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Abstract: A change in microglia structure, signaling, or function is commonly associated with neurode-
generation. This is evident in the patient population, animal models, and targeted in vitro assays. While
there is a clear association, it is not evident that microglia serve as an initiator of neurodegeneration.
Rather, the dynamics imply a close interaction between the various cell types and structures in the
brain that orchestrate the injury and repair responses. Communication between microglia and neurons
contributes to the physiological phenotype of microglia maintaining cells in a surveillance state and
allows the cells to respond to events occurring in their environment. Interactions between microglia and
astrocytes is not as well characterized, nor are interactions with other members of the neurovascular unit;
however, given the influence of systemic factors on neuroinflammation and disease progression, such
interactions likely represent significant contributes to any neurodegenerative process. In addition, they
offer multiple target sites/processes by which environmental exposures could contribute to neurode-
generative disease. Thus, microglia at least play a role as a significant other with an equal partnership;
however, claiming a role as an initiator of neurodegeneration remains somewhat controversial.
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1. Introduction

The increasing evidence in support of the importance of the immune system in neuro-
logical disorders and degenerative processes has often led to the speculation that inflam-
matory factors and the associated neural cells play a role in the disease initiation process.
While there is strong evidence for an association between the two, assigning a cause and
effect is much more difficult and questionable. The majority of studies showing a beneficial
effect of downregulating the neuroimmune response address roles of a contributory nature
rather than an initiation process. In many of the associated disorders and degenerations,
multiple confounding factors come into play that may bias those efforts to assign a role
as an initiation factor. Major factors include the correlation between neurodegenerative
diseases and increased age of the patient; subtle damage to the cerebrovascular system
and decreased function of the blood brain barrier, (BBB) allowing for entry of blood-borne
immune cells; and systemic changes that can influence disease processes, such as changes
in the microbiome, systemic inflammatory responses, and hormonal levels. Within such
complex disease processes, it is difficult to identify the initiating factor. In fact, there is
limited understanding of the underlying “cause” of many of these more common diseases.

Identification of various cellular and structural features of the nervous system as
contributors to neuroimmune responses has served to expand and enhance our appreci-
ation, and maybe understanding, of the complexity of the responses that contribute to
neurological and neurodegenerative-related disorders. As the primary central nervous
system (CNS) immune cell, microglia perform critical functions in maintaining a healthy
environment and respond to changes that occur in neurodegenerative diseases and neural
injury [1,2]. While the presence of reactive and activated microglia has been observed in
numerous animal models of human neurodegenerative disease as well as in patients, the
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overall evidence suggests that, in the context of a pathogen-free environment, a relatively
benign innate immune response is evoked. However, how, and if, this environment can
be altered or stressed in a manner to change this balance remains a critical question. With
regards to the question of a role for neuroinflammation in the initiation of neurotoxicity,
whether as a biological process or in response to an environmental or pharmacological
factor, determining the actual contributory nature is of importance for regulating the
progression of the disease process.

2. Microglia Morphology

Microglia are morphologically heterogeneous cells which comprise approximately
20% of the total cells in the brain. Under normal conditions, microglia assume a neural
specific phenotype due to the CNS environment and retain a surveillance phenotype with
fine processes extending into the surrounding microenvironment. This allows the cells
to maintain constant surveillance of the brain parenchyma for tissue changes, serving as
a biosensor and a bioeffector [3]. When microglia sense a change in their surrounding
environment, they can rapidly change their morphology by increasing soma size and
retracting their normal elongated fine processes to shorter, coarser cytoplasmic processes
displaying a bushy appearance. This was thought to continue to progress to a fully amoe-
boid morphology depending on the nature and severity of the signal and the biological
process required [4,5]. This initial concept of a stereotypic response with limited response
variability has been replaced by data showing that microglia respond with a variety of dif-
ferent morphological changes by integrating multifarious inputs [2,4–6]. Microglia actions
may or may not require major morphological transitions, but rather more subtle changes
in microglia morphology may reflect significant functional alterations. It is likely that the
variety in morphologies reflects different functional changes of the cells or a difference in
the nature of the initiation signal. With removal of the stimulating factor, microglia can
then downregulate and return to the more ramified surveillant phenotype. The question
remains however, as to whether this downregulated cell is representative of the “normal”
cells, or whether the cell has been altered in some manner that may manifest in subsequent
activation scenarios.

3. Cell Polarization

In general, macrophage responses are characterized based on the activating stimulus
and the resulting production of factors [7]. A conceptual framework put forth for such
activation identifies two polar extremes of signals: classical (M1) or alternative (M2) [8].
While this dichotomy has been found to be limited, as a working hypothesis this concept
has been applied in an attempt to characterize microglial responses [9]. Lipopolysaccharide
(LPS) and interferon gamma (IFNγ) are classic inducers of M1 activation [10]. LPS is recog-
nized by toll-like receptor (TLR) 4, upon which activation induces myeloid differentiation
primary response gene 88 (MyD88) and MaL/Tirap (Toll-interleukin (IL) 1 receptor domain
containing adaptor protein)-dependent pathways for the expression of pro-inflammatory
cytokines. IFNγ signals through IFNγ receptors (IFNγR1 and IFNγR2) for gene expression
of cytokine receptors (IL-15R, IL-2RA, and IL-6R) and cell activation factors (CD36, CD38,
CD69, and CD97). There are similarities between the gene expression profiles after IFNγ

and LPS stimulation, yet they are not considered homologous [11]. Gene expression pro-
files following stimulation with a combination of the cytokines or various other stimuli
are different from LPS or IFNγ profiles alone, generating a vast spectrum rather than a
polarized dichotomy of responses [10]. Thus, the final production of factors depends highly
on the activating stimulus and the surrounding environment.

