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Introduction

The sinoatrial node (SAN) automaticity is essential for maintain-
ing normal cardiac function. Sick sinus syndrome is an abnormality 
involving the generation of the action potential by the SAN and is 
characterized by an atrial rate inappropriate for physiological re-
quirements. The sick sinus syndrome occurs in 1 of every 600 car-
diac patients older than 65 years and accounts for approximately 

half of implantations of pacemakers in the United States.1) A better 
understanding of the mechanisms of SAN automaticity and sick 
sinus syndrome is therefore clinically important. The SAN automa-
ticity is maintained by synergistic actions of a “voltage clock” me-
diated by voltage-sensitive membrane ionic currents such as the 
hyperpolarization-activated pacemaker current (If)

2) and a “Ca2+ 
clock” mediated by rhythmic spontaneous sarcoplasmic reticulum 
Ca2+ release.3) While extensive work has been performed to docu-
ment the interactions of voltage and Ca2+ clocks of the SAN in ani-
mal models, translating these findings to human patient care is 
difficult. Our review will focus on the translational studies of hu-
man SAN function.

Pacemaker Hierarchy and the Importance of Ca2+ 
Clock in an Intact Sinoatrial Node

Cardiac automaticity at the organ level is very complex. In addi-
tion to cellular mechanisms, integrative anatomical and physiolog-
ical factors are involved in cardiac pacemaking. The intact SAN is a 
heterogeneous structure that includes multiple different cell types 
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interacting with each other.4-6) The Ca2+ clock in the superior SAN is 
primarily responsible for rate acceleration during sympathetic 
stimulation.7-11) However, the relative importance of the voltage 
and Ca2+ clocks for pacemaking in different regions of the SAN, 
and in response to neurohumeral stimuli such as β-agonists, may 
be different. Indeed, activation maps in intact canine right atrium 
(RA) have shown that the SAN impulse origin is multicentric,12 and 
sympathetic stimulation predictably results in a cranial (superior) 
shift of the pacemaking site in human and dogs.13)14) Based on evi-
dence from isolated SAN myocytes, late diastolic Cai elevation rela-
tive to the action potential upstroke is a key signature of pacemak-
ing by the Ca2+ clock.15-20) The same phenomenon could provide 
insights into the relative importance of the Ca2+ and voltage clock 
mechanisms in pacemaking in intact RA tissue,7) subsidiary pace-
makers21)22) or diseased state.23)24)

Mapping of Earliest Atrial Activation Site in Humans

Schuessler et al.14) reported in a canine model that sympathetic 

stimulation in general tends to induce a cranial shift in the loca-
tion of the pacemaker within the pacemaker complex. With the 
development of 3 dimensional (3D) endocardial electroanatomical 
mapping techniques, it is possible to define the activation patterns 
within the human atria to accurately locate the earliest atrial acti-
vation site (EAS).25) If the findings in canine models are applicable to 
humans, then the superior SAN should vigorously respond to sym-
pathetic stimulation and serve as the dominant pacemaker during 
sympathetic stimulation. Indeed, EAS of control human subjects 
shifted cranially during isoproterenol infusion (Fig. 1A).26) These find-
ings indicate that in both canine models and humans, the superior 
SAN is primarily responsible for heart rate acceleration during sym-
pathetic stimulation in patients with normal SAN function. 

Sinoatrial Node Function in Patients with Atrial 
Fibrillation and Symptomatic Bradycardia

Atrial fibrillation (AF) is associated with significant electrophysio-
logical and structural remodeling of the atria, and is often associated 

Fig. 1. Effects of isoproterenol infusion on EAS. A: cranial shift of the EAS in a healthy control patient. The EAS at baseline (a) was in the superior one-third 
of crista terminalis (CT). The EAS during isoproterenol infusion (b) was at the junction between the SVC and the RA. B: impaired cranial shift of the EAS in an 
AF patient with symptomatic bradycardia. The EAS at baseline (a) was ectopic (at the RA free wall). The EAS during isoproterenol infusion (b) was located at the 
mid one-third of CT. The superior SAN in this patient was inactive with or without isoproterenol. The dashed line in each panel marks the CT. EAS: earliest atrial 
activation site, SVC: superior vena cava, RA: right atrial, AF: atrial fibrillation, SAN: sinoatrial node. Modified with permission from Joung et al.26)
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with sick sinus syndrome.27)28) The SAN dysfunction may be revers-
ible after successful catheter ablation of AF.29) In dogs, persistent 
(>2 weeks) rapid atrial pacing and chronic AF resulted in SAN dys-
function, as evidenced by prolongation of the SAN recovery time 
and decreases in the intrinsic heart rates.30) Unresponsiveness of 
the Ca2+ clock in the superior SAN to sympathetic stimulation is a 
characteristic finding in dogs with AF and heart failure.31)32) Consis-
tent with that found in a canine model,31) the patient with AF with 
SAN dysfunction had impaired heart rate acceleration and absence 
of upward shift of the EAS during isoproterenol stimulation (Fig. 
1B). These findings suggest that Ca2+ clock malfunction underlies 
these abnormal physiological responses to isoproterenol infusion. 

