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Abstract

Electrocorticographic (ECoG) signals represent cortical electrical dipoles generat-

ed by synchronous local field potentials that result from simultaneous firing of

neurons at distinct frequencies (brain waves). Since different brain waves correlate

to different behavioral states, ECoG signals presents a novel strategy to detect

complex behaviors. We developed a program, EEG Detection Analysis for

Behavioral States (EEG-DABS) that advances Fast Fourier Transforms through

ECoG signals time series, separating it into (user defined) frequency bands and

normalizes them to reduce variability. EEG-DABS determines events if segments

of an experimental ECoG record have significantly different power bands than a

selected control pattern of EEG. Events are identified at every epoch and frequency

band and then are displayed as output graphs by the program. Certain patterns of

events correspond to specific behaviors. Once a predetermined pattern was selected
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for a behavioral state, EEG-DABS correctly identified the desired behavioral

event. The selection of frequency band combinations for detection of the behavior

affects accuracy of the method. All instances of certain behaviors, such as freezing,

were correctly identified from the event patterns generated with EEG-DABS.

Detecting behaviors is typically achieved by visually discerning unique animal

phenotypes, a process that is time consuming, unreliable, and subjective. EEG-

DABS removes variability by using defined parameters of EEG/ECoG for a

desired behavior over chronic recordings. EEG-DABS presents a simple and

automated approach to quantify different behavioral states from ECoG signals.

Keywords: Computer science, Biomedical engineering, Medical imaging,

Neurology, Neuroscience

1. Introduction

Understanding animal behavior (ethology) in natural conditions has been a

hallmark of biology, beginning with Charles Darwin (Burghardt, 2009). By

observing individuals or groups, scientists have been able to detect and understand

complex animal behaviors, such as individuals interacting with others or

individuals interacting with their environment (Homburger et al., 2014). However,

discerning and deciphering behavioral states typically requires continuous

observations over long periods of time. Unsurprisingly, the process of analyzing

hours of activity is incredibly time consuming and not always accurate, reliable, or

practical. Furthermore, defining behavioral parameters from a phenotype, such as

the start and end time of a particular action, is often variable. One possible solution

to the ambiguity is using electrocorticographic (ECoG) signals to create clear,

defined parameters. Previously, we created a graphical user interface (GUI) called

EEGgui that assisted in the detection of seizures observed after traumatic brain

injury (TBI) using ECoG recordings (Sick et al., 2013). This was achieved by

advancing short time period Fourier Transforms (STPFs) through ECoG signal

time series to asses signal power in predefined frequency bands. Fast Fourier

Transforms are a well-established technique chosen for EEG-DABS analysis

because it is a widely utilized and understood algorithm to convert time domain

functions, such as ECoG, into the frequency domain. Power in each frequency

band was normalized to reduce variability between animals, and then events were

only detected when their normalized power values exceeded values from an

established “normal” ECoG recording (Sick et al., 2013). Seizure activity was

quantitated using a predetermined pattern of power increase in all of the spectral

frequency bands at every epoch.

Building on the previous design, we have altered the GUI to provide the possibility

to detect multiple behavioral states, in addition to seizures, in an automated fashion

over long recording sessions. EEG-DABS functions by detecting significant
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changes in frequency bands at every epoch, which creates a unique pattern of

events that can then be correlated to a specific behavioral state. Furthermore, EEG-

DABS is designed to automatically batch process multiple hours of records, by

importing and analyzing data.

EEG-DABS incorporates a power normalization algorithm to facilitate EEG/ECoG

comparisons amongst animals. The normalization corrects for quality differences

between animal’s EEG/ECoG recordings and slow any long-term changes that

might occur in a chronic recording (Gunasekera et al., 2015). One major problem

stems from the tissue electrode interface, which affect signal amplitude and

consequently spectral power (Freire et al., 2011). For example, activation of

microglia during an inflammatory response will alter ionic concentrations, whereas

activation of astrocytes, resulting from a glial scar, might cause the electrode tip to

become encapsulated, which increases electrical impedance (Polikov et al., 2005;

Vetter et al., 2004; Griffith and Humphrey, 2006). In order to correct this and allow

animal comparison, EEG-DABS normalizes spectral power data continuously over

time using median decaying memory, which normalizes power in each epoch of

data to the previous 120 epochs (see Section 2.6: Median Decaying Memory).