In the early 1990s, the concept of alternative activation was developed largely based
on work showing a role for IL-4 in the induction of an alternative (M2) activation state in
peripheral macrophages [12]. Under this state, expression of anti-inflammatory cytokines
(IL-4, IL-10, IL-13)—transforming growth factor beta (Tgfβ), arginase-1 (Arg-1), CD206, and
Chitinase-3-like-3 (Ym-1 in rodents)—was induced [6,13]. Upon further study, subclasses
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of M2 activation have been identified as dependent upon the inducting stimuli. The M2a
activation state is induced by parasitic products or associated signals (IL-4 and IL-13),
providing a longer-term function for resolution and repair [14–17]. In this case, signaling
occurs through IL-4 receptor alpha (IL-4Rα), leading to inhibition of NF-κB signaling
induced by M1 activation. M2b polarization is observed with triggering of Fc gamma
receptors, TLRs, and immune complexes [18]. M2c polarization occurs in response to
specific anti-inflammatory factors such as IL-10, TGFβ, and glucocorticoids [14,18,19].
In addition, cells do not appear to be committed to one phenotype, but rather can shift
from M2b phenotype to a mixture of M1 and M2a/b [20]. M2 polarization of microglia
is similar to peripheral macrophages [21–24], displaying different mRNA profiles for
IL-4 and IL-10 stimulation, including Arg1; mannose receptor 1 (Mrc1); Ym-1, found in
inflammatory zone 1 (Fizz1); and peroxisome proliferator-activated receptor (Ppar) [25].
The distinct polarization specificity of such markers remains in question. For example,
Arg1 is also induced in M1 macrophages [26]. In addition, induction of Arg1 could be
related to neurotoxicity based on arginine deprivation [27]. While these associations have
been demonstrated in vitro, a number of the M2 related products can be induced In vivo
by sterile wounds in the absence of IL-4 or IL-13 [28], suggesting an alternative stimulus.
In vivo, a concurrent expression of M1 and M2 factors has been identified [27]. However, it
is not yet clear whether the mixed expression pattern can occur within individual cells, or
rather if the region of interest is comprised of cells showing different profiles.

From work assessing transcriptional regulation during human macrophage activa-
tion, an extended version of the M1 versus M2 polarization model was proposed that
contained nine distinct activation programs [29]. As expected, a distinct axis of response
was demonstrated upon stimulation with IFNγ or IL-4, or with stimulation with LPS and
IL-13 polarization. A spectrum of signatures was identified with stimuli not directly linked
to M1 or M2 polarization, such as free fatty acids, high-density lipoprotein, or combinations
associated with chronic inflammation.

4. Microglia Signaling Processes

The various functions of microglia are primarily accomplished through processes
that involve cell signaling, phagocytic activities, cell-cell contact relationships, and se-
cretion of various factors; while there are suggestions of unique differences, the general
cellular processes are similar across the various regions of the CNS. As part of the innate
immune system of the brain, microglia express a limited number of receptors or sensors
on which multiple signals converge and upon which many effects manifest. Exogenous
and endogenous signals with the capacity to mediate innate immune cell responses are
comprised of the pathogen-associated “non-self” signals [30] and the “altered-self” dan-
ger associated signals [31]. These disparate signals may result in cell responses through
common modes of action with specific receptor activation. Several highly enriched genes
classified as “sensome” genes have been identified in microglia, which allows the cells
to sense and interact with their local environment [32]. These sensome genes include
those for putative purinergic receptors, P2ry12 and P2ry13; transmembrane protein 119
(Tmem119); G-protein coupled receptor 34 (Gpr34); the 1-type lectin receptor, sialic acid-
binding immunogloubulin-type lectin H (Siglec-h); triggering receptors expressed on
myeloid cells 2 (TREM2); and the fractalkine receptor, Cx3cr1. In comparison, peripheral
macrophages have been shown to express a significantly lower number of these “sensome”
genes, suggesting a less complex response network outside of the CNS [32].

4.1. Neuronal-Microglia Axis

Microglia participate in a dynamic bi-directional communication with other neural
cells. The predominant data available consider the communication between microglia
and neurons. However, communications with astrocytes, oligodendrocytes, and pericytes
are also likely contributors. The communication with neurons is considered to modulate
and regulate microglia phenotypes via factors such a chemokines, neurotransmitters, and
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purinergic signaling. Microglia impact neuronal communication by actively monitoring
neuronal function and sensing synaptic responses [33]. Even normal neuronal processes
can have an effect on microglia. For example, increased neuronal activity can result in an in-
crease in motility and physical contacts of microglia processes with neuronal elements [34].
This tightly regulated process ensures a balance of a surveillance state while maintaining
the ability to react rapidly to a challenge.

Neuronal immunomodulators such as CD200 are thought to maintain microglia in a
homeostatic/surveillance state via CD200 receptor (CD200R) activation; however, this may
also include active processes for regulation with activation of anti-inflammatory signal-
ing [35]. A dysregulation in this ligand and receptor signaling has been reported across
various neurodegenerative diseases [36]. CD200 is a type I membrane glycoprotein present
on neurons and interacts with CD200R, a myeloid cell receptor on microglia [37]. A primary
outcome of CD200/CD200R interaction is the control of many aspects of inflammation and
immune responses [38,39]. The initial studies establishing the regulatory significance of this
ligand/receptor interaction showed elevated neuroinflammation and immunoreactive mi-
croglia in CD200 knockout mice upon insult [37,38]. Work in mice suggested a role for this
interaction to downregulate or silence immune functions of microglia under physiological
conditions. These studies demonstrated a role for this interaction in regulating microglia
activation and inflammatory responses, with CD200-deficient mice showing signs of an
exacerbated response with injury or experimental autoimmune encephalomyelitis [23,37].
Disruption of CD200:CD200R signaling potentiated the pro-inflammatory response of
microglia to immune stimuli [40,41] and exacerbated disease severity and progression
in neuroinflammatory disease models [37,38,42], aging [43], neuropathic pain [44], and
Alzheimer’s disease [45].

CX3CL1-CX3CR1 is a critical signaling pathway for microglia-neuron cross-talk [46,47].
CX3CL1 (also known as fractalkine) is a transmembrane protein that is a member of
the chemokine CX3C class. It occurs in two isoforms: soluble and membrane-bound.
In the CNS, CX3CL1 is primarily expressed in neurons within the amygdala, cerebral
cortex, globus pallidus, hippocampus, striatum, thalamus, and olfactory bulb, with limited
expression in the cerebellum [48]. CX3CR1 is the receptor for CX3CL1. It is expressed
on the surface of monocytes/macrophages, neutrophils, T lymphocytes, natural killer
cells, mast cells, thrombocytes, dendritic cells, and microglia [49–52]. Expression has
been reported on microglia from early development throughout the lifespan [53], with an
involvement in the induction of chemotaxis and cell adhesion. In addition, CX3CL1 is a
factor secreted by medial ganglionic eminence interneurons, and is necessary to promote
cortical oligodendrogenesis [54]. Experimental genetic ablation of CX3CR1 resulted in
increased microglia activation [55], suggesting that the CX3CL1/CX3CR1 signaling axis
keeps microglia in a homeostatic phenotype under physiological conditions. The CX3CL1-
CX3CR1 axis in aged microglia contributes to processes associated with CNS aging and
age-associated neurodegenerative diseases [56].

The neuron-derived factor, CD22, and the microglia transmembrane protein-tyrosine
phosphatase, CD45, are an example of ligand-receptor interaction that serves to suppress
microglia responses. Binding of this receptor inhibits the production of pro-inflammatory
molecules in response to lipopolysaccharide (LPS) [57]. An additional ligand/receptor
interaction that can suppress pro-inflammatory cytokine production is the signal regulatory
protein (SIRPα), which is expressed on myeloid cells, neurons and astrocytes, and CD47,
which is expressed on microglia and neurons [58].

