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Abstract

Salmonella Heidelberg is commonly reported in foodborne outbreaks around the world, and

chickens and poultry products are known as important source of these pathogen. Multidrug-

resistant S. Heidelberg strains are disseminated into poultry production chair, which can lead

to severe clinical infections in humans and of difficult to treat. This study aimed at evaluating

the β-lactam susceptibility and genotypic relatedness of Salmonella Heidelberg at Brazilian

poultry production chain. Sixty-two S. Heidelberg strains from poultry production chain (poul-

try, poultry meat and poultry farm) were used. All strains were evaluated to antimicrobial sus-

ceptibility by diffusion disk test, as well as β-lactam resistance genes. Genotypic relatedness

was assessed by Pulsed-Field Gel Eletrophoresis, using Xba1 restriction enzyme. Forty-one

strains were characterized as multidrug-resistant according to phenotype characterization.

The resistance susceptibility revealed 31 distinct profiles, with higher prevalence of

streptomycin (61/62), nalidixic acid (50/62), tetracycline (43/62) and β-lactam drugs (37/62).

blaCMY-2 was the more frequent β-lactamase gene found (38/62); other resistance genes

found were blaCTX-M (2/62), blaSHV (3/62) and blaTEM-1 (38/62). No carbapenemase genes

was found. The Pulsed-Field Gel Electrophoresis showed 58 different profiles. Strains with a

larger number of antimicrobial resistance were grouped into ten major clusters apart from

others. The spread of resistance by ampC continues to rise, thereby turning concern to pub-

lic health, since the β-lactam antimicrobials are used as a therapeutic treatment in humans.

Introduction

The non-typhoid Salmonella (NTS) serovar Heidelberg (SH) is frequently found affecting

humans and animals [1–5]. This pathogen has been commonly isolated in food-borne
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outbreaks from humans through consumption of poultry and pork-derived products, as well

as dairy products [6]. SH is a pathogen of nonspecific host characterized by has a variety of

infection sources and easy bacterial dissemination, due to their antigenic composition [7].

In the last years, SH has been reported causing outbreaks at 13 USA states, which 33 hospi-

talizations [2], and confirmed as the most frequent serovar involved in human diseases

(21.6%) linked to poultry meat consumption (49,9%) [5]. Moreover, the high prevalence of

multidrug-resistant (MDR) SH has been identified, including third generation cephalosporins

[8–10], critical importance drugs to public health.

The antimicrobial use in animal production is a common practice, but it has a different pro-

cedure from different parts of the world. In the United States of America and European

Union, the use of antimicrobials is limited to veterinarian prescription, and they should not be

used to animal performance purpose. On the other hand, in Brazil some antibiotic groups are

allowed to be used in animal production system to treat or to prevent infections or even as

growth promoters [11,12]. Veterinary prescription is also required but sometimes failures in

the official surveillance of antimicrobial use can lead to misuse. It is known that off-label use

of some antimicrobials make a selective pressure which have been associated with quickly

increased of bacterial resistance in Enterobacteriaceae species, as E. coli, from farms animals

[13,14].

Currently, the class of β-lactam antimicrobials have been widely used to treat serious infec-

tions in humans and animals, including third and fourth generations of cephalosporins

[15,16]. However, the bacterial resistance to cephalosporins has been found in Salmonella sero-

vars, including Heidelberg from humans [4], poultry [9,17], and poultry meat [5], all of them

presenting a diverse MDR pattern. Moreover, strains of MDR SH have been reported in the

USA in outbreaks caused by chicken meat [10].

In Enterobacteriaceae species, the enzymatic inhibition is the main β-lactam resistance

mechanism found. Both, Extended Spectrum β-Lactamase (ESBL) and Restrict Spectrum β-

Lactamase (AmpC) are most common enzymes synthetized by Salmonella spp. [18–21], as

well as most frequently found in Enterobacteriaceae isolated from poultry meat [22].

In this scenario, wherein ESBL/AmpC-producing bacteria is not only limited to hospitals

and healthcare system but reaches food animals and food chain production [22,23], the spread

of resistant Salmonella Heidelberg is a relevant public health issue. Furthermore, in view of the

recent concern in the field with the frequent appearance of the this serovar resistant to differ-

ent antimicrobials, this work aimed to evaluate the β-lactam susceptibility and genotypic relat-

edness of Salmonella Heidelberg, to provide information on the Brazilian scenario.

