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Abstract

Many previous studies on visual search have reported inter-trial effects, that is, observers

respond faster when some target property, such as a defining feature or dimension, or the

response associated with the target repeats versus changes across consecutive trial epi-

sodes. However, what processes drive these inter-trial effects is still controversial. Here, we

investigated this question using a combination of Bayesian modeling of belief updating and

evidence accumulation modeling in perceptual decision-making. In three visual singleton

(‘pop-out’) search experiments, we explored how the probability of the response-critical

states of the search display (e.g., target presence/absence) and the repetition/switch of the

target-defining dimension (color/ orientation) affect reaction time distributions. The results

replicated the mean reaction time (RT) inter-trial and dimension repetition/switch effects that

have been reported in previous studies. Going beyond this, to uncover the underlying mech-

anisms, we used the Drift-Diffusion Model (DDM) and the Linear Approach to Threshold

with Ergodic Rate (LATER) model to explain the RT distributions in terms of decision bias

(starting point) and information processing speed (evidence accumulation rate). We further

investigated how these different aspects of the decision-making process are affected by dif-

ferent properties of stimulus history, giving rise to dissociable inter-trial effects. We

approached this question by (i) combining each perceptual decision making model (DDM or

LATER) with different updating models, each specifying a plausible rule for updating of

either the starting point or the rate, based on stimulus history, and (ii) comparing every pos-

sible combination of trial-wise updating mechanism and perceptual decision model in a fac-

torial model comparison. Consistently across experiments, we found that the (recent)

history of the response-critical property influences the initial decision bias, while repetition/

switch of the target-defining dimension affects the accumulation rate, likely reflecting an

implicit ‘top-down’ modulation process. This provides strong evidence of a disassociation

between response- and dimension-based inter-trial effects.
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Author summary

When a perceptual task is performed repeatedly, performance becomes faster and more

accurate when there is little or no change of critical stimulus attributes across consecutive

trials. This phenomenon has been explored in previous studies on visual ‘pop-out’ search,

showing that participants can find and respond to a unique target object among distrac-

tors faster when properties of the target are repeated across trials. However, the processes

that underlie these inter-trial effects are still not clearly understood. Here, we approached

this question by performing three visual search experiments and applying mathematical

modeling to the data. We combined models of perceptual decision making with Bayesian

updating rules for the parameters of the decision making models, to capture the process-

ing of visual information on each individual trial as well as possible mechanisms through

which an influence can be carried forward from previous trials. A systematic comparison

of how well different combinations of models explain the data revealed the best model to

assume that perceptual decisions are biased based on the response-critical stimulus prop-

erty on recent trials, while repetition of the visual dimension in which the target differs

from the distractors (e.g., color or orientation) increases the speed of stimulus processing.

Introduction

In everyday life, we are continuously engaged in selecting visual information to achieve our

action goals, as the amount of information we receive at any time exceeds the available pro-

cessing capacity. The mechanisms mediating attentional selection enable us to act efficiently

by prioritizing task-relevant, and deprioritizing irrelevant, information. Of importance for the

question at issue in the present study, the settings that ensure effective action in particular task

episodes are, by default, buffered by the attentional control system and carried over to subse-

quent task episodes, facilitating performance if the settings are still applicable and, respectively,

impairing performance if they no longer apply owing to changes in the task situation (in

which case the settings need to be adapted accordingly). In fact, in visual search tasks, such

automatic carry-over effects may account for more of the variance in the response times (RTs)

than deliberate, top-down task set [1]. A prime piece of evidence in this context is visual search

for so-called singleton targets, that is, targets defined by being unique relative to the back-

ground of non-target (or distractor) items, whether they differ from the background by one

unique feature (simple feature singletons) or a unique conjunction of features (conjunction

singletons): singleton search is expedited (or slowed) when critical properties of the stimuli

repeat (or change) across trials. Such inter-trial effects have been found for repetitions/

switches of, for example, the target-defining color [2,3], size [4], position [5], and, more gener-

ally, the target-defining feature dimension [6,7]. The latter has been referred to as the dimen-

sion repetition/switch effect, that is: responding to a target repeated from the same dimension

(e.g., color) is expedited even when the precise target feature is different across trials (e.g.,

changing from blue on one trial to red on the next), whereas a target switch from one dimen-

sion to another (e.g., from orientation to color) causes a reaction time cost (‘dimension repeti-

tion effect’, DRE) [8–10].

While inter-trial effects have been extensively studied, the precise nature of the processes

that are being affected remains unclear. Much of the recent work has been concerned with the

issue of the processing stage(s) at which inter-trial effects arise (for a review, see [11]). Müller

and colleagues proposed that inter-trial effects, in particular the dimension repetition effect,

reflect facilitation of search processes prior to focal-attentional selection (at a pre-attentive
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stage of saliency computation) [10]. However, using a non-search paradigm with a single item

presented at a fixed (central) screen location, Mortier et al. [12] obtained a similar pattern of

inter-trial effects–leading them to conclude that the DRE arises at the post-selective stage of

response selection. Rangelov and colleagues [13] demonstrated that DRE effects can originate

from distinct mechanisms in search tasks making different task demands (singleton feature

detection and feature discrimination): pre-attentive weighting of the dimension-specific fea-

ture contrast signals and post-selective stimulus processing–leading them to argue in favor of a

’multiple weighting systems hypothesis’. Based on the ’priming of pop-out’ search paradigm, a

similar conclusion [11] has also been proposed, namely, inter-trial effects arise from both

attentional selection and post-selective retrieval of memory traces from previous trials [4,14],

favoring a dual-stage account [15].

It is important to note that those studies adopted very different paradigms and tasks to

examine the origins of inter-trial effects, and their analyses are near-exclusively based on dif-

ferences in mean RTs. Although such analyses are perfectly valid, much information about

trial-by-trial changes is lost. Recent studies have shown that the RT distribution imposes

important constraints on theories of visual search [16,17]. RT distributions in many different

task domains have been successfully modeled as resulting from a process of evidence accumu-

lation [18,19]. One influential evidence accumulation model is the drift-diffusion model

(DDM) [20–22]. In the DDM, observers sequentially accumulate multiple pieces of evidence,

each in the form of a log likelihood ratio of two alternative decision outcomes (e.g., target pres-

ent vs. absent), and make a response when the decision information reaches a threshold (see

Fig 1). The decision process is governed by three distinct components: a tendency to drift

towards either boundary (drift rate), the separation between the decision boundaries (bound-

ary separation), and a starting point. These components can be estimated for any given experi-

mental condition and observer by fitting the model to the RT distribution obtained for that

condition and observer.

Estimating these components makes it possible to address a question that is related to, yet

separate from the issue of the critical processing stage(s) and that has received relatively less

attention: do the faster RTs after stimulus repetition reflect more efficient stimulus processing,

for example: expedited guidance of attention to more informative parts of the stimulus, or

rather a bias towards giving a particular one of the two alternative responses or, respectively, a

tendency to require less evidence before issuing either response. The first possibility, more effi-

cient processing, would predict an increase in the drift rate, that is, a higher speed of evidence

accumulation. A bias towards one response or a tendency to require less evidence would, on

the other hand, predict a decreased distance between the starting point and the decision

boundary associated with that response. In the case of bias, this would involve a shift of the

starting point towards that boundary, while a tendency to require less evidence would be

reflected in a decrease of the boundary separation. While response bias is more likely associ-

ated with changes at the post-selective (rather than pre-attentive) processing stage, the inde-

pendence of the response selection and the attentional selection stage has been challenged

[23].

For simple motor latencies and simple-detection and pop-out search tasks [24], there is

another parsimonious yet powerful model, namely the LATER (Linear Approach to Threshold

with Ergodic Rate) model [25,26]. Unlike the drift-diffusion model, which assumes that evi-

dence strength varies across the accumulative process, the LATER model assumes that evi-

dence is accumulated at a constant rate during any individual perceptual decision, but that this

rate varies randomly across trials following a normal distribution (see Fig 1). Such a pattern

has been observed, for instance, in the rate of build-up of neural activity in the motor cortex of

monkeys performing a saccade-to-target task [27]. Similar to the DDM, the LATER model has
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three important parameters: the ergodic rate (r), the boundary separation (θ), and a starting

point (S0). However, the boundary separation and starting point are not independent, since

the output of the model is completely determined by the rate and the separation between the

starting point and the boundary; thus, in effect, the LATER model has only two parameters.

The evidence accumulation process can be interpreted in terms of Bayesian probability the-

ory [26,28]. On this interpretation, the ’linear approach to threshold with ergodic rate’ repre-

sents the build-up of the posterior probability that results from adding up the log likelihood

ratio (i.e., ’evidence’) of a certain choice being the correct one and the initial bias that derives

from the prior probability of two choices. The prior probability should affect the starting point

S0 of the evidence accumulation process: S0 should be the closer to the boundary the higher the

prior probability of the outcome that boundary represents. The drift rate, by contrast, should

be influenced by any factor that facilitates or impedes efficient accumulation of task-relevant

sensory evidence, such as spatial attentional selection.