4.2. Pattern Recognition Receptors

The tight regulation of neuroimmune cells, primarily microglia, is accomplished by a
number of signaling pathways, as reviewed by ElAli and Rivest [59]. As the major line of
defense in the brain, microglia express several receptors involved in the control of innate
immune functions. Similar to the process in the periphery, basic host defense mechanisms
in the CNS begin with the recognition of warning signals generated by PAMPs such as
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bacterial, viral, and protozoal products (protein lipid, nucleic acid, and carbohydrate).
Microglia detect ligands for CD40, CD91, and the intracellular NOD-like receptors (NLRs)
that initiate the signaling process by binding to PAMPs. Depending on the stimulus,
inflammatory responses can be initiated by pattern recognition receptors (PRRs). Relevant
PRRs include major receptor families such as TLRs, the receptor for advanced glycation end
products (RAGE), C-type lectin receptors (CLRS), RIG-like receptors, AIM2-like receptors,
and scavenger receptors to detect the aberrant expression of phosphatidylserine on the
extracellular surface of dying cells. The engagement of these receptors and the subsequent
signaling pathway activation serve to tailor the innate response to the activation stimulus.

In a sterile inflammatory response, immune cells are activated in the absence of microbial
compounds. Under these conditions, immune cells detect tissue damage and induce sterile
inflammation upon the binding of endogenous ligands or DAMPs released by stressed or
injured cells [60]. These include nucleic acids, lipids, and proteins that normally are not present
to immune cells until released or unmasked with cell injury or death. Such factors include
RNA released by necrotic cells, released mitochondrial DNA, the nuclear chromatin protein
high mobility group box 1 (HMGB1), heat shock proteins, α-synuclein, silica particles, and
amyloid β peptides derived from the amyloid precursor protein. Intracellular DAMPs include
such factors as HMGB1 and peroxiredoxin (Prx) family proteins. Factors in the extracellular
matrix can also function as DAMPs. As examples, fibrinogen and proteoglycans (hyaluronan,
biglycan, and versican) can activate the TLRs and initiate an inflammatory response [61–63].

4.2.1. Toll-Like Receptors

The toll-like receptor (TLR) family is a major class of PPRs located on the plasma
membrane or in endosomal compartments [64]. Members of this family contribute to the
initiation and tailoring of innate and adaptive immune responses. The different TLRs are
activated by distinct PAMP epitopes to engage specific downstream intracellular signaling
cascades [65]. These specificities range across bacterial DNA CpG motifs (TLR9), gram-
negative lipopolysaccharide (TLR4), gram-positive peptidoglycan (TLR2), viral double-
stranded RNA (TLR3), and fungal zymosan (TLR2).

For the classical TLR signaling events, ligand binding induces a conformational
change in the receptor, allowing for an association with the MyD88 intracellular adapter
protein. Once bound to the receptor, IL-receptor associated kinases (IRAK) 1 and 4 then
associate with MyD88 through the death domain. This leads to phosphorylation of IRAKs,
which then oligomerize with the tumor necrosis factor (TNF) receptor associated with
factor-6 (TRAF-6) for activation and polyubiquitination of the oligomer. Transforming
growth factor β-activated kinase (TAK1) is then employed to activate IκB kinase (Iκκ) to
tag IκB for degradation, allowing for nuclear translocation of NF-κB. This leads to the
production of proinflammatory cytokines and chemokines. While NF-κB activation is well
defined, functions for MyD88 include activation of other transcription factors, such as
IRF1, IRF5, and IRF7 [50]. This is the primary pathway for TLR2 signaling, while TLR3
relies on a toll/IL-1 receptor (TIR)-domain-containing adapter-inducing IFN-β (TRIF)-
dependent signaling pathway [66]. TLR4 utilizes both the MyD88-dependent and the
TRIF-dependent signaling pathways, and is responsible for recognizing the gram-negative
cell wall component, lipopolysaccharide. This potent stimulus for microglial activation is
typified by the robust production of numerous proinflammatory factors. In addition, CD14
interacts with TLR4 to induce maximal responses to lipopolysaccharide.

In the nervous system, a wide spectrum of TLRs is represented on microglia while a
more limited number is expressed on astrocytes. Excellent overviews of TLRs in the CNS
are available [67–71]. In human microglia isolated from autopsy material, expression of
TLR2 and TLR3 mRNA and protein has been detected with only mRNA levels for TLR4 and
not protein [72]. This pattern was evident under naïve conditions and upon stimulation
by receptor specific factors. In this study, human microglia expressed IFN-β and secreted
significant levels of CXCL-10 upon TLR3 and TLR4 activation. Neither were observed with
TLR2 activation; however, a release of TNFα and IL-6 was observed. In addition, signaling
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via each of these TLRs can upregulate TLR2 expression, and signaling through TLR3 and
TLR4 upregulated TLR3 expression, suggesting an activation-induced positive feedback
loop. In contrast, stimulation of TLR2, TLR3, or TLR4 resulted in a downregulation of TLR4.
TLRs have also been identified on astrocytes [73]. Astrocytes isolated from human autopsy
tissue were found to express TLR3 mRNA and protein. TLR2 and TLR4 were observed at
the mRNA level but not as protein [72]. In response to TLR3 signaling, astrocytes released
IL-6, CXCL-10, and increased mRNA levels for IFN-β. The specificity of TLR3 in astrocytes
was also reported by Farina et al. [74] showing elevations with IFN-γ, IL-1β, and IFN-β.
Of additional interest is the earlier report that human neurons express only mRNA for
TLR3 [75] and TLR8 [76]. These findings suggested that the immune responses triggered in
and by microglia and astrocytes were distinct and tailored to the environmental signal.

4.2.2. Receptor for Advanced Glycation End Products (RAGE)

RAGE is a multiligand receptor belonging to the immunoglobulin superfamily that is
involved in numerous cell processes, including neuroinflammation, apoptosis, proliferation,
and autophagy. It is expressed in multiple neural cell types, including neurons, microglia,
astrocytes, and vascular endothelial cells. Activation occurs with production of advanced
glycation end products in pro-oxidant and inflammatory environments. It recognizes other
ligands, including serum amyloid A, S100 protein, and HMGB1. Similar to other immune
receptors, binding of RAGE induces a series of signal transduction cascades, leading to
the activation of NF-kB and pro-inflammatory cytokine release. RAGE contributes to the
clearance of amyloid β and is involved in apolipoprotein E mediated cellular processing
and signaling. Recent work suggests that RAGE is associated with the response to stress
and depressive-like behaviors [77].