Materials and methods

Salmonella Heidelberg isolates

Sixty-two SH isolates were used: 20 from the Avian Pathology Laboratory (FCAV, Unesp

Jaboticabal, São Paulo, BR) database and 42 from Adolfo Lutz Institute (IAL, São Paulo, BR)

database (S1 Table). All SH isolates were obtained from poultry-relatedness samples, and cate-

gorized into three types: Poultry (sampled from cloacal swabs and cecal contents); Poultry

farm (sampled from drag swabs, poultry feeders and drinkers); Poultry meat (sampled from

product ready to consumption, in nature or processed). All strains were submitted to serovar

confirmation by molecular assay using specific primers [24] (S1 File).

Antimicrobial susceptibility testing

All 62 SH strains were submitted to the antimicrobial susceptibility using the disk diffusion

test [25] and breakpoints used according to the recommendations of the Clinical and
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Laboratory Standards Institute [26]. The antimicrobials used are shown in S2 Table. Strains

which presented resistance to three or more antimicrobial drug class used were considered

MDR.

β-lactam resistance genes

DNA extraction. All 62 SH strains were subjected to DNA extraction using the PureLink ™
Genomic DNA Kit (K182001, Invitrogen—Thermo Fisher Scientific, USA) following manufac-

turer’s recommendations. The extracted DNA quantity was evaluated by spectrophotometer,

DeNovix DS-11 + (DeNovix Inc., Delaware, USA), in nanogram per microliter (ng/μL).

Resistance genes. The presence of β-lactam resistance genes was evaluated by polymerase

chain reaction (PCR) using specific primers [27] (S3 Table). The master mix concentrations

and amplification conditions used in this study are described in S4 and S5 Tables.

The fragments were visualized from 5 μL of the amplicons along with 1 μL of Loading Dye

buffer (Invitrogen, Thermo Fisher Scientific, USA) in the 1.5% agarose gel (Sigma Aldrich,

Missouri, USA) stained with SyBr Safe DNA Gel Stain (Invitrogen, Thermo Fisher Scientific,

USA). It was submitted to electrophoretic run under the 4V / cm conditions of the well (Bio-

Rad Laboratories, USA) for 45 minutes. Then, the gel was subjected to UV light in a Gel Doc

EZ Gel Documentation System (Bio-Rad Laboratories, USA).

Pulsed-Field Gel Electrophoresis (PFGE)

PFGE was performed using XbaI (Sigma Aldrich, Missouri, USA) protocol [28]. Then, den-

drogram was constructed using the Bionumerics version 7.1 (Applied Maths, Sint-Martens-

Latem, Belgium) applying the Unweighted Pair Group Method with Arithmetic Mean method

using the Dice coefficient with 1% tolerance and 0.5% of optimization.

Results and discussion

Antimicrobial susceptibility testing

According to the phenotypic susceptibility test, the prevalence of resistance was observed for

streptomycin (S; 98.3%), nalidixic acid (NAL; 80.6%), tetracycline (T; 69.3%), cefotaxime

(CTX; 59.7%), ampicillin (AMP; 58.1%) amoxicillin (AMX; 58.1%), cefoxitin (FOX; 56.4%),

amoxicillin-clavulanate (AMC; 56,4%) and ceftiofur (CEF; 54.8%). In contrast, the lowest

prevalence of resistance was observed for chloramphenicol (C; 1.6%) and imipenem (IMP;

4.8%). No resistance was observed against norfloxacin (NOR), amikacin (AK), gentamicin

(GM) and trimethoprim-sulfamethoxazole (SXT) (Table 1).

Based on antimicrobial susceptibility test, 41/62 (66,2%) of SH strains were resistant to

three or more drug class and identified as MDR; nineteen (30.6%) of them resistant to five

antimicrobial classes of the seven used in this work. These results reveled 31 different resistant

profile from all SH, withal the most frequent pattern identified were NalFoxCefCtxAmcTNi-

tAmxAmpS (12.1%) and NalFoxCefCtxAmcTAmxAmpS (11.3%) (S1 Table).

In this study, Salmonella Heidelberg showed resistance to some antimicrobials, as C, Nit

and T, that are prohibited in Brazil on animal production since early 2000s [29,30]. However,

the tetracycline is a commonly antimicrobial used in animals of production. Previous studies

have been reported resistance to T after it was used as a growth promoter or performance

enhancers in food animals [11,31]. The selective pressure by antimicrobial presence on envi-

ronment favors the exponential resistance spread on gut, oral cavity and feces [32].

