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ABSTRACT

Telomerase is a ribonucleoprotein reverse tran-
scriptase responsible for extending one strand of
the telomere terminal repeats. Unique among
reverse transcriptases, telomerase is thought to
possess a DNA-binding domain (known as anchor
site) that allows the enzyme to add telomere repeats
processively. Previous crosslinking and mutagen-
esis studies have mapped the anchor site to an
N-terminal region of TERT, and the structure of
this region of Tetrahymena TERT was recently
determined at atomic resolutions. Here we use a
combination of homology modeling, electrostatic
calculation and site-specific mutagenesis analysis
to identify a positively charged, functionally impor-
tant surface patch on yeast TERT. This patch is lined
by both conserved and non-conserved residues,
which when mutated, caused loss of telomerase
processivity in vitro and telomere shortening in vivo.
In addition, we demonstrate that a point mutation in
this domain of yeast TERT simultaneously enhanced
the repeat addition processivity of telomerase and
caused telomere elongation. Our data argue that
telomerase anchor site has evolved species-specific
residues to interact with species-specific telomere
repeats. The data also reinforce the importance of
telomerase processivity in regulating telomere
length.

INTRODUCTION

Telomerase is a ribonucleoprotein (RNP) that is respon-
sible for maintaining the terminal repeats of telomeres in
most organisms (1–5). The catalytic core of telomerase
consists minimally of two components: an RNA in which
the template is embedded (named TER in general and
TLC1 in the budding yeast Saccharomyces cerevisiae), and
a reverse transcriptase (RT)-like protein that mediates
catalysis (named TERT in general and Est2p in yeast).

In addition, telomerase from different organisms have
been shown to possess a number of accessory or
regulatory subunits that promote telomerase RNP assem-
bly, recruitment and activity.
Though the template region of telomerase RNA

typically contains no more than two copies of the telomere
repeat, telomerase is known to add long tracts of telomeric
DNA to a given primer following a single binding event
(6,7). The enzyme is also capable of extending telomeres
in vivo by multiple repeats in a single cell cycle (8,9). The
ability of telomerase to mediate repetitive copying of
the template RNA requires two types of processivity:
nucleotide addition processivity (NAP), defined as pro-
pensity of the enzyme to add nucleotides successively as
the template RNA is moved through the active site; and
repeat addition processivity (RAP), defined as propensity
of the enzyme to initiate another round of copying when
the active site reaches the 50 boundary of the template
(7,10). RAP has been postulated to require an interaction
between telomerase and the more 50 region of DNA
primer, one that is distinct from the interaction at the
catalytic site (11–13). This ‘anchor site’ interaction is
thought to allow telomerase to remain bound to DNA
in between rounds of template copying, when the DNA
product presumably unpairs from the RNA template.
A substantial body of evidence now implicates an
N-terminal domain of TERT (known variously as GQ,
RID or TEN) as the anchor site. For example, mutations
in this domain of yeast and human TERT selectively
impair RAP and alter the ability of telomerase to utilize
primers in a length- and sequence-dependent manner
(14–16). In addition, this region of yeast and Tetrahymena
TERT can bind DNA with low affinity when recombi-
nantly expressed and purified (17,18). Finally, the same
domain of yeast and Tetrahymena TERT can be cross-
linked to the 50 region of the DNA primer in the context
of a telomerase-primer complex (15,17). However, the
detailed molecular mechanisms by which anchor site
promote DNA binding and continuous polymerization is
not understood.
Recently, Jacobs et al. crystallized and determined the