The present study was designed to clarify the nature of the inter-trial effects for manipula-

tions of target presence and the target-defining dimension as well as inter-trial dimension rep-

etitions and switches. If inter-trial effects reflect a decision bias, this should be reflected in

changes of the decision boundary and/or the starting point. By contrast, if inter-trial effects

reflect changes in processing efficiency, which might result from allocating more attentional

resources (or ’weight’) to the processing of the repeated feature/dimension [6], the accumula-

tion rate r should be changed. Note that neither the DDM nor the LATER model provides any

indication of how the initial starting point might change across trials. Given that the inter-trial

effects are indicative of the underlying trial-by-trial dynamics, we aimed to further analyze

trial-wise changes of the prior and the accumulation rate, and examine how a new prior is

learned when the stimulus statistics change, as reflected in changes of the starting point to

decision boundary separation during the learning process.

To address these inter-trial dynamics, we adopted the Dynamic Belief Model (DBM) [29].

The DBM has been successfully used to explain why performance on many tasks is better

Fig 1. Illustrations of the drift diffusion model (DDM, shown in blue) and the LATER model (shown in red). The

DDM assumes that evidence accumulates, from the starting point (S0), through random diffusion in combination with

a drift rate r until a boundary (i.e., threshold, θ) is reached. The LATER model makes the same assumptions, except

that the rate r is considered to be constant within any individual trial, but to vary across trials (so as to explain trial-to-

trial variability in RTs).

https://doi.org/10.1371/journal.pcbi.1006328.g001
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when a stimulus matches local patterns in the stimulus history even in a randomized design

where it is not actually possible to use stimulus history for (better-than-chance) prediction.

Inter-trial effects arise naturally in the DBM. This is because the DBM assumes a prior belief

about non-stationarity, that is: participants are updating their beliefs about the current stimu-

lus statistics while assuming that these can change at any time. The assumption of non-statio-

narity leads to something similar to exponential discounting of previous evidence, that is, the

weight assigned to previous evidence decreases exponentially with the time (or number of

updating events) since it was acquired. Consequently, current beliefs about what is most likely

to happen on an upcoming trial will always be significantly influenced by what occurred on

the previous trial, resulting in inter-trial effects. Thus, here we combine a belief-updating

model closely based on the DBM, for modelling the learning of the prior, with the DDM and,

respectively, the LATER model for predicting RTs. A very similar model has previously been

proposed to explain results in saccade-to-target experiments [30]. We also consider the possi-

bility that the evidence accumulation rate as well as the starting point may change from trial to

trial.

To distinguish between different possible ways in which stimulus history could have an

influence via updating of the starting point and/or the rate, we performed three visual search

experiments, using both a detection and a discrimination task and manipulating the probabil-

ity of target presence, as well as the target-defining dimension. Based on the RT data, we then

performed a factorial model comparison (cf. [31]), where both the response history and the

history of the target dimension can affect either the starting point or the rate. The results show

that the model that best explains both the effects of our probability manipulation and the

inter-trial effects is the one in which the starting point is updated based on response history

and the rate is updated based on the history of the target dimension.

Results

Experiments 1 and 2 both consisted of three equally long blocks. The frequency of pop-out tar-

get presence (or absence) was varied across blocks in Experiment 1. In Experiment 2, a target

was always present, and the frequency of the target being a color-defined or, alternatively, an

orientation-defined singleton was varied across blocks. In Experiment 3, target presence and

absence were kept equally frequent, as were trials with color- and orientation-defined singleton

targets. One implication of this design is that the high-frequency condition for one target con-

dition (present/absent, color/orientation) was implemented in the same block as the low-fre-

quency condition for the other target condition. So, in all figures and analyses of the effects of

frequency, the high- and low-frequency conditions are based on data collected in different

blocks for each target condition, while the data for the medium-frequency condition comes

from the same block for each target condition.

Error rates

The singleton search was quite easy, with participants making few errors overall: mean error

rates were 1.5%, 2.5%, and 3.3% in Experiments 1, 2, and 3 respectively (Fig 2). Despite the

low average error rates, error rates differed significantly between blocks in both Experiments

1 and 2 [Fð1:34; 14:78Þ ¼ 11:50; p < 0:01; Z2
p ¼ 0:51;BF ¼ 8372, and Fð2; 22Þ ¼ 12:20;

p < 0:001; Z2
p ¼ 0:53;BF ¼ 3729, respectively]: as indicated by post-hoc comparisons (S1

Text), error rates were higher in the low-frequency blocks compared to the medium- and

high-frequency blocks, without a significant difference between the latter. In addition, in

Experiment 1, error rates were overall higher for target-present than for target-absent trials,

that is, there were more misses than false alarms,

Inter-trial effects and Bayesian updating models
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Fð1; 11Þ ¼ 11:43; p < 0:01; Z2
p ¼ 0:51;BF ¼ 75. In contrast, there was no difference in error

rates between color and orientation targets in Experiment 2, F(1,11) = 0.70,p = 0.42,BF = 0.33.

In Experiment 3, there was no manipulation of target (or dimension) frequency, but like in

Experiment 1, error rates were higher on target-present than on target-absent trials, t(11) =

4.25,p< 0.01,BF = 30.7; and similar to Experiment 2, there was no significant difference in

error rates between color and orientation targets, t(11) = 1.51,p = 0.16,BF = 0.71.

Fig 2. Error rates in Experiments 1, 2, and 3, for all combinations of target frequency. Target frequency is defined relative to the target condition,

as the frequency with which that target condition occurred within a given block. This means that, for a given frequency, the data from the different

target conditions do not necessarily come from the same block of the experiment. Error bars show the standard error of the mean.

https://doi.org/10.1371/journal.pcbi.1006328.g002

Fig 3. Mean RTs in Experiments 1, 2, and 3, for all combinations of target condition and target frequency. Target frequency is defined relative to

the target condition, as the frequency with which that target condition occurred within a given block. This means that for a given frequency, the data

from the different target conditions do not necessarily come from the same block of the experiment. Error bars show the standard error of the mean.

https://doi.org/10.1371/journal.pcbi.1006328.g003
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Mean reaction times (RTs)

Given the low error rates, we analyzed only RTs from trials with a correct response, though

excluding outliers, defined as trials on which the inverse RT (i.e., 1/RT) was more than three stan-

dard deviations from the mean for any individual participant. Fig 3 presents the pattern of mean

RTs for all three experiments. In both Experiments 1 and 2, the main effect of frequency was sig-

nificant [Fð2; 22Þ ¼ 10:25; p < 0:001; Z2
p ¼ 0:48;BF ¼ 73, and, respectively, Fð1:27; 13:96Þ ¼

29:83; p < 0:01; Z2
p ¼ 0:73;BF ¼ 8:7 � 108]. Post-hoc comparisons (see S2 Text) confirmed

RTs to be faster in high-frequency compared to low-frequency blocks, indicative of participants

adapting to the stimulus statistics in a way such as to permit faster responses to the most frequent

type of trial within a given block. In addition, in Experiment 1, RTs were faster for target-present

than for target-absent trials [Fð1; 11Þ ¼ 5:94; p < 0:05; Z2
p ¼ 0:35;BF ¼ 51], consistent with the

visual search literature. In contrast, there was no difference between color- and orientation-

defined target trials in Experiment 2, and no interaction between target condition and frequency

in either Experiment 1 or 2 (S2 Text)–suggesting that the effect of frequency is independent of the

target stimuli.

Comparing the error rates depicted in Fig 2 and the mean RTs in Fig 3, error rates tended

to be lower for those frequency conditions for which RTs were faster. While this rules out sim-

ple speed-accuracy trade-offs, it indicates that participants were adapting to the statistics of the

stimuli in a way that permitted faster and more accurate responding to the most frequent type

of trial within a given block, at the cost of slower and less accurate responding on the less fre-

quent trial type. A possible explanation of these effects is a shift of the starting point of a drift-

diffusion model towards the boundary associated with the response associated with the most

frequent type of trial; as will be seen below (in the modeling section), the shapes of the RT dis-

tributions were consistent with this interpretation.

Without a manipulation of frequency, Experiment 3 yielded a standard outcome: all three

types of trial yielded similar mean RTs, F(2,22) = 2.15,p = 0.14,BF = 0.71. This is different from

Experiment 1, in which target-absent RTs were significantly slower than target-present RTs.

This difference was likely obtained because the target-defining dimension was kept constant

within short mini-blocks in Experiment 1, but varied randomly across trials in Experiment 3,

yielding a dimension switch cost and therefore slower average RTs on target-present trials (see

modeling section for further confirmation of this interpretation).

Inter-trial effects

Given our focus on inter-trial dynamic changes in RTs, we compared trials on which the target

condition was switched to trials on which it was repeated from the previous trial. Fig 4 illus-

trates the inter-trial effects for all three experiments. RTs were significantly faster on target-

repeat than on target-switch trials, in all experiments: Experiment 1 [Fð1; 11Þ ¼ 6:13;

p < 0:05; Z2
p ¼ 0:36;BF ¼ 0:81], Experiment 2 [Fð1; 11Þ ¼ 71:29; p < 0:001; Z2

p ¼ 0:87;

BF ¼ 2:6 � 107], and Experiment 3 [Fð1; 11Þ ¼ 32:68; p < 0:001; Z2
p ¼ 0:75;BF ¼ 625]. Note

that for Experiment 1, despite the significant target-repeat/switch effect, the ‘inclusion’ BF (see

Methods) suggests that this factor is negligible compared to other factors; a further post-hoc

comparison of repeat versus switch trials has a BF of 5.88, compatible with the ANOVA test.