It is noteworthy that the prevalence of resistance among the 62 SH in this study was highest

to NAL, S and β-lactams class drugs, including cephalosporin group ones. These results lead to
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a public health concern, since extended-spectrum cephalosporin (ESC) is indicated as first-

line antibiotics for the gastrointestinal infections treatment caused by Salmonella spp. in

humans [33].

In the present work, we found high occurrence of strains resistant to all β-lactam subclass

used, including those combined to β-lactamase inhibitor (AMC). Penicillin associated to adju-

vants has been used as alternative to β-lactam resistant bacteria in human infections caused

both Gram-positive and Gram-negative species [15]. Furthermore, the drugs inhibitors, as cla-

vulanic acid, acts under penicillinases and cephalosporinases, being used to distinguish ESBL-

producing from AmpC-producing isolates [32,34]. In our results, all FOX resistant samples

also presented resistance to AMC, suggesting that they are AmpC-producing SH and then

confirmed by PCR.

Over to fifty percent of studied SH shown cephalosporin-resistance. These results are in

accordance with previous works which reported cephalosporin-resistance in Salmonella from

food-producing animals and poultry meat, since early 2000s [9,35,36]. Third-generation ceph-

alosporin, as ceftiofur, have been frequently used in day-old chicks together with Marek’s vac-

cine [16], and it is related to short-term antimicrobial resistance in Enterobacteriaceae [13,14].

Despite that CEF is not a common cephalosporin used in human medicine, previous stud-

ies have shown a strict relationship between it and CTX resistance in Enterobacteriaceae

[13,37]. We found complete agreement in that CEF and CTX resistance. This result suggests

that ceftiofur could be used to access cefotaxime resistance by study model in poultry origin

bacteria.

Table 1. Antimicrobial resistance frequency in phenotypic test of 62 Salmonella Heidelberg strains collected from poultry, poultry meat and poultry farms.

Antimicrobials Frequency of resistance

Poultry Poultry meat Poultry farms Total (%)

Ciprofloxacin 0/10 0/20 1/32 1.6% (1/62)

Nalidixic acid 9/10 20/20 21/32 80.6% (50/62)

Enrofloxacin 2/10 4/20 12/32 29.1% (18/62)

Norfloxacin 0/10 0/20 0/32 0

Amikacin 0/10 0/20 0/32 0

Kanamycin 1/10 0/20 7/32 12.9% (8/62)

Streptomycin 10/10 19/20 32/32 98.3% (61/62)

Gentamicin 0/10 0/20 0/32 0

Ampicilin 8/10 17/20 11/32 58.1% (36/62)

Amoxilin 8/10 17/20 11/32 58.1% (36/62)

Imipenem 0/10 0/20 3/32 4.8% (3/62)

Ceftiofur 8/10 15/20 11/32 54.8% (34/62)

Cefotaxime 8/10 17/20 12/32 59.7% (37/62)

Cefoxitin 6/10 17/20 12/32 56.4% (35/62)

Amoxilin-clavulanate 8/10 17/20 10/32 56.4% (35/62)

Nitrofurantoin 10/10 9/20 8/32 43.5% (27/62)

Chloramphenicol - - 1/32 1.6% (1/62)

Tetracycline 9/10 20/20 14/32 69.3% (43/62)

Sulfamethoxazole-trimethoprim 0/10 0/20 0/32 0

Quinolones and fluoroquinolones [Ciprofloxacin, Nalidixic acid, Enrofloxacin, Norfloxacin]; Aminoglycosides [Amikacin, Kanamycin, Streptomycin, Gentamicin]; β-

lactam [Penicillins (Ampicilin, Amoxilin), Carbapenems (Imipenem), Cephalosporins (Ceftiofur, Cefotaxime, Cefoxitin)]; β-lactam / β-lactamase inhibitor

combinations [Amoxilin-clavulanate]; Nitrofurans [Nitrofurantoin]; Phenicols [Chloramphenicol]; Tetracyclines [Tetracycline]; Sulfonamide / Folate pathway

inhinitors [Sulfamethoxazole-trimethoprim]

https://doi.org/10.1371/journal.pone.0230676.t001
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β-lactam resistance genes

The frequency of ESBL, ampC and Carbapenemase genes in Salmonella Heidelberg from poul-

try origins are shown in Table 2. Extended spectrum β-lactamase genes were identified in

seven of 62 SH strains studied: blaCTX-M, 3.22% (2/62); blaSHV, 4.83% (3/62); blaTEM-1, 3.22%

(2/62). ESBL-producing Enterobacteriaceae harboring these genes are frequently found from

animal and human origin [5,13,38,39]. None of other studied ESBL genes–blaPSE and blaOXA-2

–were found in this study. The low prevalence of these determinants has been reported from

animal hosts bacteria, whereas from humans, these isolates are often found [19,40].