structure of the N-terminal domain of Tetrahymena
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TERT (17). The structure revealed a single globular
domain with a novel fold consisting of 4 b strands and 7 a
helices. Well-conserved residues were found to be scat-
tered on two surfaces. Further biochemical analysis
demonstrated the importance of an invariant Gln residue
in promoting telomerase activity and DNA binding.
Somewhat surprisingly (in light of the ‘anchor site’
notion), mutating this Gln residue (and several other
residues) severely reduced overall activity of Tetrahymena
telomerase in vitro, but did not impair its processivity.
Thus, the study not only provides the first detailed
structural framework for analyzing a critical telomerase
protein domain, but also raises interesting questions
concerning the precise mechanism of this domain. In the
current report, we build on the observations of Jacobs
et al. and constructed a model of the homologous domain
in yeast TERT. Electrostatic calculation revealed two
positively charged surface patches, both of which were
found to be functionally important through site-specific
mutagenesis analysis. Importantly, mutations of residues
lining one of the patches (including the invariant Gln and
several non-conserved residues) specifically impaired the
RAP of yeast telomerase. Even a mild reduction in RAP
is correlated with significant telomere loss. Moreover,
we found that a previously identified point mutation in
the anchor site domain of yeast TERT simultaneously
enhanced RAP of telomerase and provoked telomere
elongation (19). Our data reveal specific molecular
features of the yeast TERT N-terminal domain that are
required for function, and suggest that telomerase anchor
site has evolved species-specific residues to interact with
species-specific telomere repeats. The results also reinforce
the importance of telomerase processivity in regulating
telomere length.

EXPERIMENTAL PROCEDURES

HomologyModeling

PSI-BLAST searches were carried out using yeast TERT
as the query on the non-redundant protein sequence
database at NCBI (20). Five iterations were run using an
E-value cut off of 0.0001. The sequence hits were compiled
into a multiple-sequence alignment using ClustalW v1.83,
from which very remote homologs were removed and
only the known telomerase reverse transcriptase sequences
were selected (21). This purged alignment was then
used to create a sequence-based profile to which the
Tetrahymena template (PDB Id: 2B2A) was aligned,
creating a structure-to-profile alignment. Pairwise
sequence alignment of the template with the query
sequence was retrieved from this structure-to-profile
alignment for use in homology modeling.
The homology modeling program NEST was used to

construct the yeast model. In particular, the Tetrahymena
template has two gaps of 10 and 6 residues, respectively,
with respect to the query sequence. The equivalent regions
of the yeast model were filled with the loop building
function in NEST. The final model was evaluated by the
programs Verify 3D and Prosall, which score structures
according to how well each residue fits into its structural

environment based on criteria derived from statistical
analysis of high-resolution structures in the PDB (22–24).
The yeast model was judged to be of good quality and
found to superimpose well to the Tetrahymena template
with an RMS deviation for the backbone atoms of 0.8 Å
(Supplementary Figure 1C). The electrostatic properties
of the TERT GQ domains were calculated with a modified
version of the program Delphi and visualized in the
program GRASP, as previously described (25,26).

Yeast strains, plasmids and plasmid shuffle

Plasmid pRS426-EST2 was made by cloning a PCR
fragment containing EST2 and 400 bp of flanking
sequences in between the Bam HI site and Sac I site of
pRS426. Plasmid pSE-EST2-C874, containing a protein
A-tagged EST2 gene, has been described (27). This fully
functional Est2p is designated wild type telomerase
throughout the text. All substitution mutations in
the GQ domain of EST2 were generated by using the
QuikChange protocol (Stratagene), appropriate primer
oligonucleotides and pSE-EST2-C874 as template.
All point mutations were confirmed by sequencing.
A ‘plasmid shuffle’ strategy was used to assess the
functionality of EST2 mutants. First, pRS426-EST2 was
introduced into an est2-� strain to restore telomere
length. Subsequently, the pSE-EST2 series of plasmids
were transformed into the strain. The strains bearing both
plasmids were grown briefly in YPD and then streaked on
5-FOA-containing plates to select for clones that have lost
pRS426-EST2. The colonies were then re-streaked multi-
ple times and monitored for growth defects and telomere
length alterations.

Analysis of telomere length

Chromosomal DNAs were isolated from successive
streaks of yeast clones bearing wild type and mutant
EST2 genes using the ‘Smash and Grab’ protocol, digested
with PstI, and electrophoretically separated on a 0.9%
agarose gel. Following capillary transfer to nylon mem-
branes, telomere-containing fragments were detected by
hybridization with a 32P-labeled poly(dG-dT) probe (27).

