stages and assist government regu-

lators to ensure a fair distribution of clinical benefits from a study to

the general population.

Our proposed representativeness metrics are expected to identify

subgroups that are insufficiently recruited into and represented in

the clinical trial cohort using study summary data only, ensuring pri-

vacy, security, and confidentiality of health information. These met-

rics can then be used by clinicians, clinical researchers, and health

policy advocates to assess potential gaps in the applicability of clini-

cal trials in real-world settings.

Our contributions
The contributions discussed in this paper are (1) formulating the

problem of representativeness evaluation in RCTs as a comparison

between a truly random sampling function in a target population

and the actual sampling observed in the clinical trial cohort; (2) de-

riving new metrics for representativeness of RCT cohorts based on

ML fairness metrics; (3) utilizing proposed metrics to measure sub-

ject representation of RCT cohorts with respect to a target popula-

tion; (4) identifying needs, gaps, and barriers of equitable

representation of various subgroups in RCT cohorts; (5) designing a

tool (an R Shiny App) to automatically evaluate trial representative-

ness through on-demand subject stratification and distribute reports

containing visualizations and explanations for different users.

METHODS AND MATERIALS

We establish a general mapping from RCT to ML fairness and then

derive metrics to evaluate the population representation of RCT

cohorts based on ML fairness measures.35–41 We provide a visual

representation of results with associated statistical tests to transpar-

ently communicate the quantitative results to diverse user groups.

Table 1 provides a glossary of fairness and representativeness

terms used throughout the manuscript.

RCT representativeness and ML fairness
In an ML prediction model, given a feature vector x of subject from

distribution P, a binary classifier predicts if the subject is positive

(y
0 ¼ 1) or negative (y

0 ¼ 0). The true outcome is y 2 f0; 1g. We de-

fine RCT representativeness as how well the RCT cohort represents

a random sampling of subjects from the specified target distribution.

The target distribution can be defined based on analysis goals, for

example, eligibility criteria could be considered if appropriate. In

RCTs, the feature vector x is the protected attributes or subject

traits; the binary classifier assigns subjects into the study cohort,

where y
0 ¼ 1 means a subject is recruited while y

0 ¼ 0 means not

recruited. y is the true random sampling result of the subject into the

study from the target population.

For RCT representativeness evaluation, each individual in the

target population is defined by I ¼ X; yð Þ ¼ x; x
0� �
; y

� �
; where x

2 X represents the protected attributes, x
0 2 X represents the unpro-
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tected attributes, and y 2 f0;1g is the ideal sampling of the individ-

ual by an RCT. An ideal RCT enrolls subjects i.i.d. from the target

population P. The RCT enrollment strategy can be treated as a bi-

nary classifier D Xð Þ ¼ y
0 2 f0; 1g, denoting the real observed deci-

sion induced by D on an individual i. The subgroups are defined via

a family of indicator functions G. For each g 2 G, gðxÞ ¼ 1 means

that an individual with protected attributes x is in the subgroup. For

this study, we utilize protected attributes of 3 types: demographic

characteristics, risk factors, and laboratory results. Here, risk factors

are any study-specific covariates defined in the Table 1s of clinical

trial publications relevant to the study besides demographic charac-

teristics. The selected variables were both relevant to the study and

available in the NHANES data to estimate the target distribution.

Any available categorical attributes representation of the target and

cohort populations could be used.

ML fairness metrics are concerned with guaranteeing similarity

results across different subgroups.42 We assume that the ideal RCT

achieves statistical parity,43 that is, subgroups are independent of

outcomes (g xð Þ?yÞ: Then we create metrics based on ML fairness

measures of statistical parity violations. The proposed metrics also

assume that the ideal sampling of a subject to the RCT and the ob-

served sample are independent ðy?y0Þ; and the sizes and the rates of

an ideal RCT and the observed trial are the same

ðPðy ¼ 1Þ ¼ Pðy0 ¼ 1Þ).
The ideal and observed rates of a subgroup are P g xð Þ ¼ sjy ¼ 1ð Þ

and P g xð Þ ¼ sjy0 ¼ 1ð Þ, respectively. The enrollment fraction of a

subgroup is P y
0 ¼ 1jg xð Þ ¼ s

� �
: We note by independence assump-

tions of ideal RCT, P y
0 ¼ 1jy ¼ 1; g xð Þ ¼ s

� �
¼ P y

0 ¼ 1jg xð Þ ¼ s
� �

:

Log disparity metric for RCT
In ML fairness, the disparate impact measure is the ratio of positive

rates of both protected and unprotected groups:44

P y
0 ¼ 1jg xð Þ ¼ 1

� �
P y0 ¼ 1jg xð Þ ¼ 0ð Þ :

Disparate impact adopts the “80 percent rule” suggested by the

US Equal Employment Opportunity Commission45 to decide when

the result is unfair:

P y
0 ¼ 1jg xð Þ ¼ 1

� �
P y0 ¼ 1jg xð Þ ¼ 0ð Þ � s ¼ 0:8:

The “80 percent rule” requires the selection rate of a subgroup

to be at least 80% of the selection rate of the other subgroups.

As shown in the following theorem, when applied to the RCT,

disparate impact reduces to an intuitive quantity based on the enroll-

ment odds of a protected group and in the target.

Theorem 1:RCT version of Disparate Impact Metric

Based on the ideal RCT assumptions above, the disparate impact

metric is equivalent to the ratio of enrollment odds of subjects of the

protected group in the observed cohort to the odds of protected sub-

jects in the ideal cohort:

P y
0 ¼ 1jg xð Þ ¼ 1

� �
P y0 ¼ 1jg xð Þ ¼ 0ð Þ ¼

oddsðg xð Þ ¼ 1jy0 ¼ 1Þ
oddsðg xð Þ ¼ 1jy ¼ 1Þ ¼

oddsðg xð Þ ¼ 1jy0 ¼ 1Þ
oddsðg xð Þ ¼ 1Þ :

See Supplementary Materials for proof.

Since log odds provide advantages for ease of understanding, we

propose the following metric for RCT.

Proposed Metric 1.The Log Disparity metric for measuring how

representative of subgroup g xð Þ ¼ 1 in observed trial y
0
as compared

to ideal population y is

log oddsðg xð Þ ¼ 1jy0 ¼ 1
� �

Þ � log oddsðg xð Þ ¼ 1ð ÞÞ:

In the log disparity metric, a value of 0 indicates perfect clinical equity.

A value smaller than the lower threshold,�slower, implies a potential un-

derrepresentation of a subgroup while a value greater than slower implies

a potential overrepresentation. We further add an upper threshold,

supper. A value less than�supper implies highly underrepresentation; simi-

larly, a value greater than supper implies highly overrepresentation. Val-

ues between�slower and slower mean equitable representation.

Our metric thresholds are selected based on guidance from litera-

ture,28,46–48 but other optimal thresholds under different criteria are

allowed as inputs. We use a significance level of 0.05, a lower

threshold of �log (0.8), and an upper threshold of �log (0.6).

Table 1. Glossary

Term Definition Example(s)

Target population The group of people that investigators defined to be com-

pared with the RCT cohort

US population with hypertension as defined in

NHANES

Subgroup Subset of target population that share single or multiple

common baseline attribute values and thus can be dis-

tinguished from the rest

Non-Hispanic black female subjects; non-Hispanic

white male subjects

Ideal rate Proportion of subjects in a subgroup in the target

population

Proportion of female subjects among those with hy-

pertension in United States

Observed rate Proportion of subjects in a subgroup in the RCT Proportion of female subjects in SPRINT study

Representativeness The similarity between an RCT sample and its target

population distributions

Protected attribute Attributes that classify the population of a specific dis-

ease into groups that have parity in terms of health

outcomes received

Age, BMI, total cholesterol

Representativeness metric Function of disease-specific observed and ideal rates of

sampling of protected subgroups to the RCT

Log disparity

Abbreviations: BMI: body mass index; NHANES: National Health and Nutrition Examination Survey; RCT: randomized clinical trial; SPRINT: Systolic Blood

Pressure Intervention Trial.
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Normalized parity metric
The ML fairness Equal Opportunity49 metric which requires sub-

groups to have the same true positive rates can also be applied to

RCTs.