4.2.3. NOD-Like Receptors (NLR)

The NLR (nucleotide binding domain, leucine rich repeats-containing) family of
genes and proteins is heavily implicated in regulation of immunity. NOD-like receptors
(NLRs) are soluble cytoplasmic PRRs that act as sensors of cellular damage and effectors of
inflammation. Their function is dependent on the assembly of large (~700 kDa) complexes
termed “inflammasomes”. The largest NLR subfamily, and the one most pertinent for
neuroinflammation, is designated the NACHT domain-, LRR domain-, and pyrin domain-
containing protein (NALP) family or NLRP3 [78]. While multiple inflammasome protein
complexes have been demonstrated, NLRP3 remains somewhat unique in that while it
responds to a broad spectrum of exogenous and endogenous activators, it generally requires
transcriptional cell priming by an activating ligand prior to activation [79,80]. This step
involves an NF-κB-dependent upregulation of cellular NLRP3, pro-IL-1β transcription, and
de novo protein synthesis upon recognition of pro-inflammatory stimuli and TLR activation.
Once primed, NLRP3 activation can be induced by a variety of extracellular, sterile, non-
pathogenic triggers, most of which work through activation of purinergic receptors or
ionic membrane pore alterations. These sterile activators, or “triggers”, include cholesterol
crystals [81] and uric acid crystals [82,83], aggregated proteins and lipids [84,85], silica
and asbestos [86], aluminum salt adjuvant [87], polystyrene nanoparticles [88], and tri-
organotin compounds [89]. In addition to these extracellular signaling factors, the release
of mitochondrial DNA may elicit an inflammasome response [90]. Following stimulation,
NLRP3, the common adaptor apoptosis-associated speck-like protein containing a CARD
(ASC), and an effector, caspase 1, combine to form the inflammasome complex. Within
this complex, pro-caspase-1 is activated, which in turn cleaves and activates the pyrogenic
cytokines, IL-1β and IL-18, by cleavage from the pro-form to the mature form of the
protein [91,92]. This then leads to either a pyroptotic cell death and/or the excretion of
exosomes [93,94], or the oligomeric NLRP3 inflammasome particles [95,96]. These factors
can act on adjacent cells to activate the NF-κB signal pathway, alter lysosome integrity, and
enhance or prolong the immune response [97]. It is thought that cooperative signaling via
TLRs and NLRs resulted in secretion of the IL-1 family cytokines. While inflammasome
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activation is an efficient producer of mature IL-1β, inflammasome independent mechanisms
for the production of mature IL-1β include cathepsin B or caspase 11 dependent pathways,
bacterial pore-forming toxins, and extracellular ATP [98,99]. Thus, an upregulation of
mature IL-1β does not necessarily indicate an inflammasome mechanism.

The mechanism by which NLRP3 is activated by the secondary “trigger” is not fully
understood. However, there is mounting evidence that mitochondrial damage plays a cen-
tral role. As an example, the complex 1 inhibitor, rotenone, can serve as a secondary trigger
for NLRP3 inflammasome activation [100]. Conditions that have been found to facilitate
NLRP3 activation include increased ROS production, calcium influx, potassium efflux,
reduction in NAD+, externalization of cardiolipin from mitochondria, and presence of
mitochondrial DNA in the cytoplasm, all of which are the result of mitochondrial dysfunc-
tion and damage [101,102]. Thus, it is not surprising that NLRP3 inflammasome activation
has been implicated in various neurological diseases [103] and is a contributing factor to
inflammaging [104]. One regulator process identified is the Parkinson’s disease-associated
mitochondrial serine protease, HtrA2, which has been shown to restrict activation of
ASC-dependent NLRP3 and AIM2 inflammasomes, in a protease activity-dependent man-
ner [105].

4.2.4. Triggering Receptor Expressed on Myeloid Cells 2 (TREM2)

TREM2 is a PPR specific to polyanionic that is located on the membrane surface of
osteoclasts and microglia [106]. Activation of TREM-2 receptors contributes to an upreg-
ulation of chemokine synthesis and phagocytosis of apoptotic cell debris [107]. This is
accomplished upon binding with the DNAX-activation protein 12 (DAP12), an ITAM-
containing adaptor protein, triggering reorganization of F-actin, and phosphorylation
of ERK/MAPK [107,108]. Signals are transmitted via rapid phosphorylation of the im-
munoreceptor tyrosine-based activating motif (ITAM) of DAP12, mediated by Src protein
tyrosine kinases, followed by the binding of phosphorylated ITAM to Src homology 2 (SH2)
domains of spleen tyrosine kinase (Syk), resulting in autophosphorylation of the activation
loop of Syk [109]. The expression of TREM2 is downregulated by LPS and interferon
(IFN)-γ [110]. TREM2 is a key negative regulator of autoimmunity and plays a role in the
inhibition of IL-6 and TNF production by macrophages [106]. In addition, it is responsi-
ble for DAP12-induced inhibition of inflammatory responses driven by TLR agonists in
mouse and human macrophages. There is also some evidence that TREM2 activates signal
transduction pathways that promote microglia chemotaxis, phagocytosis, survival, and pro-
liferation. TREM2 receptor expression can contribute to apoptotic neurons in the absence of
inflammation [107], detect damage related to lipid patterns, and contribute to the response
of microglia to amyloid-β accumulation [111]. The TREM2-DAP12 axis plays a role in the
function of aged microglia, and thus is associated with changes observed in physiological
CNS aging or neurodegenerative disease [56,112,113]. A direct relevance to these signaling
and functional alterations in microglia is demonstrated in Nasu–Hakola disease [114,115].
In this loss-of-function disease, genetic mutations of TREM-2 and DAP12 occur that result
in aberrant TREM-2/DAP12 signaling pathways. Neuronal expression of phosphorylated
Syk is enhanced in the cerebral cortex and the hippocampus of Nasu-Hakola brains [109],
and microglia show a diminished capacity for phagocytosis. This disease is associated
with progressive presenile dementia and sclerosis in the front-temporal lobe and the basal
ganglia [114,115]. Interestingly, TREM2 expression is elevated in the cognitively normal
brain with aging [116], and is considered to be a possible compensatory mechanism against
age related deterioration of microglia function.