Assay for yeast telomerase

Whole cell extracts and IgG-Sepharose purified telomerase
were prepared as previously described (15,27). Each
primer extension assay was carried out using 15 ml of
IgG-Sepharose pretreated with 4mg of protein extract,
and was initiated by the addition of a 15 ml cocktail
containing 100mM Tris–HCl, pH 8.0, 4mM magnesium
chloride, 2mM DTT, 2mM spermidine, primer oligo-
deoxynucleotides and varying combinations of labeled
and unlabeled dGTP and dTTP. Primer extension
products were processed and analyzed by gel electrophor-
esis as previously described. The oligodeoxynucleotide
primers used for telomerase assays were purchased from
Sigma-Genosis and purified by denaturing gel electro-
phoresis prior to use. The primers have the following
sequences: TEL15, TGTGTGGTGTGTGGG; OXYT1,
GTTTTGGGGTTTTGGG; TEL15(m4,5), TGTGTGGT
GTCAGGG.
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For determination of the processivity of substitution
mutants, assays were performed using OXYT1 or
TEL15(m4,5) as primer. The signal for each product was
determined by PhosphorImager (Molecular Dynamics)
and normalized to the amount of transcript by dividing
against the number of labeled residues. The OXYT1
primer ends in 3 Gs, and can align to only one site along
the yeast RNA template, thus supporting the addition
of a 7-nucleotide sequence (TGTGGTG) up to the
50 boundary of the template. For nucleotides beyond
the +7 position, we assume a sequence of TGTG . . .
(Calculations were made assuming other compatible
sequences, and the conclusions were not altered.)

Processivity Pi ¼
XN

j¼ iþ1

ðTjÞ=
XN

j¼ i

ðTjÞ,

where Ti denotes the amount of transcript calculated
for the primer+ i position and N is the highest number
such that a visible signal can be discerned in the
PhosphorImager file for the primer+N product. RAP is
defined as P7, i.e. the processivity at the point of
translocation.

Protein and RNA analysis

The levels of protein A-tagged yeast TERT in cell extracts
were determined by enrichment on IgG-Sepharose and
subsequent western blotting as previously described (18).
The levels of TERT-associated TLC1 RNA were deter-
mined by semi-quantitative RT-PCR using 2X RT-PCR
Master Mix (USB Corp.) and primers designed to amplify
an �300 bp product (TLC509: GCAAAGTTTGCACG
AGTT and TLC793R: CTTTTTGTAGTGGGATTTA
TTC).

RESULTS

Construction and analysis of a homology model of the
putative anchor site from yeast TERT

To engage in a structure-based analysis of the yeast
telomerase GQ domain, we first constructed a homology
model of this domain using the structure of Tetrahymena
domain as the template. The alignment of the template
and target sequence is a critical step in generating a high-
quality model, the accuracy of the modeled structure being
greatly dependent on the quality of the alignment (28).
Because the level of sequence homology between these
domains of yeast and Tetrahymena TERT is only 14%,
we used a structure-to-profile alignment approach (which
incorporates sequence information from many family
members) to obtain the optimal sequence alignment (see
Materials and Methods Section and Supplementary
Figure 1). The pairwise sequence alignment between the
yeast TERT GQ domain and the Tetrahymena template
was then extracted from the structure-to-profile alignment
and used in the modeling program (Supplementary
Figure 2A). This alignment approach has demonstrated
success in providing the basis for generating high-quality
homology models for proteins with limited sequence

similarity to the template (29,30). For model building,
we utilized the NEST program, which employs rigid-body
assembly coupled with loop modeling (31). A recent
comparative evaluation of commonly used modeling
programs indicates that NEST performs better than or
similarly to other programs (32). The final yeast model of
the GQ domain was evaluated with Verify 3D and ProsaII
and judged to be of reasonable quality (data not shown).
The model also superimposed well onto the template with
an RMS deviation for the backbone atoms of 0.8 Å
(Supplementary Figure 2B). Notably, the yeast model
can readily account for some of the prior mutagenesis
results. For example, both W115 and G123, which were
previously demonstrated to be essential for telomerase
function, are likely to be important for the structural
integrity of this domain because the former packs into the
interior and the latter is located within a tight turn, as
glycines often are (Figure 1B).
We then used electrostatic calculation to identify