Theorem 2:RCT version of Equal Opportunity Metric

Let ideal RCT assumptions hold and g xð Þ be binomial random vari-

able, then the ML fairness Equal Opportunity metric has the follow-

ing equivalent form:

P y
0 ¼ 1jg xð Þ ¼ 1; y ¼ 1

� �
� P y

0 ¼ 1jg xð Þ ¼ 0; y ¼ 1
� �

¼ P y
0 ¼ 1jg xð Þ ¼ 1

� �
� P y

0 ¼ 1jg xð Þ ¼ 0
� �

¼ P g xð Þ ¼ 1jy0 ¼ 1ð Þ � P g xð Þ ¼ 1ð Þ
var g xð Þ ¼ 1ð Þ P y ¼ 1ð Þ:

See Supplementary Materials for proof. The proportion of population

in the trial, P y ¼ 1ð Þ, is extremely small and not very meaningful, thus

we propose a new metric. The Normalized Parity metric measures the

difference in rates of protected group in the trial and in the population

scaled by the variance of the protected group in the target population.

Proposed Metric 2.The Normalized Parity metric for measuring

how representative of subgroup g xð Þ ¼ 1 in observed trial y0 as

compared to ideal population y

P g xð Þ ¼ 1jy0 ¼ 1ð Þ � P g xð Þ ¼ 1ð Þ
var g xð Þ ¼ 1ð Þ :

The proposed Log Disparity and Normalized Parity metrics have

several nice properties.

1. They are easy to compute. The observed rates of each subgroup,

P g xð Þ ¼ 1jy0 ¼ 1ð Þ, are estimated from trial data. The ideal rates

and variance, Pðg xð ÞÞ and var g xð Þð Þ, are estimated for the de-

sired target population Pusing surveillance datasets such as

NHANES or electronic medical records (EMRs). The required

estimates are robust to missing data. Individual privacy can be

protected since only summary statistics are required for the pro-

posed metrics, avoiding the pitfalls of alternative metrics requir-

ing per subject calculations.50

2. Both metrics have a common interpretation for subgroups with

very different background rates: 0 means that demographic par-

ity holds, <0 means subgroup is underrepresented, and >0

means subgroup is overrepresented.

3. Statistical tests quantify the significance of observed disparities for

each subgroup which take into account the RCT study size and es-

timation errors of the ideal assignment rate. We use a one-

proportion two-tailed z-test to determine whether the observed

rate is significantly deviated from the ideal population rate. We

use Benjamini–Hochberg to correct for multiple comparisons

across all subgroups. If the difference between observed and ideal

rates is not statistically significant, the subgroup is treated as rep-

resentative; otherwise, we will use metrics to quantify the sub-

group representativeness. Other statistical tests could be used. See

Supplementary Material for details.

Log disparity and normalized parity are both monotonically increas-

ing functions of the observed rate for a subgroup scaled by the target

rate. Log disparity offers some advantages when examining rare

subgroups because it is a nonlinear function while normalized parity

is a linear function, as discussed in the Supplementary Material (sec-

tion: Log Disparity vs Normalized Parity). Thus, we focus on log

disparity results. All Normalized Parity results are available in the

supplement visualization tool.

RCT trial data
We assess the proposed methodologies on 3 real-world RCTs: Ac-

tion to Control Cardiovascular Risk in Diabetes (ACCORD),51 An-

tihypertensive and Lipid-Lowering Treatment to Prevent Heart

Attack Trial (ALLHAT),52 and Systolic Blood Pressure Intervention

Trial (SPRINT)53 in BioLINCC with the ideal subgroup assignment

rate calculated from individuals with matched disease conditions in

NHANES. According to participants’ baseline characteristics typi-

cally summarized in Table 1s of clinical trial reports, we selected 9

protected attributes. We categorize continuous variables based on

the CDC (Centers for Disease Control and Prevention)-approved

standards. Subject data obtained from RCTs are mapped to the

existing NHANES categories. The protected attributes examined

here are (1) demographic characteristics (gender, race/ethnicity, age,

and education); (2) baseline risk factors [smoking status, body mass

index, and systolic blood pressure (SBP)]; and (3) baseline labora-

tory test results [fasting glucose (FG) and total cholesterol (TC)].