5. Microglia Phagocytosis

Phagocytosis is a critical function provided by microglia; however, it is also the func-
tion that raises the most questions as to whether the actions are beneficial or detrimental.
Through phagocytosis, microglia significantly contribute to the health of the nervous
system by clearing excess cellular debris, aberrant proteins, and invading bacterial or
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viral fragments. The phagocytic actions of microglia facilitate structural and functional
development of the nervous system, as well as recovery of impaired tissue to maintain a
homeostatic balance. It is difficult to distinguish signals for pathological phagocytosis from
normal phagocytosis, or even diminished phagocytosis. It is also the divisive property
of microglia that can lead to an association with beneficial or detrimental effects. It is
thought to be provoked by “eat-me” signals or “don’t eat me” signals provided by the
viable cell and regulated by the identification of “self” or “non-self”. While it has been well
established that microglia serve in this function to clear material from the brain, there are
data suggesting that cell death of viable cells can be initiated by microglia phagocytosis.
This has been termed “phagoptosis” [117]. Negative effects of microglial phagocytosis can
be driven by unwarranted or misdirected phagocytosis that can either be excessive phago-
cytosis or reduced phagocytosis [118]. Excessive phagocytosis of synapses, neuronal cell
bodies, or myelin sheath can be detrimental to tissue and functional recovery. In contrast,
reduced microglial phagocytosis, such as reduced phagocytosis of synapses or clearance
of unhealthy neural cells, may lead to pathological neural connectivity. In addition, a
diminished ability to clear aberrant proteins or cellular debris from the neural environment
would also be damaging to the structure and functioning of the system.

There are a number of steps involved in successful phagocytosis. The initial one relies
on chemotaxic signals to allow the microglia to migrate to the target site. This is then
followed by a signal on the target cell that identifies it for phagocytosis, often involving the
Ras homologous (RHO) protein. Once the microglia anchors to the target, the cell must
internalize and engulf the target, which is a process that often involves cell cytoarchitectural
proteins. Once internalized, phagosomes that contain the material become acidic and fuse
with lysosomes for enzyme degradation. Phosphatidylserine (PtdSer) is the most common
membrane-anchored “eat me” signal in the nervous system. Exposure of PtdSer marks
the neuron for selective engulfment [119]. While expression of PtdSer on the surface can
be reversed, the surface expression still represents a stressed neuron, and thus, microglia
would be appropriately responding to the signal. Polysialylated proteins on neurons
also inhibit phagocytosis by binding to receptors on microglia, and by activating sialic
acid-binding immunoglobulin-like lectins (SIGLECs), such as SIGLEC-11 (in humans) and
SIGLEC-E (in mice) [119].

CD36 is a raft-resident, cell surface glycoprotein with expression limited to specific
cellular subtypes including monocytes and macrophages [120]. It functions as a scavenger
receptor for which extensive glycosylation of CD36 is required for intracellular traffick-
ing onto the cell membrane [121]. Its involvement in phagocytosis was first reported by
Ren et al. [122] in the clearance of apoptotic cells. It is also involved in phagocytic processes
for the clearance of necrotic cells [123] and myelin [124]. Membrane raft aggregation in the
phagocytic cup and recruitment of CD36 has been reported to be necessary for microglial
phagocytosis of Aβ42 [125]. Recent work demonstrated CD36-TLR4-TLR6 activation as
a common mechanism by which atherogenic lipids and amyloid-beta stimulate sterile
inflammation, suggesting a new model of TLR heterodimerization triggered by co-receptor
signaling events [126].

The integrin-associated protein, CD47, is a receptor for thrombospondin family mem-
bers and a ligand for the transmembrane signal-regulatory protein (SIRP) alpha. It is
expressed on myelin, myeloid cells, red blood cells, platelets, neurons, fibroblasts, and
endothelial cells [127]. The role of CD47 in phagocytosis and immune recognition was dis-
covered in red blood cells showing that the CD47-SIRPα axis plays a role in self-identifying
and protecting red blood cells from phagocytosis [128]. In addition, it is upregulated on
circulating hematopoietic stem cells to protect against phagocytosis [129]. Oncogenic acti-
vation of CD47-SIRPα signaling appears to enable cancer cells to evade immune detection
and clearance [130]. Studies have suggested that CD47 may localize to synapses [131], and
that CD47-SIRPα protects developing synapses from aberrant removal [132]. In cultured
microglia, CD47 has been shown to re-enter lipid membrane rafts in microglia during
phagocytic inhibition [125]. Polysialylated proteins on neurons inhibit phagocytosis by
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binding to receptors on microglia and by activating sialic acid-binding immunoglobulin-
like lectins (SIGLECs), such as SIGLEC-11 [in humans] and SIGLEC-E (in mice) [120].

Calreticulin is localized in the endoplasmic reticulum; however, upon surface expo-
sure, binding to the low-density lipoprotein receptor-related protein located in microglia
induces phagocytosis [133]. Such soluble bridging molecules require at least two binding
domains to serve as a link between the membrane-anchored signal and phagocytic recep-
tors. During inflammation, milk fat globule epidermal growth factor 8 (MFG-E8) released
from microglia or astrocytes can bind to exposed PtdSer and the vitronectin receptor. Mer
tyrosine kinase (MerTK) is upregulated by inflammatory cytokines and acts as a microglial
phagocytic receptor to mediate phagocytosis of apoptotic cells, stressed neurons, and
synapses. MerTK interacts with PtdSer through two soluble bridging molecules, Gas6
and Protein S. For these molecules, their N-terminal 11 γ-carboxyglutamic acid residues
can bind to PtdSer [134]. Annexin 1 (ANXA1) is sparingly expressed in microglia of nor-
mally aged human brains, with a higher level of expression in Alzheimer’s disease. When
released from microglia, ANXA1 can bind to neuronal PtdSer and activate microglial
formyl peptide receptor 2 [135]. Using in vitro systems, two distinct roles for ANXA1
have been identified. The first was for controlling the non-inflammatory phagocytosis of
apoptotic neurons and the second for promoting resolution of inflammatory microglial
activation [135].

Adenosine triphosphate (ATP) and other purine and pyrimidine nucleotides are released
upon cell injury. As ligands, they trigger membrane-bound purinergic receptors to regulate
several physiological processes [136–139]. These processes include immune cell recruitment,
inflammation, and neurotransmission [140,141]. A dysregulation of the purinergic pathways
has been implicated in neuroinflammatory responses and neurodegeneration [142]. The re-
lease of ATP induces chemotactic and chemokinetic activities of microglia through stimulation
of P2Y4R. Both ATP-gated P2X4R and UDP-activated P2Y6R are upregulated in activated
microglia following neuronal injury. P2Y6R decreases P2X4R-mediated calcium entry and
inhibits the dilation of P2X4R channels into a large-conductance pore [143]. Upon P2Y6R
receptor activation, phospholipase C is activated and inositol 1,4,5-triphosphage is synthe-
sized, leading to the release of Ca2+. This then stimulates phagocytosis. UDP-induced P2Y6R
stimulation can prevent the ATP-dependent migration of microglia, most likely by switching
from its migratory phenotype to a phagocytic one [144]. ATP acting on P2X7Rs decreases
phagocytic capability and promotes activation and proliferation of microglia [145,146]. It has
been reported that the ATP-gated ionotropic P2X7 receptor functions as a small cation channel
and can trigger permeabilization of the plasmalemmal membrane [147].