potential DNA-binding sites on the surface of the yeast
domain (31). This analysis revealed two positively charged
patches separated by a ridge on one face of the domain
(Figure 1). Comparable patches can be observed on the
surface of the Tetrahymena domain (data not shown).
The top patch in the yeast domain (named patch 1) is lined
by several basic residues including K111, K116 and H119.
The bottom patch (named patch 2) contains the invariant
Gln (Q146, which is equivalent to Q168 in Tetrahymena
TERT) as well as R151, N153 and H156. Notably, none
of these residues with the exception of Q146 are conserved
in Tetrahymena.

The positively charged patches are required for telomerase
function in vivo

Based on modeling and electrostatic calculation, we chose
nine residues in the GQ domain of yeast TERT for
detailed mutagenesis analysis. Seven of these are located
on either patch 1 (K111, K116 and H119) or patch 2
(Q146, R151, N153 and H156). G149 and C152 are also
included in the analysis for comparative purposes. G149
is universally conserved and likely to be functionally
important. C152 is located next to patch 2 but points away
from it, and may therefore be unimportant. A ‘plasmid
shuffle’ strategy was used to generate a set of isogenic
yeast strains containing plasmid-borne wild type or
mutant EST2 genes (see Experimental Procedures
Section). To facilitate detection and telomerase isolation,
the EST2 genes were all fused to a protein A tag. The
strains were propagated by repeatedly restreaking for
single colonies on plates, and then assessed for growth and
telomere defects.
As shown in Figure 2, of the 10 mutants, only Q146A

and G149A (Ala substitution of invariant residues)
exhibited severe growth defects by the third re-streak
(�80–100 generations after loss of wild type EST2). The
Q146E mutant failed to show significant growth defects,
suggesting that this substitution is less disruptive. Not
surprisingly, all three mutants also manifested severe
telomere loss (Figure 2B). Interestingly, despite their lack
of growth defects, 4 of the other 7 mutants (K111A,
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H119A, R151A and N153A) also manifested moderate
to severe telomere attrition, indicating that these residues
are also functionally important. The remaining three
mutants (K116A, C152A and H156A) appear to be
functionally intact in their ability to maintain wild type
telomere lengths.

Effects of patch mutations on telomerase protein level,
RNA association and enzyme activity

To investigate the basis for the observed telomere
maintenance defects, we first measured the levels of Est2
protein in the mutant strains. Cell extracts were prepared
from the strains and the protein A-tagged Est2p isolated
on IgG-Sepharose. The tagged Est2p were then detected
using antibodies directed against protein A. As shown
in Figure 3A (top panel), different mutations in the GQ
domain had different impacts on Est2p protein levels in
cell extracts, with H119A and G149A causing the most

severe reduction and K111A, Q146A and Q146E causing
moderate protein loss. We next assessed the levels of
Est2p-associated TLC1 RNA using RT-PCR, and found a
correlation between the levels of Est2p and TLC1 RNA in
IgG-Sepharose precipitates (Figure 3A, bottom panel).
For example, both the H119A and G149A samples
showed very low levels of TLC1 RNA, whereas the
K111A, Q146A and Q146E samples contained slightly
higher levels (but still significantly reduced in comparison
with the wild type sample). These findings suggest that
mutations in the GQ domain can have a destabilizing
effect on either the TERT protein or the telomerase
complex.

To further examine the effect of GQ domain mutations,
we assayed the levels of telomerase primer extension
activity in IgG-Sepharose precipitates using a 15-nt primer
with a canonical yeast telomere repeat sequence
(Figure 3B). As demonstrated previously by us and
others, yeast telomerase is relatively non-processive on
this primer and can complete mostly one round of repeat
addition, adding up to 7 nt to the starting primer. Again,
the amounts of primer extension activity correlated with
the levels of Est2p and TLC1 RNA in the IgG-Sepharose
precipitates. Thus, none of the mutations seem to impair
greatly the catalytic competence of an assembled telomer-
ase complex.