The observed rates of the subgroup are calculated from the RCT

data

P g xð Þ ¼ 1jy0 ¼ 1ð Þ ¼ numberofRCTparticipantswhosatisfiedg xð Þ ¼ 1

numberofparticipantswithtargetdiseaseinRCT
:

For each study, we construct all possible subgroups that can be

instantiated as g xð Þ: We define 29 univariate, 109 bivariate, and

306 multivariate subgroups based on 9 protected attributes. In gen-

eral, any baseline subject attributes can be selected as protected

attributes in our approach.

Target population
In our experiment, we sought to evaluate how well the studies repre-

sented overall diabetic and hypertensive populations in United States

as characterized by NHANES. The ideal rates from target popula-

tions ðP g xð Þ ¼ 1jy ¼ 1ð ÞÞ are calculated from NHANES 2015–2016

using the R survey() package54 which accounts for potential bias

from complex survey designs. The NHANES population selected

varies based on study objectives and desired target population. To

evaluate ACCORD,51 we estimate ideal rates of subgroups of dia-

betic individuals in the United States using subjects who report hav-

ing diabetes in NHANES, and we use subjects who report having

hypertension in NHANES as the target population to evaluate ALL-

HAT52 and SPRINT.53 These criteria could be modified to consider

study inclusion and exclusion criteria depending on the goals of

analysis.

Since users may have better target population data that match

their studies, user-provided target population datasets and multiple

target files are allowed. For example, clinicians who focus on their

local communities could use the community or health system popu-

lation as the target to evaluate the equity of RCTs, whereas

researchers who work on a global disease, the target population

may be better estimated from global population datasets.

RESULTS

To demonstrate the proposed metric, we created a visualization us-

ing different colors to represent different representativeness levels in

RCTs. For compact presentation, we focus on the log disparity met-

ric. Figure 2 illustrates how the log disparity function applies to rela-
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tive common subgroups Female and Female Non-Hispanic Black in

ACCORD.

As shown in Figure 2A, for women with type 2 diabetes, the

ideal rate from NHANES is 0.445 while the observed RCT rate is

0.386. The observed female-subject rate falls into the light orange

region, which reveals the underrepresentation of female subjects.

For Figure 2B, when the subgroup of interest is changed to non-

Hispanic black female participants, the ideal rate decreases to 0.079

and the observed rate becomes 0.095. Now the interested subgroup

falls into the teal region, which means that non-Hispanic black fe-

male participants are equitably represented in ACCORD. This indi-

cates the influence of protected attribute race/ethnicity on the

representativeness evaluation. By comparing Figure 2A and B, we

can observe that metric functions change as the ideal rate changes.

The representativeness of 29 univariate subgroups for 3 RCTs

are shown in Figures 3 and 4. Dark red represents the subgroups ab-

sent from the RCT; light orange and orange indicate that subgroups

are underrepresented or highly underrepresented in the RCT relative

to the target population; light blue and blue specify the potentially

overrepresented or highly overrepresented subgroups; teal shows the

subgroup is either equitably represented or has no significant differ-

ence; dark gray indicates that no individuals with selected protected

attributes exist in estimated target population; light grey indicates

absent subgroup in both estimated target population and RCT.

We evaluate our ideal estimates for ACCORD, ALLHAT, and

SPRINT using prior literature. For example, an estimated probability of

female patients among US hypertensive population in 2015,55 calculated

through Bayes’ formula, is about 47%. Comparing to the summary sta-

tistics in published literature (ie, about 47% subjects are women in ALL-

HAT and 36% subjects are women in SPRINT56–59). ALLHAT

captures the gender distribution among real-world hypertensive partici-

pants while SPRINT fails to enroll enough female participants.

The color change across categories of an attribute highlights inter-

esting trends in subject representation. Among 3 studies, only 2 attrib-

utes achieved equitable representation across all subgroups: gender in

ALLHAT and TC in SPRINT. From Figures 3 and 4, we observe that

current smokers, young participants, non-Hispanic Asian subjects,

subjects with SBP under 130 mm Hg or FG between 5.6 and 6.9

mmol/L are frequently underrepresented. This indicates that some sub-

groups in the target population are missing or inadequately repre-

sented in the RCTs. The decision-making on a subject, for example,

aged 40, based on the SPRINT study would require additional evi-

dence beyond this study. Also, participants with lower education levels

tend to be more underrepresented in the SPRINT while participants

with higher education levels tend to be more underrepresented in the

ALLHAT. This points out that potential social determinant confound-

ers may exist in the RCT. We note, across all 3 studies, non-Hispanic

black participants are overrepresented, perhaps reflecting efforts to en-

sure minority participation or reflecting study locations. In both hyper-

tension RCTs, Asian subjects may have been insufficiently enrolled.