The primary focus has so far been on phagocytosis of injured or dead neurons, or
aberrant proteins from the brain, but phagocytosis of synapses is a more targeted process
of interest. Stripping of synapses is a critical process during development, in learning and
memory, and in neurodegeneration. The question is whether this is a process initiated
by the microglia, as implied by the term “stripping”, or rather a facilitatory action by
microglia as signaled by the neuron [148]. One method by which microglia facilitate the
removal and clearance of synaptic debris is through the complement system. While much
of the work demonstrating a functional association between complement expression and
microglia activation at synapses has focused on the developing nervous system, reports
of an involvement of complement activation in injury models have established a basis for
translating these interactions to adults [149–151]. How these processes relate to phenotypic
changes in resident microglia still remains in question; however, C1q has been considered
a likely candidate to drive microglial activation. Components of the complement system
facilitate immune responses [152], and have been considered as likely candidates for medi-
ating “on” signals for microglial activation, potentially by opsonizing or tagging the target
structure for elimination [153]. A number of downstream effector functions are initiated
with complement activation, including surface deposition of opsonin C3b on target cells,
recruitment of phagocytic cells, and pathogen lysis [154]. An elevated expression during
injury has been proposed as a mechanism to target microglia to degenerating cellular
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processes, and an association between microglia and active synaptic loss or remodeling has
been reported in various brain regions [155–157]. A key component to initiate this cascade
is the complement protein, C1q, which functions as a recognition component of the macro-
molecular complex, C1. Microglia and infiltrating blood-borne monocyte/macrophage
cells serve as primary sites of C1q synthesis in the CNS [158–160]. A spatial and temporal
synergy between actions of microglia and the distribution of complement factors has been
suggested to represent signaling interactions for targeting microglia actions [161], not only
for apoptotic neurons but also for rapid elimination of synapses [162–164]. C1q can detect
PtdSer exposure and subsequently bind to PtdSer, resulting in the removal of synapses.
C1q, both alone and with C3, can facilitate microglial clearance of misfolded proteins,
apoptotic neurons, and neuronal blebs on damaged cells [161,164,165].

6. Microglia in Neurodegeneration and Brain Injury

Neuroinflammation, mediated largely by microglia, has been implicated in several
different neurological disorders from acute injuries, such as stroke or traumatic brain injury,
to chronic neurodegenerative conditions, such as Parkinson’s disease (PD) or Alzheimer’s
disease (AD). In each of these conditions, there are varying degrees of involvement of
infiltrating blood-borne immune cells that complicate the ability to identify specific effects
of resident microglia from those of peripheral macrophages. In progressive neurodegenera-
tive diseases, the early stage of the disease likely involves recruitment of resident microglia,
while with increasing severity, the BBB may become compromised and allow infiltration or
targeted recruitment of peripheral macrophages. Determining the cellular source of the
inflammatory response is often difficult given the inability to easily distinguish between
resident microglia and infiltrating macrophages.

Genome-wide association studies of patients with PD or AD have implicated muta-
tions in genes highly expressed on microglia [166–168]. The ubiquitous nature of microglia
and neuroinflammation across a broad spectrum of neurodegenerative diseases or brain
injury makes it difficult to discriminate between those responses that lead to a detrimental
outcome versus those that simply represent microglia performing their normal functions
to return the system to homeostasis. Thus, it remains unclear if microglia function in neu-
rodegenerative diseases is beneficial but insufficient or if the beneficial aspect diminishes
with the progression of the disease and the severity of the neuronal damage.

Efforts to identify these differences identified a unique population of microglia within
models of human neurodegenerative disease that have been named Disease Associated
Microglia (DAMs) [169–171]. This population represents microglia in the initial stages of
DAM activation that inhibit microglia checkpoints and are TREM2 independent, while
progression to a full activation of the DAM phenotype is TREM2-dependent and includes
phagocytic and lipid metabolism activity. It has been speculated that this distinct microglia
phenotype has the potential to restrict neurodegeneration. This protective response is
proposed to be due to a dedicated sensory mechanism, including TREM2, to detect dam-
age within the CNS as identified from neurodegeneration-associated molecular patterns
(NAMPs) [170].

6.1. Parkinson’s Disease

Parkinson’s disease (PD) is a member of the progressive adult-onset neurodegener-
ative diseases classified as α-synucleinopathies. These include PD, dementia with Lewy
bodies (DLB), and multiple system atrophy. The main pathological hallmark of these
diseases is the occurrence of hyperphosphorylated, misfolded and fibrillized α-synuclein
positive inclusions known as Lewy bodies that can be observed throughout the CNS. In PD
and DLB, neurons are the main cell type displaying cytoplasmic α-synuclein positive aggre-
gations, the major component of Lewy bodies and Lewy neurites. Alpha-synuclein deposits
can also be observed in astrocytes and oligodendrocytes [171]. Pathological hallmarks of
PD include the loss of dopaminergic neurons in the substantia nigra pars compacta and
the presence of Lewy bodies in the surviving dopaminergic neurons.
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In the brain, α-synuclein is predominantly located in presynaptic terminals of neurons
in the hippocampus, striatum, thalamus, cerebellum, and neocortex [172]. α-synuclein
can exist in several forms, including soluble unfolded monomeric and polymeric forms,
as well as β-sheet-containing fibrils [173]. The ability to self-aggregate is considered a
pathological role of α-synuclein and, as a secondary process, the fibrillar form can serve as
seeding material for α-synuclein aggregation [174]. In addition, α-synuclein overexpression
impairs lysosomal proteolytic clearance of damaged cellular material, including damaged
mitochondria, resulting in an accumulation of abnormal proteins or damaged organelles.
Both macroautophagy and chaperone-mediated autophagy appear to be compromised
in PD, suggesting that a reduced clearance of α-synuclein contributes to the generation
of α-synuclein inclusions [175]. The need for successful phagocytic clearance and the
response of the nervous system to accomplish this was demonstrated in the upregulation
of TLR4 in human multiple system atrophy patients, suggesting an attempt to increase
phagocytotic activity [176]. The spreading of α-synuclein with Lewy body-like pathology
to anatomically interconnected regions may be mediated by several mechanisms of cellular
release and uptake, including exocytosis, exosomes, tunnelling nanotubes, glymphatic flow
and endocytosis [177]. It has been demonstrated that α-synuclein overexpressing neuronal
cells can release exosomes capable of transferring α-synuclein protein to other normal
neuronal cells [178]. Within these new neurons, they can form aggregates and induce cell
death [179,180]. It has been demonstrated that exosome-associated α-synuclein oligomers
are more likely to be taken up by recipient cells and are more toxic than free α-synuclein
oligomers [181]. This release of exosomes may serve to trigger an early microglia response;
in addition, recent work has suggested a role for microglia in spreading and transfer of
misfolded α-synuclein via exosomes [182,183].