In several previous studies, we demonstrated that yeast
telomerase becomes more processive on primers that
contain non-yeast telomere sequences (15,27,33). The use
of such primers allowed us to identify residues in Est2p
that specifically impair RAP. We therefore subjected the
newly constructed GQ domain mutants to telomerase
assays using one such primer, named OXYT1 (Figure 4A).
As expected, wild type telomerase became more processive
on this primer and extended it by as many as 18 nt.
Interestingly, mutants that exhibited reduced RAP
(Q146A, Q146E, R151A, N153A) were all located on
patch 2. The alterations for all of the affected mutants
were qualitatively similar and can be visualized by
comparing the product distribution of the wild type,
R151A and N153A enzymes (Figure 4B and C). During
the first round of synthesis, the R151A and N153A mutant
appear to be slightly more proficient at adding nucleotides
successively such that a greater proportion of the
extension products reached the +7 length. However,
the fraction of products that were further extended by the
mutant was significantly reduced, indicative of a clear
defect in repeat addition. More specifically, while the WT,
R151A and N153A telomerase generated similar amount
of +7 product (pre-translocation), the mutant synthesized
50–70% less longer products (post translocation, shaded
region). Quantitative analysis revealed statistically sig-
nificant reductions (�2-fold) in RAP for all of the affected
mutants (Figure 4D). In contrast, the K111A, K116A,
C152A and H156A mutant were found to have normal
RAP. The processivities of the H119A and G149A
telomerase were not assessed quantitatively due to low
product intensities. To examine the generality of the RAP
defect, we performed an additional series of telomerase
assays using primer TEL15(m4,5), which also contained
non-yeast telomeric sequence. Again, the R151A and
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Figure 1. Structure of the putative anchor site of yeast TERT.
(A) The electrostatic surface potential of the yeast TERT GQ domain
is calculated and displayed. Red dots designate the location of the
invariant Q146 residue. Two patches with positive electrostatic surface
potential are indicated by arrows. (B) The residues subjected to
mutagenesis are displayed in different colors based on the phenotypes
of the mutant: green, no phenotype; red, reduced RNP level; cyan,
reduced RAP and magenta, reduced RNP level and RAP. Two other
residues noted in this report, W115 and E76, are highlighted in blue
and yellow, respectively.

5216 Nucleic Acids Research, 2007, Vol. 35, No. 15



N153A mutation caused significant RAP loss, whereas
the C152A and H156A mutation had no effect
(Supplementary Figure 3). Together, these findings
indicate that residues in the positively charged patch 2
are important for the RAP of telomerase.

In addition to loss of RAP, deletion of the GQ domain
was shown previously to result in telomerase with reduced
ability to utilize primers [such as OXYT1 and
TEL15(m4,5)] that form short hybrids with telomerase
RNA (15). To determine if the substitution mutations
caused the same defect, we calculated for each mutant the
ratio of its activity on the OXYT1 primer to its activity on
the TEL15 primer (which can form a long hybrid with
telomerase RNA) and normalized the ratio to the wild
type enzyme (Figure 4E). Interestingly, we found that all

of the patch 2 mutants manifested relative reductions in
their activities on the OXYT1 primer. The magnitude of
decrease ranged approximately from 2 to 4-fold. A relative
reduction in activity was observed as well for the R151A
and N153A mutant when the assays were performed using
the TEL15(m4,5) primer (Supplementary Figure 3).
Thus, the patch 2 mutants evidently exhibited both the
primer utilization and processivity defects associated with
deletion of the entire GQ domain.