Differently from ESBL determinants, the blaCMY-2 gene was found in 62.3% (38/62) of SH

strains (Table 2). The CMY-2 is related to resistance with second generation cephalosporins

and penicillins through the production of β-lactamase AmpC [41] and it has been reported as

major determinant of CEF resistance in Enterobacteriaceae from poultry source [42–44]. No

others plasmid-mediated ampC genes investigated in our study were found in SH strains,

including blaFOX and blaCMY-1.

Usually, AmpC β-lactamase can occur as both a plasmid-mediated gene and hyperproduc-

tion of chromosomal ampC. The last mechanisms has instead of have been reported as the

major one from animal origin bacteria [45,46], and it be related to mutations in enzyme regu-

latory [45]. Although chromosomal AmpC overproduction is the common resistance mecha-

nism in AmpC-producing bacteria, in our results all CEF resistant SH shown plasmid-

mediated cephamycinase. The increase of plasmid-mediated blaCMY-2 is associated with

the CEF use in animal treatment infections, leading a new selective pressure to bacteria

[5,16,35,47,48].

In the present study 36 strains displayed resistant to AMC, all of them presenting blaCMY-2

gene. The β-lactamase inhibitors use associated with β-lactams has confirmed the resistance

caused by AmpC production, since the clavulanate acid (inhibitor) acts under the ESBL-pro-

ducing strains [15] however, not under the AmpC-producing strains.

No carbapenemase coding genes were found, despite three different SH presented resis-

tance against IMP (Table 2). The blaNDM and blaOXA-48 gene-determinants, tested in this

study, have been found in Salmonella enterica from different regions of the world [49–52].

Though no gene was found, we assume that IMP resistance in SH strains studied here, could

harbor other carbapenemase group like those belonging the class A, usually found in others

Enterobacteriaceae (e.g. Klebsiella pneumoniae and Escherichia coli) [53].

Genotypic relatedness by PFGE

According to PFGE analysis carried from restriction using XbaI, studied SH strains were clus-

tered in ten major groups as shown in Fig 1. Fifty-eight PFGE patterns were found among 62

Salmonella Heidelberg indicating a large diversity of these serovar from poultry sources. Stud-

ies in the USA have shown large diversity between Salmonella enterica serovar Heidelberg

Table 2. Resistance genes frequency of 62 Salmonella Heidelberg strains collected from poultry, poultry meat and poultry farms.

Gene Poultry Poultry meat Poultry farms Total (%)

ESBL blaCTX-M 0/10 1/20 1/32 2 (3.22)

blaSHV 0/10 1/20 2/32 3 (4.83)

blaTEM-1 1/10 0/20 1/32 2 (3.22)

AmpC blaCMY-2 8/10 17/20 13/32 38 (62.3)

Carbapenemase blaNDM 0/10 0/20 0/32 0

blaOXA-48 0/10 0/20 0/32 0

https://doi.org/10.1371/journal.pone.0230676.t002
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Fig 1. PFGE dendrogram of Salmonella Heidelberg isolates collected from poultry, poultry meat and poultry farms.

https://doi.org/10.1371/journal.pone.0230676.g001
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from food-producing animals [54]. Despite ours results shown high heterogeneity between

isolates from different poultry sources (poultry, poultry meat and poultry farm), study with

Heidelberg serovar from turkey-associated sources reveled extensive similarity between those

isolates [55].

Compering PFGE with antimicrobial resistance results (phenotype and genotype ones), no

relatedness between PFGE and resistance profiles. We assumed that these findings were due

genetic diversity among SH isolates from poultry sources. Similarly, Lynne et al found large

genetic diversity work with this serovar from cattle and swine sources [54].

Conclusions

Our results showed high resistance characterized by both phenotypes and genotypes being

related to AmpC. Strains resistant to a larger number of antimicrobials were also grouped into

ten major clusters by PFGE. The present study reinforces that Salmonella Heidelberg from

poultry origin is a serious hazard to public health that can act as foodborne pathogen. There-

fore, measures to reduce antimicrobial resistance and to control Salmonella Heidelberg should

be seriously addressed by the Brazilian poultry sector.
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