The association between inflammatory signs, cellular response, and neuronal degener-
ation in PD has received attention over the last decade, demonstrating a complex interaction
between glia and alpha-synuclein and neuronal derived DAMPS [184,185]. The hypothesis
that microglial cells can be activated by extracellular α-synuclein or astroglia and that this
can occur prior to neuronal loss in the substantia nigra pars compacta but concurrent with
neuronal dysfunction and loss of dopaminergic terminals, has been proposed [186,187].
Su et al. [186] reported activation of primary rodent microglia by exogenously mutated
α-synuclein and Halliday and Stevens [187] proposed that astrocytic α-synuclein initiated
a microglia response.

Attempts to image neuroinflammation and microglia activation in life has relied
on binding ligands for translocator protein (TSPO), formerly known as the peripheral
benzodiazepine receptor. This is an 18 kDa outer mitochondrial membrane protein that
shows robust binding in the periphery and limited signal in the CNS parenchyma. In
healthy young human subjects, constitutive TSPO protein expression can be observed
throughout the entire brain. This constitutive binding has complicated identification of
a valid non-binding reference region. Cautions have been raised with the general use of
TSPO expression as a diagnostic biomarker and therapeutic target for a broad range of
inflammatory, neurodegenerative, and psychiatric disorders, and with interpretation of the
data available across multiple generations of probes [188–190].

In the early 2000s, Positron Emission Tomography (PET) imaging studies reported
evidence of microglia activation in PD [191]. It was thought that the imaging data supported
this temporal hypothesis; however, a signal was detected in all brain areas implicated
in PD [192]. PET imaging with the peripheral benzodiazepine receptor binding ligand
[11C]-[R] PK11195 indicated that, irrespective of the number of years with the disease,
patients with idiopathic PD had a markedly elevated signal in the pons, basal ganglia,
striatum, and frontal and temporal cortical regions as compared with age-matched healthy
controls [171]. In comparison, Ouchi et al. [193] showed that, with disease progression,
binding of [11C]CFT to the dopamine transporter decreased and the TSPO signal spread
over the entire brain, eliminating indications of regional specificity. These findings were
obtained with a first-generation probe [[11]C]-PK11195 for which subsequent studies using
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a second generation probe did not readily substantiate [194]. More recent work, using
[18F]-DPA714 and adjusting for TSPO polymorphism, reported higher levels of binding in
the midbrain, frontal cortex, and putamen of PD patients [195].

Much of the work regarding in life imaging or post-mortem analyses of microglia
involvement in PD comes from the patient population making it somewhat difficult to
distinguish initiating effect from a reactive process or a contributing process. In PD au-
topsies, a morphological response of microglia was observed in the substantia nigra that
was not accompanied by a change in astrocyte morphology or glial changes in the puta-
men [196]. Work from Doorn et al. [197] showed microglia morphological heterogeneity in
the hippocampus and substantia nigra in post-mortem analysis of PD brains. In addition,
the expression of TLR2 on microglia was elevated in incidental Lewy body disease cases.
Based on experimental studies, it was suggested that the presence of α-synuclein in the
Lewy bodies triggered the microglia response via TLR2. Work from Reynolds et al. [198]
reported NF-kB related inflammatory processes in the substantia nigra and basal ganglia
of PD patients. Other inflammatory-related indicators have been reported in the post-
mortem PD patient, including human leucocyte antigen type DR [HLA-DR+] [199] and
CD68 [200], cyclooxygenase (COX), and inducible nitric oxide synthase (iNOS) [201]. Ima-
mura et al. [199] reported an increase in the number of MHC class II-positive microglia in
the SN and putamen with PD. This was also observed in the hippocampus, trans-entorhinal
cortex, cingulate cortex, and temporal cortex, and persisted regardless of the presence of
Lewy bodies. These researchers reported that the MHCII positive microglia co-expressed
TNFα and IL-6, and were associated with α-synuclein positive Lewy neurites, tyrosine
hydroxylase 16 positive dopaminergic, WH-3 positive serotonergic, microtubule associated
protein-2 positive neurites, and SMI32 positive neurites.

Thus, there are a number of signaling processes that can induce a response from
microglia from the earliest stages of neuronal dysfunction to the final neuronal death and
clearance stage. In addition to inflammatory factors and growth factors, some evidence
suggests that exosomes released from microglia have an active role in α-synuclein transmis-
sion. Different cell types within the brain have been shown to release exosomes, including
neurons, microglia, and astrocytes. Microglia have been observed to efficiently secrete
exosomes as part of their antigen presentation and cargo release mechanisms. α-synuclein
is found in the exosomes from the microglia BV-2 cells, which have been shown to cause
apoptosis in neurons [202]. This is consistent with another study showing that misfolded
tau protein, an important pathology in Alzheimer’s disease, can spread via microglial
exosomes, whereas depletion of microglia and inhibition of their exosome synthesis halt
tau propagation [203].

There is clear evidence of a role for microglia and neuroinflammation; however,
remains to be determined whether this implicates these processes in the initial injury, the
attempted anti-inflammatory and repair, or the excessive demand above the capacity of
microglia to perform their function to return the brain region to a homeostatic state. What
has become evident over the years is the possible contribution from the periphery. Elevated
levels of cytokines have been demonstrated in the peripheral circulation of PD patients,
including the pro-inflammatory cytokines, TNFα and IL-1β, and the anti-inflammatory
cytokines, IL-10 and IL-4 [204–206]. It is likely that the death of dopaminergic neurons along
with the local environment created by cytokine signaling may facilitate the recruitment
of peripheral immune cells to impact survival of nigral DA neurons and progression of
PD. Efforts have been conducted to try to identify an association between inflammation
and PD.

6.2. Stroke

Cerebral ischemia is a multiphasic process that triggers acute inflammation that ex-
acerbates the primary damage to the brain. Stroke represents many of the issues in all
neurodegenerative or injury models with regards to the need to distinguish between resi-
dent glia responses and those from blood-borne cells that are allowed to infiltrate into the
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brain parenchyma. As such, it offers an acute injury directly associated with a localized
insult to the vascular wall for examination of the distinction between resident microglia
and infiltrating macrophages. The BBB excludes plasma proteins and many of the periph-
erally derived innate and adaptive immune cells, as well as their associated inflammatory
molecules. With compromise to the functional permeability of the BBB, blood-borne mono-
cytes can enter the brain parenchyma and assume a brain macrophage phenotype, making
them difficult to distinguish from resident microglia [207–209]. These infiltrating cells are
considered to be predominantly involved in severe inflammatory injuries, while resident
microglia focus on tasks related to maintaining tissue homeostasis [210].