A previously identified mutation in the anchor site region
simultaneously provoked telomere elongation and caused
an increase in the RAP of telomerase

Ji and colleagues recently described a mutation (E76K) in
the anchor site domain of EST2 that caused telomere
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Figure 2. Mutations in the GQ domain impair cell growth and telomere maintenance. (A) A ‘plasmid shuffle’ strategy was used to obtain strains
carrying mutated EST2. The strains were re-streaked three times and the growth for the third streak shown. (B) Chromosomal DNAs were obtained
from successive streaks of the yeast strains carrying mutated EST2, and checked for telomere length by Southern analysis.
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elongation. Based on their studies, they suggest that the
mutant is not altered with respect to enzyme activity, but
rather abnormal in TEL1-mediated regulation (19).
However, in their analysis, Ji and colleagues used primers
that did not support RAP, making it difficult to determine
if the mutation affected this aspect of telomerase property.
We therefore decided to re-examine the in vivo and in vitro
functions of this mutant using our system. Consistent
with earlier findings, we observed substantial telomere
elongation in yeast strains contain the EST2 E76K allele
(Figure 5A). More interestingly, we found that the E76K
telomerase exhibited an �20% increase in RAP relative
to WT telomerase (Figure 5B–D). The difference is
relatively modest and somewhat difficult to visualize on
the PhosphorImager scan (Figure 5B). However, quanti-
tative comparison of the gel lanes showed a significant
increase in the relative abundance of the second round
products for the E76K enzyme (Figure 5C, compare the
blue and red trace in the shaded region). Moreover, the
difference is reproducible and statistically significant in
different reaction conditions (Figure 5D). For example,
the probability of initiating a second round of repeat

addition on the OXYT1 primer was 0.55 for WT
telomerase and 0.64 for the E76K enzyme when dGTP
and dTTP were included at 50 and 0.3mM, respectively.
This difference in RAP was also observed in reactions
using 0.3mM dGTP and 50 mM dTTP (Figure 5D).
Notably, this kind of increase was not observed in any
other mutants characterized in this study, including the
ones that did not induce any telomere length alteration
(e.g. H119A, C152A and H156A). We examined a second
est2 mutant reported to induce telomere elongation
(N95D). However, in our system, this mutant caused a
very mild telomere lengthening phenotype, and we did
not observe a statistically significant increase in RAP
(Supplementary Figure 4 and data not shown). We
conclude that the E76K mutation has a previously
undetected effect on the intrinsic enzymatic properties of
yeast telomerase, in a manner that is consistent with its
ability to induce telomere elongation.

DISCUSSION

Molecular features of yeast telomerase GQ domain
required for RAP

The present analyses of the GQ domain of yeast TERT
have revealed functionally important residues. Here, we
divide the residues into three classes based on phenotypes
of the mutants and discuss their mechanisms (see
Figure 1B for a visual summary of the results). The first
class, including K111 and H119 and located in patch 1,
appears to have a ‘stabilizing’ effect on the telomerase
complex; substitution at these positions reduced the levels
of RNP and telomerase activity. However, the enzymatic
property of telomerase showed no detectable change.
The second class, including R151 and N153 and located
in patch 2, appears not to be required for telomerase
stability, but rather the primer interaction function of
GQ domain. Substitution at these positions resulted in
loss of activity on primers that form short hybrids with
telomerase RNA and loss of RAP. These defects are
qualitatively similar to defects exhibited by deletion of the
entire GQ domain (15), suggesting that the key function of
the GQ domain requires patch 2. While the level of
telomerase RNP were reduced slightly in both the R151A
and N153A mutant (Figure 3A), it is unlikely that this
reduction can account for the telomere shortening
phenotype of the mutants; the C152A and H156A mutants
suffered slight RNP reduction, yet exhibited no telomere
phenotypes. The third class, comprising only of Q146, is
apparently required for complex stability as well as primer
interaction, because substitution at this position results in
the combined phenotype of the first two groups of
residues. Thus, despite its surface location, Q146 must
mediate important structural as well as enzymatic func-
tions, consistent with its absolute conservation through
evolution. Like the R151A and N153A mutant, the
senescent and telomere shortening phenotype of the
Q146A mutant cannot be attributed to the reduction in
RNP level alone because the K111A suffered a compar-
able degree of RNP loss, yet exhibited only mild telomere
shortening. Because all of the functionally important
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residues with the exception of Q146 are not well
conserved, our data suggest that telomerase has evolved
species-specific residues to mediate important GQ domain
functions. This notion is consistent with the high degree of
telomere sequence divergence in different organisms.
Interestingly, the mutation that confers increased RAP
(E76K) does not map near patch 2. Instead, the residue
packs against two alpha helices (a5 and a6 in the
designation scheme by Jacob et al.) that are positioned
away from the basic patch (Figure 1B). Thus either other
regions of the domain also regulate DNA binding, or the
effect of this mutation may be indirect.