The Cranial Shift of the Earliest Atrial Activation 
Site and Sinoatrial Node-Right Atrium Propagation 

Previous studies have shown that the impulse from the SAN 
propagates into RA through an upper and a lower exit site.33) It is 
possible that isoproterenol preferentially shifts the exit site to 
the upper portion of the SAN instead of the activation of the su-
perior SAN by the activation of Ca2+ clock. Because the extracel-
lular electrograms cannot be used to differentiate SAN activation 
and RA activation, the shifting of SAN exit sites and the shifting 
of the actual pacemaking sites may look the same on the 3D 
map. The data from our human 3D mapping study cannot be 

used to differentiate these two mechanisms.26) However, we found 
that isoproterenol infusion reactivates the pacemaker in the supe-
rior SAN in several patients with extensive RA fibrosis and junc-
tional rhythm at baseline (Fig. 2). In these patients, changing the 
sinoatrial node-right atrium exit pathway is clearly not a mecha-
nism of upward shift of the EAS. Moreover, in other patients with 
upward shifting of EAS during isoproterenol infusion, the conduc-
tion between SAN to RA occurred at multiple directions, without 
evidence of conduction delay along the crista terminalis or the 
septum. Based on these findings and the mapping of the Ca2+ 
clock activity in the canine models, we propose that the pacemaker 
hierarchy is likely to be created by differential responses of Ca2+ 
clock to sympathetic tone at different portions of the SAN rather 
than changing the exit from a fixed pacemaking site.

Sinoatrial Node Dysfunction and Amiodarone 

As the elderly population continues to expand, AF is becoming 
an increasingly common medical condition.34-37) Amiodarone is the 
most frequently used agent for maintaining sinus rhythm in pa-
tients with AF. Amiodarone impairs SAN function in one-third of 

1s

Fig. 2. The different leading pacemaker sites during heart rate acceleration. 
A 50-year- old women had long-standing persistent AF and SAN dysfunc-
tion. A: (a) Junctional rhythm of 40 bpm after termination of AF. (b) Sinus 
P-wave appeared and sinus rate increased to 110 bpm during isoproterenol 
infusion of 10 μg/min. B: (a) RA activation map. The superior crista termi-
nalis was recovered as the EAS (arrow) during isoproterenol infusion. (b) RA 
voltage map. The middle and lower part of RA and crista terminalis is a low 
voltage area with gray color (<0.5 mV).  AF: atrial fibrillation, SAN: sinoatri-
al node, RA: right atrial, EAS: earliest atrial activation site. Modified with 
permission from Joung et al.26)
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Fig. 3. Inferior shift of EAS during isoproterenol infusion in a patient tak-
ing amiodarone. A: RA activation map at baseline (left panel) and during 
isoproterenol infusion (right panel). EAS was shifted to the lower part of 
crista terminalis (arrow) during isoproterenol infusion. B: EKG at baseline 
(left panel) and during isoproterenol infusion (right panel). Note the de-
creased amplitude of P-waves in leads II, III, and aVF after inferior shift of 
EAS during isoproterenol infusion (arrows). EAS: earliest atrial activation 
site, RA: right atrial. Modified with permission from Mun et al.39)
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patients and is associated with an increased risk of pacemaker in-
sertion.38) Our study also showed that amiodarone induced SAN 
dysfunction in one-fourth of patients without SAN dysfunction at 
baseline.39) Amiodarone caused impaired heart rate acceleration 
and impaired cranial shift of EAS after sympathetic stimulation 
(Fig. 3).39) Therefore, Ca2+ clock malfunction of the superior SAN 
might be related with impaired heart rate acceleration and cranial 
shift of the pacemaking site. Amiodarone inhibits multiple ion 
channels (Ito, IKr, IKs, ICa, INa) and is a beta adrenergic blocker.40) Be-
cause amiodarone is a  potent blocker of Ica,