The target repetition effect in all three experiments is consistent with trial-wise updating of an

internal model (see the modeling section). The target repetition/switch effect was larger for

target-absent responses (i.e., comparing repetition of target absence to a switch from target

presence to absence) than for target-present responses in Experiment 3 (interaction inter-trial

condition x target condition, Fð1; 11Þ ¼ 14:80; p < 0:01; Z2
p ¼ 0:57;BF ¼ 18), while there

Inter-trial effects and Bayesian updating models
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was no such a difference in Experiment 1, F(1,11) = 2.55,p = 0.14,BF = 0.43, and also no inter-

action between target dimension and inter-trial condition in Experiment 2, F(1,11) = 0.014,

p = 0.91,BF = 0.76. These findings suggest that, while the target repetition/switch effect as such

is stable across experiments, its magnitude may fluctuate depending on the experimental con-

dition. The interaction between target condition and inter-trial condition seen in Experiment

3, but not in Experiment 1, is likely attributable to the fact that color and orientation targets

were randomly interleaved in Experiment 3, so that target-present repetitions include trials on

which the target dimension did either repeat or change–whereas the target dimension was

invariably repeated on consecutive target-present trials in Experiment 1. The effects of repeat-

ing/switching the target dimension are considered further below.

Note that in all experiments, we mapped two alternative target conditions to two fixed

alternative responses. The repetition and switch effects described above may be partly due

to response repetitions and switches. To further examine dimension repetition/switch

effects when both dimensions were mapped to the same response, we extracted those target-

present trials from Experiment 3 on which a target was also present on the immediately

preceding trial. Fig 5 depicts the mean RTs for the dimension-repeat versus -switch trials.

RTs were faster when the target dimension repeated compared to when it switched, Fð1; 11Þ ¼

25:06; p < 0:001; Z2
p ¼ 0:70;BF ¼ 1905, where this effect was of a similar magnitude for

color- and orientation-defined targets [interaction target dimension x dimension repetition,

F(1,11) = 0.44,p = 0.84,BF = 0.33]. There was also no overall RT difference between the two

types of target [main effect of target dimension, F(1,11) = 0.16,p = 0.69,BF = 0.34], indicating

that the color and orientation targets were equally salient. This pattern of dimension repeti-

tion/switch effects is in line with the dimension-weighting account [8]. Of note, there was

little evidence of a dimension repetition benefit from two trials back, that is, from trial n-2 to

trial n: the effect was very small (3 ms) and not statistically significant [t(23) = 0.81, p = 0.43,

BF = 0.38].

In addition to inter-trial effects from repetition versus switching of the target dimension,

there may also be effects of repeating/switching the individual target-defining features. To

examine for such effects, we extracted those trials on which a target was present and the target

Fig 4. Inter-trial effects on mean RTs for all three experiments. Error bars show the standard error of the mean.

https://doi.org/10.1371/journal.pcbi.1006328.g004
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dimension stayed the same as on the preceding trial, and examined them for (intra-dimension)

target feature repetition/switch effects. See Fig 6 for the resulting mean RTs. In Experiments 1

and 3, there was no significant main effect of feature repetition/switch [Exp. 1: F(1,11) = 0.30,

p = 0.593,BF = 0.30, Exp. 3: F(1,11) = 3.77,p = 0.078,BF = 0.76], nor was there an interaction

with target dimension [Exp. 1: F(1,11) = 2.122,p = 0.17,BF = 0.44, Exp. 3: F(1,11) = 0.007,

p = 0.93,BF = 0.38]. In contrast, in Experiment 2 (which required an explicit target dimension

response), RTs were significantly faster when the target feature repeated compared to when it

switched within the same dimension, Fð1; 11Þ ¼ 35:535; p < 0:001; Z2
p ¼ 0:764;BF ¼ 13,

Fig 5. Dimension repetition/switch effect in Experiment 3. Mean RTs were significantly faster when the target-

defining dimension was repeated. Error bars show the standard error of the mean.

https://doi.org/10.1371/journal.pcbi.1006328.g005

Fig 6. Feature repetition/switch effects on mean RTs for all three experiments. Error bars show the standard error of the mean.

https://doi.org/10.1371/journal.pcbi.1006328.g006
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and this effect did not differ between the target-defining, color and orientation, dimensions, F
(1,11) = 1.858,p = 0.2,BF = 0.57. Note though that, even in Experiment 2, this feature repeti-

tion/switch effect was smaller than the effect of dimension repetition/switch (20 vs. 54 ms, t

(11) = 5.20, p<0.001, BF = 122).

In summary, the results revealed RTs to be expedited when target presence or absence or,

respectively, the target-defining dimension (on target-present trials) was repeated on consecu-

tive trials. However, the origin of these inter-trial effects is unclear: The faster RTs for cross-

trial repetitions could reflect either more efficient stimulus processing (e.g., as a result of

greater ‘attentional ‘weight’ being assigned to a repeated target dimension) or a response bias

(e.g., an inclination to respond ‘target present’ based on less evidence on repeat trials), or both.

In the next section, we will address the origin(s) of the inter-trial effects by comparing a range

of generative computational models and determining which parameters are likely involved in

producing these effects. Because feature-specific inter-trial effects, if reliable at all (they were

significant only in Exp. 2, which required an explicit target dimension response), were smaller

than the inter-trial effects related to either target presence/absence or the target-defining

dimension (e.g., in Exp. 3, a significant dimension-based inter-trial effect of 39 ms compares

with a non-significant feature-based effect of 11 ms), we chose to ignore the feature-related

effect in our modeling attempt.

Dynamic Bayesian updating and inter-trial effects

Factorial comparison of multiple updating models. To identify the origins of the

observed inter-trial effects, we systematically compared a multiplicity of computational models

using the factorial comparison method [31]. Given that both the DDM and the LATER model

provide a good prediction of the RT distributions, we consider the model of RT distributions

as one factor (DDM vs. LATER).

Both models have the same parameters: the evidence accumulation rate (r), the initial start-

ing point (S0), and the decision threshold (θ). The DDM model has one additional parameter:

non-decision time (Ter). Here we also added a non-decision time parameter to the LATER

model, and considered the presence versus absence of a non-decision time as one factor (i.e.,

non-decision time fixed to zero vs. non-decision time as a free parameter).

One of the main purposes of the model comparison was to investigate through what

mechanisms response history and the history of the target dimension influence RTs. To

this end, we introduced the influence of the history of the ‘response-defining feature’

(RDF) and of the ‘target-defining dimension’ (TDD) on updating of the parameters of the

RT distribution model as two separate factors. For each factor, we considered six different

forms of updating (factor levels). Table 1 lists all factor levels and the associated parame-

ters for each of the four factors.

Level 1 (No update). RDF/TDD repetition/switch does not affect any model parameters.

Level 2 (S0 with full memory). RDF/TDD repetition/switch updates the initial starting

point (S0) according to the whole prior history. As suggested by [26] and [19], S0 is determined

by the log prior odds of two decision outcomes (H vs. ~H):

S0 ¼ log
PðHÞ

1 � PðHÞ
ð1Þ

Here we assume that the prior probability P(H), rather than being fixed, is updated trial-

wise according to Bayesian inference, because participants are learning the frequencies of dif-

ferent stimulus properties (such as target present/absent or color/orientation) and using this
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knowledge as a prior when making perceptual decisions. Thus, the posterior of the prior is:

PðHtjXtÞ / PðXtjHtÞPðHtÞ ð2Þ

This updating can be modeled by using a Beta distribution as the starting distribution on

the prior (a hyperprior) and updating after each trial using the Bernoulli likelihood. We

assume that participants were unbiased at the beginning of the experiment (i.e., the two

parameters of the Beta distribution initially had the same value β0) and gradually updated their

prior based on the trial history. The updating fully determines the starting point on each trial

based on the stimulus history and the shape of the starting distribution (determined by β0);

accordingly, the shape parameter of the starting distribution, β0, is the only free parameter. Fig

7 illustrates the updating.

For updating based on the RDF, a single prior p is being learned, representing the probabil-

ity of target-present trials (with the probability of a target-absent trial being 1 − p). For updat-

ing based on the history of the TDD, we assume a separate prior is being learned for each

dimension.

This factor level contributes one parameter, β0, to the model.

Level 3 (S0 with decay). Like at Level 2, S0 is updated based on the history of the RDF/

TDD through Bayesian updating of the prior. In addition, we incorporated a forgetting mecha-

nism based on the Dynamic Belief Model (DBM) [29]. That is, in addition to Bayesian updat-

ing of the probability distribution on the prior Ht, there was, on each trial, a probability α with

which the prior was redrawn from the starting distribution H0. This forgetting mechanism was

implemented through the following equation:

PðHtjXt� 1Þ ¼ aPðHt� 1jXt� 1Þ þ ð1 � aÞPðH0Þ  ð3Þ

This model is identical to the fixed no-updating model (Level 1) when α equals 0, and is

identical to the model specified in Level 2 when α equals 1. For intermediate values of α, the

prior is partially reset to the initial prior on each trial. This factor level contributes two parame-

ters, α and β, to the model.