Is the conserved GQ domain of telomerase universally
required for RAP?

A particularly interesting question raised by previous and
current analyses of telomerase in different organisms
is whether the contribution of GQ domain to RAP is
universally conserved. Such a contribution has been

unequivocally demonstrated for the yeast and human
domain (15,16,34). However, several analyses of
Tetrahymena TERT mutants have failed to disclose such
a contribution (17,35,36). Indeed, the same mutation in
yeast and Tetrahymena can apparently have different
effects on telomerase enzymology. For example, Ala
substitution of the invariant Gln caused a significant
reduction in RAP in yeast, but not in Tetrahymena (17).
The reason for this disparity is not understood, but several
potential explanations may be considered. One possibility
is that the DNA-binding function of Tetrahymena TERT
has evolved to serve another aspect of telomerase
enzymology, e.g. primer binding during initiation.
Alternatively, the presence of other DNA-binding
domains or proteins in Tetrahymena telomerase may
obscure the contribution of the GQ domain to RAP.
Finally, it should be noted that all of the Tetrahymena
studies have been performed using in vitro reconstituted
telomerase, which differs significantly with respect to
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processivity from the endogenous enzyme (37–39). In this
regard, we note that a protocol for reconstituting mutant
Tetrahymena telomerase in vivo was recently reported (40).
It may be interesting to re-examine the contribution of GQ
domain to RAP in this presumably more physiologically
relevant system.

Implications for telomere extension in vivo and telomerase
evolution

In earlier studies, we demonstrated that yeast telomerase
mutants with reduced and enhanced NAP supported the
maintenance of shorter and longer than wild type
telomeres, respectively (41). We have also identified
mutations that simultaneously impaired RAP and telo-
mere maintenance (27). In this report, we further show

that a mutation in the GQ domain of yeast TERT that
resulted in increased RAP also induced telomere elonga-
tion. Collectively, these data provide strong argument for
the notion that the intrinsic processivity of telomerase
is an important determinant of telomere length.
Furthermore, they support a recently proposed model of
telomere length homeostasis (1,8). This model has two key
premises. First, there is a feedback loop that regulates the
activity of telomerase as a function of telomere length,
such that longer telomeres are more refractory to
extension. Second, regulation of telomerase activity
occurs at the step of initiation rather than processivity.
In this model, telomere lengths are at equilibrium when
the average shortening rate (SR, dictated by incomplete
end replication) is balanced by the average extension rate,
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which can be obtained by multiplying the probability of
initiation (Pi) with average processivity (E), such that

SR ¼ PiðLÞ � E

Note that as stated before, Pi is a function of telomere
length (L) and is negatively correlated with L. Thus for
example, when processivity is enhanced by a telomerase
mutation (e.g. the E76K mutation), equilibrium can only
be achieved by reducing Pi. A reduction in Pi, in turn, can
be achieved by increasing telomere length. Thus, the
model predicts an increase in equilibrium telomere length
in the presence of a processivity-enhancing mutation,
precisely as observed.

The occurrence of yeast telomerase mutants with
increased processivity suggests that there is relatively
little evolutionary pressure to optimize this aspect of yeast
telomerase enzymology. This may be related to the fact
that yeast cells have a very low telomere shortening rate
(3–4 bp generation) such that a telomerase with low
processivity is sufficient to maintain telomere length
homeostasis. It is interesting that in some organisms
with greater telomere attrition rate (e.g. humans),
telomerase has apparently evolved to become more
processive, perhaps to discharge the function of maintain-
ing telomere length homeostasis.
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