40) it may suppress the  
Ca2+ clock in the SAN.41) In addition, amiodarone can inhibit the 
sympathetic activity. A downward shift of the EAS has been re-
ported in human patients after esmolol infusion.25) Therefore, the 
beta blocking effects of amiodarone may also influence the loca-
tion of the EAS. Amiodarone may induce hypothyroidism, and this 
effect may, in part, decrease SAN function.38) Finally, Turker et al.42) 
recently showed that amiodarone inhibits the small-conductance 
calcium- activated K (SK) channel. Because the SK channel is im-
portant in SAN and atrioventricular node  function,43)44) SK channel 
inhibition may affect SAN automaticity.

Unicentric versus Multicentric Activation

Sanders et al.45) previously reported that multicentric activation 
is found both in normal control and heart failure. However, the 
EASs are more numerous in normal control (average 4 sites) than 
in heart failure (average 2.5 sites). They also reported that the SAN 
complex in patients with SAN dysfunction is more often unicen-
tric, localized to the lower crista terminalis at the site of the largest 
residual voltage amplitude.45) We also found that most healthy 
control patients had multicentric SAN activation pattern (Fig. 1A), 
and that the number of EAS in AF patients is smaller than that in 
healthy controls (Fig. 1B). A reduction of the EAS suggests that 
there are fewer backup pacemaking sites to respond to sympa-
thetic stimulation, which could be a sign of SAN dysfunction. 

P-Wave Morphology and the Earliest Atrial  
Activation Site

The P-wave morphology has been used to identify the origins of 
focal atrial tachycardias with a high sensitivity and specificity.46)47) 
Fig. 4 shows that compared with sinus rhythm (arrows), atrial 
tachycardia originating from the inferior part of crista terminalis 
had smaller amplitude of P-wave in leads II, III, and aVF (broken 
arrows). We found that the distances from the superior vena cava-
right atrial junction to the EAS were negatively correlated with the 
amplitude of P-wave in inferior leads. If the EAS was shifted to the 

superior part of crista terminalis or superior vena cava, the P-wave 
amplitudes were increased in most of the patients without SAN 
dysfunction.39)  In contrast, the shift of the EAS to the inferior part 
of crista terminalis or inferior vena cava was related with de-
creased P-wave amplitude in inferior leads in patients with SAN 
dysfunction (Fig. 5A). These findings suggest that the change of P-
wave morphology in inferior leads during isoproterenol infusion 
can be used to assess the superior SAN responsiveness to isopro-
terenol infusion. Patients with SAN dysfunction showed low am-
plitude of P-waves at baseline and during sympathetic stimulation 
(Fig. 5B). 

Comparative Efficacy of Testing for Symptomatic 
Bradycardia

We analyzed the comparative efficacy of corrected sinoatrial 
node recovery time (CSNRT) and 3D mapping in differentiating AF 
patients with and without sinus bradycardia. CSNRT>550 ms is 
considered a positive CSNRT test. The failure of superior SAN to 
serve as EAS during isoproterenol infusion is considered a positive 
3D mapping test (Fig. 6).  The sensitivity, specificity, positive pred-
icative efficacy, and negative predicative efficacy of the CSNRT test 
are 35%, 89%, 45% and 84%, respectively (Fig. 6A), and of the 3D 
mapping test are 78%, 78%, 47% and 93%, respectively (Fig. 6B). 
The 3D mapping test was twice as sensitive but slightly less specif-
ic than the CSNRT test in detecting AF patients with sinus brady-
cardia. However, both tests have limitations as they are invasive 

Fig. 4. Atrial tachycardia originating from lower crista terminalis. A: RA 
activation map showing sinus beat (a) and atrial tachycardia (b) from supe-
rior and inferior crista terminalis, respectively. B: EKG showing sinus beat (a) 
and atrial tachycardia (b). Atrial tachycardia originating from lower crista 
terminalis had decreased amplitude of P-waves in leads II, III, and aVF. RA: 
right atrium, CT: crista terminalis.
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and time consuming tests. 
Recently, we analyzed the poor increase in inferior P-wave am-

plitude during sympathetic stimulation for the diagnosis of sick si-
nus syndrome. The poor increases of P-wave amplitude of lead aVF 
(<0.1 mV) during isoproterenol infusion showed a sensitivity of 
78% and specificity of 89% for the diagnosis of sick sinus syn-
drome. Finally, the combined algorithm using CSNRT of >550 ms 
and poor increases of P-wave amplitude of lead aVF showed fur-
ther improved diagnostic accuracy (sensitivity of 89% and speci-
ficity of 76%).