This underrepresentation may also reflect study choices or locations.

These trends have to be validated by analysis on more RCTs.

For subgroups defined by multiple attributes, sunburst plots bet-

ter visualize the change of subgroup representation by adding addi-

tional protected attributes, as shown in Figure 5. For each type of

protected attributes (ie, demographic characteristics, risk factors,

and lab results), separate sunburst charts are generated since their

matched population from NHANES are different.

Figure 2. The shift of representativeness distribution of Log Disparity metric for different patient subgroups with type 2 diabetes in Action to Control Cardiovascu-

lar Risk in Diabetes. The green line corresponds to the ideal rate for the subgroup determined from National Health and Nutrition Examination Survey. The brown

line indicates the rate actually observed. A. Log Disparity as function of observed rate for female subgroup. B. Log Disparity as function of observed rate for fe-

male non-Hispanic black subgroup.

6 JAMIA Open, 2021, Vol. 4, No. 3



Figure 5 demonstrates log disparity results for ACCORD on de-

mographic characteristics, ALLHAT on risk factors, and SPRINT

on lab results. The interactive sunburst diagram enables users to in-

vestigate many subgroups simultaneously to identify missing or un-

derrepresented subgroups in RCTs and NHANES. For example,

young female subjects aged under 45 are missing entirely. As shown

in Figure 5D, with an additional attribute FG, new subgroups such

as participants with glucose �7 mmol/L are highly underrepresented

for both high and normal TC. This indicates the importance of mul-

tivariable subgroup analyses in representativeness. Note that under-

representativeness may be due to legitimate choices in the study

inclusion and exclusion criteria. If desired by the user, absent sub-

groups in NHANES or any target populations can be estimated us-

ing smoothing techniques.

The sunburst plots explicitly address diversity, equity, and inclusion

of clinical studies with respect to the target population. For instance,

Figure 5B identifies the missing evidence in subgroups including any fe-

male and non-Hispanic white male subjects aged under 45. This lack

of subject diversity may lead to similar results as shown for the effec-

tiveness of Actemra on COVID-19 patients, in which the study results

flipped after including more marginalized participants. Furthermore,

our visualization automatically checks if the inclusion and exclusion

criteria are met. Based on the criteria of SPRINT, it successfully ex-

cluded subjects with SBP under 130 mm Hg but subjects with potential

impaired glucose or diabetes still existed based on the lab results.

DISCUSSION

An advantage of the proposed metrics is they provide a standard-

ized scale for judging trial representativeness for subgroups with

vastly different expected rates in the trial; for example, the esti-

mated ideal rate of participation in the type 2 diabetes trial esti-

mated from NHANES for subgroups of female subjects, female

subjects aged over 64, Hispanic female subjects aged over 64, and

Hispanic female subjects aged over 64 with high school degree are

0.445, 0.172, 0.025, and 0.006, respectively. Evaluating differen-

ces between simple rates for many subpopulations would be more

challenging.

To facilitate visualizations of measured performance on clinical

trials, we have incorporated a comprehensive set of fairness metrics

into our prototype representativeness visualization tool using R

shiny to enable researchers and clinicians to rapidly visualize and

assess all potential misrepresentation in a given RCT for all possi-

ble subgroups. In our application, the number and order of the

attributes for the sunburst can be changed by users; for example,

instead of Figure 5B, users can visualize representativeness of sub-

groups for Age with further divisions by Gender and then Race/

Ethnicity. With these metrics, users can rapidly determine under-

representation of subgroups which can serve as basis for determin-

ing any limitations of the RCT. The metrics and visualizations can

potentially help support evaluation of representativeness of exist-

Figure 3. Representativeness of subgroups defined by a single protected attribute using Log Disparity for 3 real-world randomized clinical trials (RCTs). Sub-

groups are defined by demographic characteristics. Teal cells with a star indicate that no statistically significant difference between subgroups from the RCT and

target population. Ages are in years. Abbreviations: C: cohort; TP: target population.
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ing RCT cohorts, design of new RCTs, and monitoring of enroll-

ment in ongoing RCTs. The visualization may also help healthcare

providers quickly understand the applicability of RCT results to a

patient in a subgroup.