For factor levels 4–6, it is the evidence accumulation rate (r), rather than the starting point

(S0), that is being updated from trial to trial. Updating could be based on either the RDF or the

TDD (in Experiment 2, these were the same), which we will refer to as the update variable

(UV). In each case, UV can have two possible values, u1 and u2, namely, either color and orien-

tation or target-present and -absent, depending on which experiment is being modelled.

Level 4 (Binary rate). The RDF/TDD repetition/switch updates the information accumu-

lation rate r in a step-wise manner, with the rate depending only on one-trial-back changes of

Table 1. A list of the levels and the associated parameters for each of the four factors.

FACTORS LEVELS PARAMETERS

NON-DECISION TIME Without None

With Ter

EVIDENCE DDM r, T, σ
ACCUMULATION MODEL LATER r, T, σ

No updating -

RDF-BASED UPDATING S0 full memory β0

or S0 with decay α, β0

TDD-BASED UPDATING Binary rate κ

Rate with decay α, Δ

Weighted rate α, Δ

https://doi.org/10.1371/journal.pcbi.1006328.t001
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UV: the rate is scaled by a parameter κ, whose value was either κ0 (0<κ0<1) when the UV

changed between trials, or 1 when the UV repeated:

rn ¼ k
ð1� dUVn ;UVn� 1

Þ

0 � r; ð4Þ

where dUVn ;UVn� 1
is the Kronecker delta function. When updating was performed based on the

target dimension, it only affected the rate on target-present trials that were immediately pre-

ceded by a (target-present) trial with a target defined in a different dimension. This factor level

contributes one parameter, κ, to the model.

Levels 5–6 were both designed to reduce the evidence accumulation rate after a UV switch,

just like factor Level 4, but allowing for an influence from more than one trial back.

Level 5 (Rate with decay). The RDF/TDD repetition/switch updates the rate r with a

memory decay, which was accomplished by reducing the rate whenever the (value of the) UV

switched between trials, and increasing it when the UV repeated. Specifically, the rate was

scaled by κ on each trial if updating was based on the RDF, or on each target-present trial if it

was based on the target-defining dimension. The starting value of κ was set to 1, and it was

increased by Δ after each UV repetition, and decreased by Δ after each UV switch. There was

also a forgetting mechanism, the same as that implemented at Level 3, such that trials further

Fig 7. Schematic illustration of prior updating and the resulting changes of the starting point. The top panels show

the hyperprior, i.e., the probability distribution on the frequency of target present trials (p), and how it changes over

three subsequent trials. The middle panels show the current best estimate of the frequency distribution over target-

present and -absent trials (i.e., p and 1 − p). The best estimate of p is defined as the expected value of the hyperprior.

The bottom panels show a sketch of the evidence accumulation process where the starting point is set as the log prior

odds for the two response options (target- present vs. -absent), computed based on the current best estimate of p. Tp

and Ta are the decision thresholds for target-present and -absent responses, respectively, and μp and μa are the

respective drift rates. The sketch of the evidence accumulation process is based on the LATER model (rather than the

DDM) and therefore shown with a single boundary (that associated with the correct response). Note that the boundary

depicted for trial 2 (target absent) is not the same as those for (target-present trials) trials 1 and 3. In the equivalent

figure based on the DDM, there would have been two boundaries, and on trial 2, the drift rate would have been

negative and the starting point would have been closer to the upper boundary than on the first trial. Note also that this

figure illustrates updating with some memory decay (see level 3). Without memory decay, the distribution on trial 3

would be exactly the same as on trial 1.

https://doi.org/10.1371/journal.pcbi.1006328.g007
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back had less influence:

rn ¼ kn � r0

ku
n ¼ kn þ ð� 1Þ

ð1� dUVn ;UVn� 1
Þ
� D

knþ1 ¼ a � ku
n þ ð1 � aÞ;

ð5Þ

8
>><

>>:

where κn+1 determines the amount of scaling of the rate on trial n+1 while ku
n is the value of κ

after being updated based on the stimulus on trial n, and dUVn ;UVn� 1
the Kronecker delta func-

tion. When updating was based on the target-defining dimension, no increase or decrease by

Δ occurred on target-absent trials, while the forgetting step was still performed. This factor

level contributes two parameters, Δ and α, to the model.

Level 6 (Weighted rate). The RDF/TDD repetition/switch updates the rate r with a shared

weight resource. Level 6, like Level 5, allowed for an influence on the rate from more than one

trial back. Like at Levels 4 and 5, a separate rate was used for each value of the UV (rðiÞ0 for UV
= ui,i = {1,2}). Just like at Levels 4 and 5, these rates were scaled based on trial history. How-

ever, unlike Levels 4 and 5, the factors by which the two rates were scaled summed to a con-

stant value, as if there was a shared ‘weight’ resource. After a trial on which a given value of the

UV had occurred, some weight was moved to the scaling factor associated with that value of

the UV (i.e., the target dimension or the target-present/absent status depending on whether

the rule was used for TDD- or RDF-based updating). This updating rule was inspired by the

dimension-weighting account [6]. Specifically, the rate (rðiÞ0 ) was scaled by κ(i), where the sum-

mation of the scaling factor was kept constant at 2, that is,

rðiÞn ¼ kðiÞn � r
ðiÞ
0 ; i ¼ f1; 2g

kð1Þn þ kð2Þn ¼ 2
ð6Þ

(

where the scaling factor kðiÞn , i = {1,2}, updates with the following rules,

k
ðiÞ
1 ¼ 1

kðiÞun ¼ kn þ ð� 1Þ
ð1� dUVn ;ui Þ � D

k
ðiÞ
nþ1 ¼ a � kðiÞun þ ð1 � aÞ

ð7Þ

8
>><

>>:

Thus, after each trial, some amount of the limited resource determining the scaling of the

rate was moved to the scaling factor associated with the value of the UV that had occurred on

that trial. In addition, the same forgetting rule as that implemented at Level 5 was used. When

the updating was based on the target dimension, no scaling of the rate or updating of κ was

performed on target-absent trials, though the forgetting rule was still applied, just like at Level

5.

This level contributes two parameters, Δ and α, to the model.

Model comparison

With the full combination of the four factors, there were 144 (2 x 2 x 6 x 6) models altogether

for comparison: non-decision time (with/without), evidence accumulation models (DDM vs.

LATER), RDF-based updating (6 factor levels), and TDD-based updating (6 factor levels). We

fitted all models to individual-participant data across the three experiments, which, with 12

participants per experiment, yielded 5184 fitted models (see S7 Text for RT distributions and

model fits for the factor levels with no updating but with a non-decision time). Several data

sets could not be fitted with the full memory version of the starting point updating level (i.e.,
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Level 2) of the dimension-based updating factor, due to the parameter updating to an extreme.

We therefore excluded this level from further comparison.

Experiment 1: Target detection with variable ratios of target-present vs. -absent tri-

als. Figs 8–10 shows the mean relative Akaike Information Criteria (AICs) for each of our

experiments. For each individual participant we subtracted the AIC of the overall winning

model (based on all participants) from the AIC of every other model for that participant, and

finally we averaged this relative AIC across all participants. In Fig 8 the mean relative AIC is

shown for all models with a non-decision time component in Experiment 1 (recall that the

task in Experiment 1 was to discern whether a target was present or absent; the ratio of target-

present/absent trials was varied between blocks, and the target dimension, color or orientation,

changed only between shorter mini-blocks). The AIC is a measure of the quality of a model,

taking into account goodness of fit (as measured by the likelihood) and penalizing models

with more free parameters, where lower AIC values indicate better model performance. The

mean relative AIC is zero for the overall best model; while larger values indicate how much

worse, on average across participants, a given model performed compared to the best model.

In this figure, as well as in Figs 9 and 10 (Experiments 2 and 3), only models with a non-deci-

sion time component have been included since these generally performed better, in AIC

terms, than models without a non-decision time (see Table A in S3 Text). This was particularly

the case when the DDM was used for RT distribution modeling (and to a lesser extent with the

LATER model)–though, for each experiment, the model that achieved the lowest AIC did

include a non-decision time component, regardless of whether the LATER or the DDM was

used. In general, models using LATER for the RT distribution outperformed those using

DDM. Of note, though, the pattern across the other factors was very similar; for instance, for

the models with the lowest AIC-, the (other) factor levels were the same whether the DDM or

the LATER model was used (see also S3 Text for figures of the AICs for the models without a

non-decision time component).