Recent Basic Researches on Sinoatrial Node 
Automaticity

Calmodulin-dependent protein kinase II (CaMKII) has emerged as 
a central regulator of physiological SAN responses and a key deter-
minant of SAN dysfunction.48) The calcium and CaMKII is especially 
important for physiological “fight or flight” SAN beating rate re-
sponses.49) Inhibition of CaMKII in SAN does not affect baseline 

heart rate, but reduces heart rate increases in response to physio-
logical stress. Excessive CaMKII activity, as occurs under pathologi-
cal conditions such as heart failure, ischemia, and diabetes, can 
promote intracellular Ca2+ overload and reactive oxygen species 
production. Nicotinamide adenine dinucleotide phosphate oxidase 
is activated in conditions with increased angiotensin II, leading to 
oxidation of two methionine residues of CaMKII, rendering the en-
zyme autonomously active. Increased CaMKII activation leads to 
SAN cell death, reducing the threshold volume of automatic cells 
of the SAN and increasing non-excitable tissue in the form of fi-
brosis. CaMKII-induced apoptosis results in SAN cell loss, which 
disrupts the normal source-sink balance leading to sinoatrial node 
dysfunction.50)51) In a canine heart failure model, increased expres-
sion of adenosine receptors within the SAN region together with 
increased fibrosis have been reported to be related with the loss of 
synchrony and sinoatrial node dysfunction.52) A source-sink mis-
match caused by cell loss has been observed in a mouse model of 
diabetes and in ankyrin-B syndrome.53)54)

Fig. 5. The P-wave changes induced by sympathetic stimulation. A: the negative correlation between the distance from the SVC-RA junction to the most 
cranial EAS and P-wave amplitude in leads II (left panel), III (middle panel), and aVF (right panel). Unfilled and filled circles represent P-wave amplitude at 
baseline and during isoproterenol infusion, respectively. Black and red circles represent the patients without and with sick sinus syndrome (SSS), respec-
tively. B: the change of P-wave amplitude in leads II (left panel), III (middle panel), and aVF (right panel) during isoproterenol infusion. Note that the pa-
tients with SSS tend to have low P-wave amplitude and low EAS location both at baseline and during isoproterenol infusion. SVC-RA: superior vena cava-
right atria, EAS: earliest atrial activation site, aVF: , ISO: isoproterenol. Modified with permission from Mun et al.39)

Le
ad

 II
 (m

V)
Le

ad
 II

 (m
V)

Le
ad

 II
I (

m
V)

Le
ad

 a
VF

 (m
V)

Le
ad

 II
I (

m
V)

Le
ad

 a
VF

 (m
V)

0.3

0.2

0.1

0.0

-0.1

0.3

0.2

0.1

0.0

-0.1

0.3

0.2

0.1

0.0

-0.1

0.3

0.2

0.1

0.0

0.4

0.3

0.2

0.1

0.0

-0.1

0.3

0.2

0.1

0.0

-0.1

-20          0         20         40        60         80

             Baseline                      ISO              Baseline                     ISO              Baseline                      ISO

-20          0         20        40        60         80 -20          0         20         40        60         80

r=-0.47 
p<0.001

r=-0.60 
p<0.001 r=-0.56 

p<0.001

AF only
SSS

AF only

SSS

Distance from SVC-RA junction to the EAS (mm)A  

B  



189Boyoung Joung, et al.

http://dx.doi.org/10.4070/kcj.2015.45.3.184www.e-kcj.org

Conclusion

The voltage and Ca2+ clocks jointly regulate SAN automaticity. In 
various models of sick sinus syndrome, the dysfunction of superior 
SAN during sympathetic stimulation was consistently observed. In 
human 3D mapping, superior SAN was identified as the leading 
pacemaker site during sympathetic stimulation. However, unre-
sponsiveness of superior SAN to sympathetic stimulation was 
commonly observed in patients with sinus dysfunction. 3D map-
ping, which showed unresponsiveness of the superior SAN or infe-
rior P-wave amplitude, was more sensitive than classic CSNRT in 
identifying patients with sinus dysfunction. These novel tools ob-
tained from basic research might help to diagnose sick sinus syn-
drome
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