Clinical trials are a key component of health equity. In the con-

text of trial equity, underrepresentation or exclusion of disadvan-

taged participants may reduce opportunities to live healthy lives.

Our metrics can also be applied to many types of clinical research

and representativeness problems by appropriately adjusting the tar-

get population statistics based on the population of interest. Besides

use with RCTs, these metrics can be easily modified to assess and vi-

sualize any disparities related to health including the distribution of

medical care and different levels of living and working conditions

for patients if the matching background information is available to

obtain the ideal rate of each subgroup. Furthermore, our approach

can be used as a frame of reference to guide the clinicians and

policy-makers to make decisions with legitimate reasons and evi-

dence. We offer user selections to dynamically control different con-

ditions including subgroup characteristics, metric types, metric

cutoffs, under which the users will make their own decisions.

The technical challenges we encountered include determining

how to appropriately treat continuous variables such as age and

consider inclusion and exclusion criteria when mapping RCT

cohorts and NHANES-based target population. Currently, we dis-

cretize all continuous variables, with alternative approaches, such as

using expected values of numerical variables and other methods ap-

plied to ML framework, left as future work. It may be desirable to

further refine the target populations to adjust for missing and under-

represented subgroups due to RCT inclusion and exclusion criteria.

Due to limitations in the types of information gathered in NHANES,

we could not apply all eligibility criteria used in the ALLHAT, AC-

CORD, and SPRINT studies to define respective clinical populations

for our analyses. We plan to validate our metrics by applying them

to more trials and compare results with other metrics such as GIST

2.0. It can also be useful to create a method combining the proposed

metrics with GIST to enable detailed subpopulation analyses of in-

clusion and exclusion criteria and analysis of multiple trials. Using

appropriate defining target populations with eligibility criteria, these

approaches can be extended to make equitable single-/multi-site en-

rollment planning and monitor the enrollment process to optimize

Figure 4. Representativeness of subgroups defined by a single protected attribute using Log Disparity for 3 real-world randomized clinical trials. Subgroups are

defined by clinical characteristics. Systolic blood pressure unit ¼mm Hg; Fasting glucose unit ¼mmol/L.
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the representativeness of participants a priori and throughout the

process.

CONCLUSION

Quantifying representation is important for scientific rigor and to

build true equity into research designs and methods. Health equity is

not just a clinical issue; it is a socioeconomic concern with broad

consequences.60–62 We developed metrics and methods to evaluate

how equitably subgroups are represented in RCTs. Unlike most

existing studies which focus on one protected attribute each time

(eg, race) for a single disease (eg, type 2 diabetes), our proposed ap-

proach can analyze clinical trials designed for several diseases such

as hypertension and type 2 diabetes, simultaneously and can addi-

tionally report representativeness of subgroups defined by multiple

attributes including age and race/ethnicity. Our next steps are to uti-

lize these metrics to monitor existing RCTs, help design new RCTs,

and provide tools to disseminate findings to a variety of stakeholders

Figure 5. Representativeness results measured by Log Disparity. A. Color code of representativeness levels. B. Representativeness of Action to Control Cardio-

vascular Risk in Diabetes randomized clinical trial (RCT) subgroups in sunburst plot with inner to outer rings defined by demographic characteristics gender, age,

race/ethnicity, and education level, respectively. C. Representativeness of Antihypertensive and Lipid-Lowering Treatment to Prevent Heart Attack Trial RCT sub-

groups in sunburst plot with inner to outer rings defined by risk factors systolic blood pressure, body mass index, and smoking status, respectively. D. Represen-

tativeness of Systolic Blood Pressure Intervention Trial RCT subgroups in sunburst plot with inner to outer rings defined by lab results total cholesterol and

fasting glucose, respectively.
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and user groups, including patients, clinicians, data scientists, and

policy-makers, who will bring the discoveries into play to advance

health equity.
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