Fig 8. Mean relative AICs as a function of the tested models in Experiment 1. For each participant, the AIC of the best-

performing model has been subtracted from the AIC for every model, before averaging across participants. Error bars indicate the

standard error of the mean. The response-based updating rules are mapped onto the x-axis (RDF-based updating), while the

dimension-based updating rules are indicated by different colors (TDD-based updating). The left-hand panel presents the results

for the DDM, the right-hand panel for the LATER model. Only models with a non-decision time component are included in the

figure. Models without a non-decision time component generally performed worse, and the best-fitting model included a non-

decision time component (see also Table A in S4 Text).

https://doi.org/10.1371/journal.pcbi.1006328.g008
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Fig 10. Mean relative AICs as a function of the tested models in Experiment 3. For each participant, the AIC of the best-

performing model has been subtracted from the AIC for every model, before averaging across participants. Error bars indicate the

standard error of the mean. The response-based updating rules are mapped onto the x-axis (RDF-based updating), while the

dimension-based updating rules are indicated by different colors (TDD-based updating). The left-hand panel presents the results

for the DDM, the right-hand panel for the LATER model. Only models with a non-decision time component are included in the

figure. Models without a non-decision time component generally performed worse, and the best-fitting model included a non-

decision time component (see also Table A in S4 Text).

https://doi.org/10.1371/journal.pcbi.1006328.g010

Fig 9. Mean relative AICs as a function of the tested models in Experiment 2. For each participant, the AIC of the best-

performing model has been subtracted from the AIC for every model, before averaging across participants. Error bars indicate the

standard error of the mean. The response-based updating rules are mapped onto the x-axis (RDF-based updating), while the

dimension-based updating rules are indicated by different colors (TDD-based updating). The left-hand panel presents the results

for the DDM, the right-hand panel for the LATER model. Only models with a non-decision time component are included in the

figure. Models without a non-decision time component generally performed worse, and the best-fitting model included a non-

decision time component (see also Table A in S4 Text).

https://doi.org/10.1371/journal.pcbi.1006328.g009
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Importantly, in Experiment 1, for target presence/absence switches/repetitions, which (in

Experiment 1) were equivalent to response switches/repetitions, the best-fitting model turned

out to be that which updates the initial starting point with partial forgetting. For the dimension

switch/repetition, by contrast, the various updating rules yielded comparable results, though

no other rule was better than the no-update rule. The latter is unsurprising given that, in

Experiment 1, the dimensions were separated in different mini-blocks, that is, effectively there

was no dimension switch condition (except for the infrequent changes between mini-blocks).

Experiment 2: Dimension discrimination with variable ratios of color vs. orientation

targets. Fig 9 depicts the mean relative AICs, averaged across all participants, for all models

with a non-decision time component in Experiment 2, in which there was a target present on

each trial and the task was to report the dimension of the target, color versus orientation,

which changed randomly from trial to trial, and the ratio of color to orientation target trials

was varied between blocks. Similar to Experiment 1, models using LATER did overall better

than those using DDM. The best factor level for response-based updating involved updating of

the initial starting point with partial forgetting. And the best factor level for updating based on

the target dimension turned out to be updating of the accumulation rate with partial forgetting

(i.e., Level 5, "rate with decay", of the dimension-based updating factor).

Experiment 3: Standard pop-out search task with equal target-present vs. -absent tri-

als. Experiment 3 used a standard pop-out search detection task (target-present vs. -absent

response), with color and orientation targets (on target-present trials) randomly mixed within

blocks. Like Experiments 1 and 2, the LATER model and the response-based updating of the

initial starting point outperformed the other model variants (see Fig 10). For dimension

switches/repetitions, again a form of accumulation rate updating won over the other factor lev-

els. The top two models both involved rate updating, with a slightly superior AIC score for the

model implementing a weighting mechanism with a memory of more than one trial back

(’Weighted rate’) compared to the model in which the rate updating was based only on

whether the dimension was repeated/switched compared to the previous trial (’binary rate’).

To summarize: For all three experiments, the best models, in AIC terms, were based on the

LATER rather than the DDM and used updating of the starting point with partial forgetting

based on the response. For the two experiments in which color and orientation targets were

randomly interleaved within each block, that is, in which dimension switching occurred, the

best model involved updating of the evidence accumulation rate based on the dimension. A

complementary analysis based on individual participants’ fits (S4 Text) supports the same

conclusions.

Prediction of RTs and model parameter changes

To obtain a better picture of the best model predictions, we plotted predicted versus observed

RTs in Fig 11. Each point represents the average RT over all trials from one ratio condition,

one trial condition, and one inter-trial condition in a single participant. There are 144 points

each for Experiments 1 and 2 (12 participants x 3 ratios x 2 trial conditions x 2 inter-trial con-

ditions) and 108 for Experiment 3 (12 participants x 3 trial conditions x 3 inter-trial condi-

tions). The predictions were made based on the best model for each experiment, in terms of

the average AIC (see Figs 8, 9 and 10). The r2 value of the best linear fit is 0.85 for Experiment

1, 0.86 for Experiment 2, and 0.98 for Experiment 3, and 0.89 for all the data combined.

Fig 12 presents examples of how the starting point (S0) and rate were updated according to

the best model (in AIC terms) for each experiment. For all experiments, the best model used

starting point updating based on the response-defining feature (Fig 12A, 12C and 12E, left

panels). In Experiments 1 and 2, the trial samples shown were taken from blocks with an
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unequal ratio; so, for the starting point, the updating results are biased towards the (correct)

response on the most frequent type of trial (Fig 12A and 12C). In Experiment 3, the ratio was

equal; so, while the starting point exhibits a small bias on most trials (Fig 12E), it is equally

often biased towards either response. Since, in a block with unequal ratio, the starting point

becomes biased towards the most frequent response, the model predicts that the average start-

ing point to boundary separation for each response will be smaller in blocks in which that

response is more frequent. This predicts that RTs to a stimulus requiring a particular response

should become faster with increasing frequency of that stimulus in the block, which is what we

observed in our behavioral data. In addition, since, after each trial, the updating rule moves

the starting point towards the boundary associated with the response on that trial, the separa-

tion between the starting point and the boundary will be smaller on trials on which the same

response was required on the previous trial, compared to a response switch. This predicts

faster RTs when the same response is repeated, in line with the pattern in the behavioral data.

The forgetting mechanism used in the best models ensures that such inter-trial effects will

occur even after a long history of previous updates.

In Experiment 1, the best model did not use any updating of the drift rate, but a different

rate was used for each dimension and for target-absent trials (Fig 12B). In Experiment 2 the

best model updated the rate based on the ‘Rate with decay’ rule described above. The rate is

increased when the target-defining dimension is repeated, and decreased when the dimension

switches, across trials, and these changes can build up over repetitions/switches, though with

some memory decay (Fig 12D). Since the target dimension was (also) the response-defining

feature in Experiment 2, the rate updating would contribute to the ‘response-based’ inter-trial

effects. In Experiment 3, the best model involved the ‘Weighted rate’ rule. Note that the rate

tends to be below the baseline level (dashed lines) after switching from the other dimension,

but grows larger when the same dimension is repeated (Fig 12F). This predicts faster RTs after

a dimension repetition compared to a switch, which is what we observed in the behavioral

data.

Fig 11. Scatterplot of predicted vs. observed mean RTs for all experiments, participants, ratio conditions, and

inter-trial conditions, for each experiment. Lines show the corresponding linear fits.

https://doi.org/10.1371/journal.pcbi.1006328.g011
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Discussion

In three experiments, we varied the frequency distribution over the response-defining feature

(RDF) of the stimulus in a visual pop-out search task, that is, target presence versus target

absence (Experiments 1 and 3) or, respectively, the dimension, color versus orientation, along

which the target differed from the distractors (Experiment 2). In both cases, RTs were overall

faster to stimuli of that particular response-defining feature that occurred with higher fre-

quency within a given trial block. There were also systematic inter-trial ‘history’ effects: RTs

were faster both when the response-defining feature and when the target-defining dimension

repeated across trials, compared to when either of these changed. Our results thus replicate

previous findings of dimension repetition/switch effects [6,9].

In contrast to studies on ‘priming of pop-out’ (PoP) [3,32–34], we did not find significant

feature-based repetition/switch effects (consistent with [6]), except for Experiment 2 in which

the target dimension was also the response-defining feature. The dimension repetition/switch

effects that we observed were also not as ‘long-term’ compared to PoP studies, where signifi-

cant feature ‘priming’ effects emerged from as far as eight trials back from the current trial.

Fig 12. Examples of the updating of the starting point (s0) and the rate. Left panels A, C, and E show examples of

starting point updating for a representative sample of trials from typical participants from Experiments 1–3. Panels B,

D, and F show updating of the rate for the same trial samples (from the same participants); the dashed lines represent

the baseline rates before scaling for target-absent, color target, and orientation target trials (i.e., the rate that would be

used on every trial of that type if there was no updating). In each case, updating was based on the best model, in terms

of average AIC, for that experiment.

https://doi.org/10.1371/journal.pcbi.1006328.g012
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There are (at least) two differences between the present study and the PoP paradigms, which

likely contributed to these differential effect patterns. First, we employed dense search displays

(with a total of 39 items, maximizing local target-to-non-target feature contrast), whereas PoP

studies typically use much sparser displays (e.g., in the ‘prototypical’ design of Maljkovic &

Nakayama [3,32–34], 3 widely spaced items: one target and two distractors). Second, the fea-

tures of our distractors remained constant, whereas in PoP studies the search-critical features

of the target and the distractors are typically swapped randomly across trials. There is evidence

indicating that, in the latter displays, the target is actually not the first item attended on a sig-

nificant proportion of trials (according to [35], on some 20% up to 70%), introducing an ele-

ment of serial scanning especially on feature swap trials on which there is a tendency for

attention (and the eye) to be deployed to a distractor that happens to have the same (color) fea-

ture as the target on the previous trial (for eye movement evidence, see, e.g., [36,37]). Given

this happens frequently, feature checking would become necessary to ensure that it is the

(odd-one-out) target item that is attended and responded to, rather than one of the distractors.