The regulation of inflammation after stroke is multifaceted and comprises vascular
effects, distinct cellular responses, apoptosis and chemotaxis. There are many cell types that
are affected, including neurons, astrocytes, microglia and endothelial cells, all responding to
the resultant neuroinflammation in different ways [211]. Microglia activation has not been
clearly demonstrated to either facilitate or hinder recovery from stroke. Data has shown
that TNFα can actively protect neurons [212] and that mice deficient in TNFp55 receptors
show increased stroke volume [213], while overexpression of TNF-α is detrimental to
stroke outcome [214].

The contribution of inflammation to secondary brain damage is supported by several
studies. Within the first few hours, a rapid activation of resident microglia and production
of proinflammatory cytokines occurs, including TNFα and IL-1β [215]. This is followed
by a progression of ischemic brain injury associated with an intense inflammatory re-
sponse. Neutrophils and monocytes/macrophages infiltrate and accumulate in microves-
sels and ischemic cerebral parenchyma [216]. The studies of Yilmaz and Granger [217]
suggested that lymphocytes can be recruited into the site within the first 24 h. Work by
Gelderblom et al. [218] provided a detailed characterization in mice of the temporal dy-
namics of immune cell accumulation following transient middle cerebral artery occlusion.
While this is a rodent response, the concepts of timing for evaluating resident microglia
responses apply across species. With examination of animals at 12 h and days 1, 3, and
7, a widespread neutrophilic infiltration into the ischemic hemisphere was observed at
3 days. Infiltration was also seen in the contralateral hemisphere, but at a much lower
level. Iba-1 immunopositive microglia/macrophages were observed as early as 12 h, in-
creasing after 24 h, and were in close proximity to the infarct, while a large number of
CD11c immunopositive dendritic cells were located in the ischemic hemisphere close to
the penumbra. Only after 12 and 24 h were neutrophilic granulocytes observed. This was
at a minimal level, and by day 3 these cells were extensive in the ischemic hemisphere,
equating to the number of microglia/macrophages. Of interest to the focus of this review
was the response in sham-operated animals. In this case, microglia increased on day 1;
however, by day 3, blood-derived immune cells were the predominant cell type, suggesting
that the anesthesia and surgical manipulation alone were sufficient to induce a level of
change. These infiltrating cells included neutrophils, macrophages, dendritic cells, natural
killer cells, and lymphocytes. While consistent with previous reports, the peak time for
neutrophil influx occurred later than previously reported [216].

6.3. Aging as a Co-Factor for Neurodegeneration and Microglia

The predominant risk factor for neurodegenerative disease is age, and thus, represents
a significant co-morbidity. Thus, understanding age-related changes in brain immune
cells and the impact of those changes is critical in addressing the contributory role of
these cells and processes to any neurodegenerative disease process [219–222]. A common
feature of aging is “inflammaging” [223]. This is characterized as a low-grade, clinically
undetectable inflammation that occurs as the result of an unbalanced regulation of the
immune system. It was initially considered as a disequilibrium between the innate and
adaptive immune systems; however, this is not an equally distributed deficit, as it appears
that the adaptive immune system is more vulnerable. In the nervous system, such primary
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challenges would be related to the imbalance between proteostasis and autophagy—the
removal of the accumulated cellular garbage of the brain.

Microglia are long-lived cells, and as such, they represent immune cells that show
some sort of memory, which for peripheral immune cells has been termed “trained innate
immunity” [224–227]. Following a response to a pathogen-associated molecular pattern
[PAMP] or to a danger-associated molecular pattern [DAMP], the cells return to a qui-
escent/surveillance state; however, they can retain some epigenetic/molecular changes
that constitute their “training” [226]. Often this is accompanied by a modified pattern
of resting and activation-induced secretion of proinflammatory and anti-inflammatory
cytokines [225]. While this has been demonstrated in systemic immune cells, exactly how
this translates to cells within the CNS is not clear but would be expected to follow similar
processes. It is likely that the elevation of a pro-inflammatory phenotype of microglia that
occurs in the CNS with aging represents this type of training.

Each of the major effector functions of microglia show a deterioration with aging.
Age-related deterioration can be represented by loss-of-function, hyper-reactivity, or dys-
function, each of which would have an impact on the timing of onset and the progression
of neurodegenerative diseases. The aging of microglia may be the result of a cumulative
activation over time due to local events or systemic infections and inflammation [228].
The effects that occur with aging may be exacerbated by a neurodegenerative disease
phenotype, genetic variations, or other predisposing factors. Early work examining the
morphological characteristics of microglia in the aged brain suggested a shift in morphol-
ogy with a greater occurrence of dystrophic microglia processes [229,230]. The shift in
morphology was accompanied by a decrease in microglial process motility [231,232]. In
general, the morphological aspects of microglia in aging coincide with an impairment of
signaling to maintain microglia in a surveillance state, an impairment of neuroprotective
functions, and an enhancement of neurotoxic responses [233,234]. One critical feature of
senescent cells, apart from cessation of divisions, short telomeres, morphological changes,
and activity of the SA-βGal enzyme, is the senescence-associated secretory phenotype. This
is the ability of senescent cells to secrete proinflammatory cytokines [235]. These molecules
then contribute to inflammaging by perpetuating and amplifying inflammation and main-
taining an activation state of innate immune cells. In evaluating the diverse data examining
the role of microglia and neuroinflammation in neurodegenerative disease, one must take
into consideration all of the comorbidity features, including those reflected in the parallel
adaptive/remodeling processes associated with inflammaging and immunosenescence.

7. Summary

The overwhelming evidence is that microglia clearly play a contributory role in neu-
rodegeneration. Whether or not they initiate a neurodegenerative process is more difficult
to conclude. Each individual function of microglia contributes to maintaining a homeostatic
balance within the brain, and the complexity of the response occurring during the shifting
stages of any insult or injury requires consideration [236–238]. The homeostatic balance of
the brain relies on a complex communication between individual cells. This interaction
ensures that altered neuronal activity, and likely neuroglia activity, will be communicated
rapidly to microglia. Any event that would modify this balance could be detrimental.
While the production of pro-inflammatory cytokines is often considered to lead to an
adverse environment for neurons, what may be of more concern is a compromise of normal
microglial functions. The inability to mount an appropriate pro- or anti-inflammatory
response, detect and migrate to site of injury, or perform phagocytosis and degrade debris
or aberrant proteins, would be determining factors in brain injury and repair. Within this
spectrum of biological processes and functions, microglia represent an influential target for
alterations from environmental exposures that could have significant influence on the time
of onset or progression of a neurodegenerative disease.
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