As a result, feature-specific effects would come to the fore, whereas these would play only a

minor role when the target can be reliably found based on strong (local) feature contrast [38].

For this reason, we opted to start our modeling work with designs that, at least in our hand,

optimize pop-out (see also [39]), focusing on simple target detection and ‘non-compound’ dis-

crimination tasks in the first instance. Another difference is that we used simple detection and

‘non-compound’ discrimination tasks in our experiments, while PoP experiments typically

employ ‘compound’ tasks, in which the response-defining feature is independent of the target-

defining feature. We do not believe that the latter difference is critical, as reliable dimension

repetition/change effects have also been observed with compound-search tasks (e.g., [40]),

even though, in terms of the final RTs, these are weaker compared to simple response tasks

because they are subject to complex interactions arising at a post-selective processing stage

(see below and [41,42]).

To better understand the basis of the effects we obtained, we analyzed the shape of the RT

distributions, using the modified LATER model [26] and the DDM [21,22]. Importantly, in

addition to fitting these models to the RT distribution across trials, we systematically com-

pared and contrasted different rules of how two key parameters of the LATER/DDM models–

the starting point (S0) or the rate (r) of the evidence accumulation process–might be dynami-

cally adapted, or updated, based on trial history. We assumed two aspects of the stimuli to be

potentially relevant for updating the evidence accumulation parameters: the response-defining

feature (RDF) and the target-defining dimension (TDD; in Experiment 2, RDF and TDD were

identical). Thus, in our full factorial model comparison, trial-by-trial updating was based on

either the response-defining feature or the target dimension (factor 1), combined with updat-

ing of either the starting point or the rate of evidence accumulation (factor 2), with a number

of different possible updating rules for each of these (6 factor levels each). An additional factor

(factor 3) in our model comparison was the evidence accumulation model used to predict RT

distributions: either the DDM or the LATER model. Finally, to compare the DDM and

LATER models on as equal terms as possible, we modified the original LATER model by add-

ing a non-decision time component. Thus, the fourth and final factor concerned whether a

non-decision time component was used or whether the non-decision time was fixed to zero.

Our model assumes that the starting point (S0) is updated based on the observer’s current

estimate of the probabilities of the response alternatives, which may depend on trial history.

The assumption that the starting point is set based on the prior probabilities of the two alterna-

tive responses is consistent with a Bayesian framework of evidence accumulation, in which evi-

dence is accumulated from the starting log prior odds until a threshold level is reached on the

posterior odds before a decision is made [19,26,43]. Our model assumes that the relative
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frequency of the two alternative values of the RDF (target-present vs. -absent in Experiments 1

and 3, color vs. orientation target in Experiment 2) is learned from trial history. Since there is

always some uncertainty about the frequency, the range of plausible values, given the trial his-

tory, is represented by a probability distribution. On the first trial, this distribution is set to a

Bernoulli distribution, with a single parameter representing a prior belief about how frequently

the two values of the RDF will occur before encountering the first search display. This proba-

bility distribution is then updated according to Bayes’ rule on each trial. Note that, on its own,

such Bayesian updating would converge on a stable estimate and then not change much–

which would predict the size of the inter-trial effects to decrease over the course of an experi-

ment. However, we did not observe such a decrease in any of our experiments (see S5 Text).

For this reason, in addition to the Bayesian updating rule described above, we introduced a

learning rule based on the Dynamic Belief Model [29], which assumes there is some fixed

probability on each trial that the stimulus frequencies will change and which therefore, in addi-

tion to the Bayesian updating, involves a ‘forgetting’ step that serves to reduce the weight of

old information relative to the most recent one. This model allows for rapid adaptation to a

change even after a long period without any change; and, importantly, it does not predict a

decrease of the inter-trial effect magnitude over the course of an experiment.

Considering the data from each experiment individually, we found that the best model

(with the lowest AIC) used updating of the starting point, with partial forgetting (i.e., the learn-

ing rule from the DBM), based on the history of the response-defining feature of the stimulus

array. This updating can explain both the effect of RDF frequency on RTs and the response-

based inter-trial effects. The updating would result in the starting point being, on average,

closer to the threshold associated with the most frequently required response in each trial

block, predicting the effect of frequency on RTs. And response-based inter-trial effects arise in

the model because, after each trial, the starting point is moved closer to the threshold associ-

ated with the response that was required on that trial, reducing the starting point to boundary

separation if that response is again required on the next trial. The forgetting mechanism

ensures that the magnitude of the starting point shifts, and therefore the predicted inter-trial

effects, do not shrink towards zero over the course of the 1000 plus trials in our experiments

(in line with our data, which revealed no evidence of such a shrinkage; see S5 Text). Some

form of forgetting mechanism is likely to be important for adapting to a changing environ-

ment [29].

It might be argued that the frequency effects and response-based inter-trial effects on the

mean RTs might, potentially, be equally well explained by trial-to-trial adaptations of the rate

of evidence accumulation. However, this would have predicted a different RT distribution,

and our model comparison did not favor models in which the rate was updated based on

response history. We therefore conclude that the most likely explanation of response-based

inter-trial effects is that observers became biased towards the response to which they assigned

a higher subjective probability, and that these probabilities were particularly sensitive to what

happened on the most recent trials. Of course, our starting point updating model with partial

forgetting, which is closely inspired by the Dynamic Belief Model [29], is only one plausible

way in which the learning of response probabilities can be implemented and linked to response

biases, and other implementations remain possible. Note also that, in the present study, the

feature that was critical for target detection was the same as that determining the response,

which did not allow us to dissociate response repetition from target repetition effects. Further

work is required to examine for such a disassociation using what is known as a ‘compound’

search task [44].

As to the dimension-based updating factor, in our model comparison, the best models dif-

fered among the three experiments. For Experiment 1, the best model did not include
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dimension-based updating, most likely because this experiment did not involve random

dimension switching (switching occurred only between the last trial of one mini-block and the

first trial of the next block, which were separated by a performance feedback screen). In Exper-

iments 2 and 3, in which random dimension switching did occur within trial blocks, the best

models involved updating of the evidence accumulation rate, though with somewhat different

updating rules. For both experiments, the best model involved a rule that increased the rate

when the target dimension repeated across trials and decreased it when the dimension

changed. In Experiment 2, a partial memory of this increase or, respectively, decrease is then

carried over to the next trial, regardless of whether the target on that trial is defined in the

same or a different dimension to the preceding trial. We termed this ‘rate with decay’ rule. The

best model for Experiment 3, on the other hand, used an updating rule which assumes that a

different rate is associated with each dimension, where, after each trial, the rate for the dimen-

sion that defined the target on that trial is increased, and that for the other dimension is

decreased by an equivalent amount. This ‘weighted rate’ rule is inspired by the dimension-

weighting account [6], according to which potential target-defining dimensions share the

same, limited attentional ‘weight’ resource. The two rules are similar but make significantly

different predictions, for instance, when a long sequence of repeats is followed by a switch, or

when a long sequence of switches occurs. The ‘rate with decay’ rule predicts the rate to be

higher after a sequence of repeats followed by a single switch, compared to a switch following a

run of switches–a pattern actually seen in Experiment 2 (see S6 Text). The ‘weighed rate’ rule,

by contrast, makes the opposite prediction–consistent with the pattern seen in Experiment 3

(see S6 Text).

Recall that, in Experiment 2, the target dimension was also the response-determining fea-

ture. As a consequence, (repeatedly) switching the dimension and the response may give rise

to a cost that carries over across trials by slowing the (executive) act of selecting the appropriate

motor response on a given trial. This may be the case because, with choice responses, some

‘event file’ buffering the requisite S–R link might be carried over across trials and affect the

speed of response decisions (see ‘episodic-retrieval theory’ below). On switch trials (‘S’), the

old rule no longer applies, that is, it needs to be inhibited and replaced by a new association,

where the mismatch with the old setting slows response selection. On repeated switch trials

(e.g., ‘SSS’), the link relevant on the current trial (trial n; the same association as on trial n-2)

might still be inhibited (from trial n-1, on which the rule was found to be inappropriate), slow-

ing responses relative to switch trials preceded by repeated trials (e.g., ‘RRS’) where the associa-

tion required on trial n is different from trial n-2 and would, thus not be inhibited on trial n-1.

Assuming that the evidence accumulation in favor of a particular target dimension feeds more

or less directly into the process of making a response decision, inhibition of an S–R link might

narrow the whole ‘pipeline’ of perceptual and response-related evidence accumulation,

explaining why the best dimension-based updating rule in Experiment 2 involved updating of

the rate. This account of the cost on repeated switch trials would be consistent with the ‘nega-

tive priming’ literature (e.g., [45]).

No such cost would arise in Experiment 3, in which the dimension was not response-defin-

ing–rather, all trials with a target present (in whatever dimension it was defined) required one

and the same, simple target detection response. Accordingly, dimension switches were not

associated with a response switch, and so there would be no need for an updating of the S–R

association after switch trials (consistent with evidence that dimensional target identity is not

explicitly encoded in simple singleton detection tasks; see [9]). In this situation, on the dimen-

sion-weighting account, each repetition would mean that increasingly more weight is assigned

to the repeated dimension and consequently less weight to the alternative dimension, which

will be the target dimension on the switch trial at the end (RRS). Consequently, on that trial,
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the rate of evidence accumulation (for a target in the alternative dimension) is slowed relative

to an SSS sequence (where the dimension on trial n had received a weight increase, rather than

a decrease, on trial n-2). Thus, the fact the best model for that experiment involved the

‘weighted rate’ rule would lend support to ‘dimension weighting’ as the best account of dimen-

sion repetition/switch effects when there is no concurrent response switching.

Importantly, the ‘weighted rate’ and ‘rate with decay’ rules both involve updating of the rate

of evidence accumulation (rather than of the starting point). The model comparison thus

clearly supports the hypothesis that the dimension repetition benefit derives from more effi-

cient stimulus processing, rather than a response bias. Convergent evidence comes from recent

studies of visual search examining event-related potentials, in which dimension-specific RT

inter-trial effects were reflected in the latency and amplitude of the early sensory processing

N1 [46] and the N2pc component. The N2pc is commonly taken to reflect processes of spatial-

attentional selection [41,47]. Thus, in light of the present model comparison, the fact that repe-

titions versus changes of the target-defining dimension across trials shortened the N2pc laten-

cies would support the notion that dimension repetition increases the rate of salience

accumulation for attentional target selection.

Our model comparison revealed that employing the LATER model for predicting RT distri-

butions did a better job explaining the data than using the DDM. Note, though, that to keep

the computational demands at a manageable level, we used a closed-form approximation of

the RT distribution predicted by the DDM [48]. This approximation does not capture all fea-

tures implemented in most computational realizations of the DDM; perhaps critically, it does

not allow for trial-to-trial variability of the non-decision time. Applied to the present data, a

DDM implementation with added trial-to-trial variability of the non-decision time might have

significantly improved the performance of this model (whereas it would likely have made less

of a difference to the LATER model)–thus reducing the difference in AIC between the LATER

model and the DDM. Adding trial-to-trial variability of the non-decision time to the future

model implementations may also be important theoretically, as it may be possible to explain

some of this variability by adding updating rules that operate on the non-decision time. Criti-

cally though, for all the other factors in our model comparison, the best-performing levels

turned out the same, whether the DDM or the LATER model was used.

Note that, while we tested a large number of possible models, there potentially are other

models that might perform even better. In particular, a model that allows several updating

rules to operate at once would likely perform somewhat better than our winning model. In the

present study, we limited our comparisons to parsimonious models with one updating rule

based on the RDF and one based on the TDD, assuming that manipulation of the RDF or the

TDD only affects one distinctive process that is reflected in either the starting point S0 or the

accumulation rate r. However, it remains possible that the RDF and/or the TDD influence RTs

through more than one mechanism in parallel–in which case our model comparison would

have identified only that mechanism which accounts for the largest portion of the inter-trial

effects. In future work, it will be interesting to determine whether a model which permits the

RDF and/or the TDD to operate through more than one mechanism can explain the data sig-

nificantly better.

In our model, we treated target-absent trials similar to target-present trials, given that pop-

out targets are detected efficiently (based on spatially parallel search), that is: with pop-out tar-

gets, a target-presence versus -absence decision can be made by setting a single threshold on

the search-guiding overall-saliency map [49]. Indeed, our model predicts RTs well on both tar-

get-absent and target-present trials. However, deciding that a target is absent in a non-pop-out

search task may be quite different. In a non-pop-out search display, every item in the search

display would in principle need to be processed to (reliably) arrive at a correct target-absent
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decision [50], though some process terminating the search (and triggering a target-absent deci-

sion) prior to exhaustive scanning of all display items may also be involved [16,51]. In any

case, to model non-pop-out search, a more complex model may be required in which multiple

stages of evidence accumulation typically occur before a response is triggered, corresponding

to checking individual items to determine whether or not they are the target.

While we examined a number of different updating rules in our model comparison, we are

not suggesting that these covered all possibilities; that is, we cannot rule out that there may be

updating rules that would perform even better. While our winning model was based on the

Dynamic Belief Model [29], a very similar model has been proposed by Anderson and Carpen-

ter [30], which also involves a combination of Bayesian updating and forgetting of old trials,

and this could have served as an equally good starting point for our model. Another, similar

model was proposed by Mozer et al. [52]. Unlike the present model, this does not involve a

hyperprior on the stimulus category probability with Bayes’ rule; rather, it updates the proba-

bility more directly, using a weighted-averaging rule, with the weight assigned to older trials

decaying exponentially. This rule is close to the forgetting rule of the Dynamic Belief Model.

Mozer et al. [52] showed that their model can qualitatively reproduce the pattern of results

from a number of ‘priming of pop-out’ and visual search experiments [3,4,52,53]. Different to

our model, the model of Mozer et al. learns conditional probabilities, which they argued was

essential for explaining interactions between the inter-trial effects for different features of the

stimuli in some of the experiments they modeled. While learning of conditional probabilities

was not necessary to explain the results from the three experiments reported here, any more

complete model of inter-trial effects in visual search may well need to incorporate conditional

probabilities to provide a truly general account. Another noteworthy difference to our model

is that the model of Mozer et al. only included the learning of probabilities without specifying

how these learned probabilities influence the perceptual decision process. Consequently, they

could not make quantitative predictions about RTs and their distributions. In contrast, our

model makes quantitative predictions because it combines a Bayesian updating rule with a

model of the perceptual decision process (either DDM or LATER).

Another modeling framework that has previously been applied to explaining inter-trial

effects in visual search is the ‘Theory of Visual Attention’ (TVA) [54]. TVA models the rate at

which visual categorizations of the type “object x has feature i” are made and encoded into

visual short-term memory (mediating overt responses). Each visual object receives an atten-

tional weight, which is the product of the strength of the sensory evidence that the object

belongs to category i and the current importance of attending to category i, referred to as the

‘pertinence’ of the category, summed over all relevant visual categories (i.e., categories for

which there is sensory evidence). The scaling factors in our dimension-weighted rate updating

rule, representing the current weight or importance assigned to each dimension, play a similar

role to the pertinence values in TVA. Ásgeirsson et al. [55,56] have shown that color priming

effects in visual search can be well explained by TVA, by assuming that the pertinence of a

given feature increases or decreases when the target or, respectively, a distractor possesses that

feature. Similarly, our dimension-weighted rate rule assumes that the scaling factor increases

for a given dimension when the target is defined in this dimension, and decreases when the

target is defined in a different dimension. Our finding that this was the best rule for explaining

performance in Experiment 3 is thus broadly consistent with the TVA-based model proposed

by Ásgeirsson et al. [48,49]. However, our model also differs from theirs in a number of

respects. First, in our model, the scaling factors were associated with dimensions rather than

individual features (recall that, in our paradigms, feature-specific inter-trial effects are rela-

tively unsubstantial compared to dimension-specific effects; see also [6]). Second, the model of

Ásgeirsson et al. only considered effects from a single trial back, while our dimension-weighted
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rate rule can model longer-term effects (of course, it would be possible to combine TVA with a

similar rule to take longer-term inter-trial history into account). Third, unlike the model of

Ásgeirsson et al., our model did not include ‘spatial weights’ associated with potential target

locations. Ásgeirsson et al. showed that their TVA-based model performed better when taking

spatial weighting into account. Note, though, that spatial weighting is likely to be more impor-

tant with sparse displays and a limited set of locations (six in Ásgeirsson et al.), compared to

the dense displays used in our experiments [57]. Finally, by modelling full RT distributions, we

could make a distinction between two different ways in which the speed of a perceptual deci-

sion could be increased: by increasing the rate at which relevant sensory evidence accumulates

or by decreasing the amount of evidence required to make a decision (through a shift of the

starting point). TVA does not make any equivalent distinction.

Another framework for understanding inter-trial effects in visual search is offered by the

episodic-retrieval account [14,58]–though the evidence for this account derives exclusively

from compound-search tasks not investigated here. Huang et al. [4] argued that repetition

effects in visual search are well explained by episodic-retrieval theory, based on the finding

that repetition of a task-irrelevant feature (in their experiments: color) speeded search only

when the target-defining feature (size) was also repeated (participants had to respond to the

orientation of a size-defined target, irrespective of the target color). When the target-defining

feature changed, RTs were slower if the task-irrelevant feature was repeated. The episodic-

retrieval account can explain this pattern by assuming that participants retrieve an episodic

memory trace of the target from the previous trial, which influences a post-selective process

of verifying whether a candidate target is the actual target. If the retrieved memory trace

completely matches the target on the current trial, the decision will be fast; by contrast, a par-

tial match (i.e., a target of the same size but a different color) gives rise to ‘inconsistency’ and

may thus be slower to process than a complete mismatch, explaining the interaction between

repetition of target-defining and task-irrelevant features in the study of Huang et al. [4]. A sim-

ilar result was reported by Töllner et al. [46], though for two task-relevant target attributes.

They observed a partial-repetition cost when the response-defining feature (target orientation)

changed across trials while the target-defining dimension (color or shape) was repeated. How-

ever, the latency of the N2pc was affected only by repetition/switch of the target-defining

dimension, independently of whether the response-defining feature repeated/changed–leading

Töllner et al. to conclude that at least one critical component of the target repetition/switch

effect arises at a (pre-attentive) stage of saliency coding, leading up to target selection. The par-

tial-repetition effect, by contrast, arises at a post-selective stage where the response-defining

target feature is analyzed and a response decision is determined. This process is modulated by

‘linked expectancies’ between the dimension and the response: when the dimension is

repeated, the system expects the response to be repeated as well, yielding a cost when the

response actually changes.–Our best-fitting model, while predicting a RT cost when the

dimension or the response changes (compared to when both are repeated), does not predict a

larger cost when either one or the other changes, compared to when both change (instead, the

dimension and response change costs would be additive). To account for such partial-repeti-

tion cost effects, further modeling work is required based on RT performance in simple-detec-

tion and compound-search tasks that make the same demands with regard to target selection,

but different demands with regard to response selection (i.e., simple detection of a target-defin-

ing attribute vs. discrimination of a separate, response-defining feature), as well as RT perfor-

mance in a non-search task that makes no demands on target selection, but similar demands to

compound search on response selection (along the lines of [12]). RTs could then be modeled,

for instance, as a series of two diffusion processes (one for target selection and one for response

selection), where parameters of the second process (r,θ, or S0) might be set conditional upon
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repetition/switch of the target-defining attribute. Such a model might then also be able to

account for partial-repetition costs attributable to completely (detection- and response-) irrele-

vant target attributes [4], over and above those caused by relevant features [46], perhaps by

making updating based on irrelevant features conditional on relevant features [52].

In conclusion, we found that RTs in pop-out visual search are faster when the response

required on a given trial occurred frequently in the recent past, and particularly when the

same response is repeated from the previous trial. By performing a factorial model compari-

son, we showed that these effects are best explained by updating of the starting point of an evi-

dence accumulation process, that is, they reflect a bias towards a response that is more likely to

occur, given the recent history. We also found that reaction times are faster when the target-

defining dimension is repeated, even when this is unrelated to the response. Our model com-

parison showed that this effect is best explained by trial-to-trial updating of the evidence accu-

mulation rate. This suggests that dimension repetition/switch effects do not reflect a response

bias, but rather reflect more efficient processing when the same dimension is repeated.

Methods

Ethics statement

All participants gave informed consent prior to the experiment. The study was approved by

the LMU Department of Psychology Ethics Committee and conformed to the Helsinki Decla-

ration and Guidelines.

Experiment 1

Participants. Twelve subjects participated in Experiment 1 (eight females; age range 20

and 33 years). All had normal or corrected-to-normal vision and naive to the purpose of the

experiment.

Apparatus and stimuli. Stimuli were presented on a CRT monitor (screen resolution of

1600 x 1200 pixels; refresh rate 85 Hz; display area of 39x29 cm). Participants were seated at a

viewing distance of about 60 cm from the monitor. All stimuli were presented using Matlab

(The Mathworks) and Psychtoolbox [59,60].

Each stimulus display consisted of 39 bars, arranged around three concentric circles (see

Fig 13). The distractors were turquoise-colored vertical bars (CIE [Yxy]: 44.9, .0.23, 0.34).

When a target was present, it was always on the middle circle. Targets were bars that differed

from the the distractors in terms of either color or orientation, but never both. Color targets

were either green (CIE [Yxy]: 45.8, 0.29, 0.57) or purple (CIE [Yxy]: 41.5, 0.29, 0.24), while ori-

entation targets were tilted 30� clockwise or counterclockwise from the vertical. The search

display subtended approximately 7.5� x 7.5� of visual angle and each individual bar had a size

of approximately 0.5� x 0.1�.

Procedure. The experiment consisted of 30 blocks of 40 trials, divided into three equally

long sections with different proportions of target-present (and, correspondingly, target-absent)

trials: 75% [target-absent: 25%], 50% [50%], and 25% [75%]. A text message informed partici-

pants about the current proportion of target-present trials at the start of each block. Alternating

trial blocks presented exclusively color targets or orientation targets, on target-present trials.

The task was to report as quickly and accurately as possible whether a target was present or

absent, using the left and right mouse buttons, respectively. Each trial started with the presenta-

tion of a fixation dot for 700–900 ms followed by the stimulus display, which was displayed

until the participant responded. After the response, there was another 400–600 ms delay before

the next trial started with the presentation of the fixation dot, so the total interval from response

on one trial to presentation of the search display on the next trial was 1100–1500 ms.
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Experiment 2

Participants. Twelve new participants took part in Experiment 2 (six females; age range

18 and 33 years). All had normal or corrected-to-normal vision and were naive as to the pur-

pose of the experiment.

Apparatus and stimuli. The same equipment and stimuli were used as in Experiment 1.

Procedure. The procedure was the same to Experiment 1, except that instead of report-

ing whether a target was present or absent, participants had to report whether the target dif-

fered from distractors in terms of color or orientation. As in Experiment 1 there were three

sections, each consisting of 10 blocks of 40 trials. Unlike in Experiment 1, a target was pres-

ent on every trial and it was the proportion of color (or, respectively, orientation) targets

that differed between the three sections, using the same ratios of 75% [orientation: 25%],

50% [50%], and 25% [75%]. Also unlike in Experiment 1, participants were not informed in

advance of what that the proportion of color trials would be in any section of the experi-

ment, nor were they informed that this proportion would differ across the different sections

of the experiment.

Experiment 3

Participants. 12 participants took part in Experiment 3 (six females; age range 23 and 33

years). All had normal or corrected-to-normal vision and were naive as to the purpose of the

experiment.

Apparatus and stimuli. The same equipment and stimuli were used as in Experiment 1.

Fig 13. Example of visual search display with an orientation target.

https://doi.org/10.1371/journal.pcbi.1006328.g013
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Procedure. As in Experiment 1, participants had to report on each trial whether a target

was present or absent. However, the procedure differed from Experiment 1 in two important

ways. First, in Experiment 3, the target-present/absent ratio was fixed at 50% throughout the

whole experiment. Second, color targets and orientation targets were interleaved within each

block. We used a De Bruijn sequence generator [61,62] to obtain a trial sequence where each

of the four possible target types (i.e., purple, green, left-tilted, and right-tilted) were equally

often followed by each target type (including itself) and were also equally often followed by a

target-absent trial as by a target-present trial. Having such a trial sequence within each block

requires 65 trials per block instead of 40 as in Experiments 1 and 2.

Bayes factors

Bayesian ANOVA and associated post-hoc tests were performed using JASP 0.86 (http://www.

jasp-stats.org) with default settings. All Bayes factors for main effects and interactions in the

ANOVA are ‘inclusion’ Bayes factors calculated across matched models. Inclusion Bayes fac-

tors compare models with a particular predictor to models that exclude that predictor. That is,

they indicate the amount of change from prior inclusion odds (i.e., the ratio between the total

prior probability for models including a predictor and the prior probability for models that do

not include it) to posterior inclusion odds. We used inclusion Bayes factors calculated across

matched models meaning that models that contain higher order interactions involving the pre-

dictor of interest were excluded from the set of models on which the total prior and posterior

odds were based. Inclusion Bayes factors provide a measure of the extent to which the data

support inclusion of a factor in the model. Bayesian t-tests were performed using the ttestBF

function of the R package ‘BayesFactor’ with the default setting (rscale =“medium”).

Modelling

To find the model that best explained our data, we performed a factorial model comparison.

Full descriptions of the four factors and their levels are given in the modelling section. Here we

describe the general procedure used for the model fitting, which was the same for all models.

Each model consisted of an evidence accumulation model: either the LATER model or the

DDM, and two updating rules, each of which specified how one aspect of stimulus history

should affect the trial to trial change of a parameter of the evidence accumulation model.

There was one such updating rule for the response defining feature and one for the target

defining dimension, and in each case one of the factor levels specified that no updating at all

should take place. For the DDM, we used a closed-form approximation [48], adding a scaling

parameter that determined the size of the random component of the drift diffusion model.

This was necessary since our rule for updating the starting point made the scale non-arbitrary.

Models were fitted using maximum likelihood, using the R function ‘constrOptim’ to find

minimum value of the negative log likelihood. Error trials and outliers were excluded from the

calculation of the likelihood, but were included when implementing the updating rules. Outli-

ers were defined as trials with reaction times more than 1.5 interquartile ranges below the

mean or longer than 2 seconds.

To make sure we found the best possible fit for each combination of factor levels, we used

an inner and an outer optimization process. The inner optimization process was run for each

combination of parameters that was tested by the outer optimization process, to find the best

possible values of the inner parameters for those values of the outer parameters. The inner

parameters were the parameters of the evidence accumulation model itself, except for the non-

decision time which was an outer parameter (because one level of one of the factors specified

that the non-decision time should be fixed to zero). For the LATER model, the inner
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parameters were the starting point boundary separation, and the mean and standard deviation

of the distribution for the rate. For the DDM, the inner parameters were the starting point

boundary separation, the rate, and the scaling parameter. These parameters could differ

between target absent trials, as well as between the two different target dimensions, meaning

that there were nine inner parameters for Experiments 1 and 3 and six for Experiment 2

(where there were no target absent trials). The outer parameters were the non-decision time

(when this wasn’t fixed to zero), and 0 to 2 parameters for each updating rule (see the model-

ling section for details). This means that models could have 0 to 5 outer parameters in total

depending on the factor levels.
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