Median decaying memory was chosen for normalization because it outperformed 5

other common normalization techniques used to detect seizures in a recent

publication. Logesparan and colleagues (2015) found that when removing signal

noise, median decaying memory most accurately represented the original data and

did not impair seizure detection ability. Moreover, its effects were consistent across

human subjects, databases, subject vigilance, and lengths of recordings

(Logesparan et al., 2015). Therefore, long-term changes in signal do not affect

event detection since each section is normalized to the preceding epochs.

EEG-DABS described here uses three different modes to analyze ECoG

recordings: Single File Mode, Batch File Mode, and Raster Plot Only Mode,

which are described in more detail in the results section. The logic of the GUI was

that Single File Mode would be used first to correlate a pattern to a behavior, and

then the other two modes would be used to quantify that behavior over a long series

of recordings. EEG-DABS detects significant changes in ECoG power compared

with the power distribution of a reference ECoG in up to 10, user defined

frequency bands. There are 6 default bands that correspond to traditional ‘brain
waves’: delta (0.5–4 Hz), theta (4–8 Hz), alpha (8–12 Hz), beta1 (12–18 Hz), beta2

(18–30 Hz), and gamma (30–60 Hz). Once a behavior is calibrated, EEG-DABS

can then be used to quickly quantify the occurrences of that behavior over long

recordings. To quantify EEG-DABS success rate, the commonly observed rodent

behavior freezing was utilized. Freezing, which was defined as a moving before

and after stopping, was correctly identified by EEG-DABS using a predetermined

pattern of events.
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2. Material and methods

2.1. Lab chart macro

In order to simplify EEG collection and analysis, our laboratory created a simple

macro in LabChart that starts, stops, saves, and then begins a new recording

instantly every hour (Example Macro in Supplemental File 1). After the recording

has completed, the macro will export all the files automatically, adding a digit to

each subsequent file. Therefore, a week long recording will be broken up into 168

segments of one hour each. After the text files are exported, EEG-DABS can begin

importing the data. By breaking up ECoG recordings into smaller divisions, the file

size and computational power is reduced.

2.2. EEG-DABS analysis parameters

EEG-DABS allows the user to define a number of parameters before processing.

These parameters can be assigned individually or left as defaults. The parameters

(defaults) are the Recording Length (60 min), Sampling Rate (2,000 samples/s),

Epoch Length (4 s), Event Limit (standard deviation; 4), FFT Window (512), FFT

Overlap (0.5), and Length of FFT (4,000) (Fig. 1A). The event limit is the number

of standard deviations away from the control power data in each spectral band that

the experimental data must reach in order for an event to be considered significant.

FFT window is the number of data points for each FFT used in the MATLAB

windowing function (pwelch). EEG-DABS uses the Hamming window function,

which is a weighted function used to reduce the effect of discontinuities that

emerge when analyzing fixed duration segments (spectral leakage) (Harris, 1978).

FFT Overlap describes what proportion of each successive FFT will overlap.

Increasing the overlap increases frequency resolution of the FFT at the expense of

computation time. Length of FFT is the number of data points that will be used to

calculate the final FFT at each epoch. The default parameter of 4,000 will produce

a FFT frequency resolution of 0.5 Hz when the sampling rate is 2000 pts/s and

overlap is 0.5. Frequency resolution becomes important when establishing the

width of frequency bands used during analysis. Decreasing the FFT length

decreases the frequency resolution but increases temporal resolution of the analysis

as it will allow shorter event epochs. The FFT length must be the same or less than

the number of data points per epoch (defaults produce 8,000 points), or the spectral

comparisons will not be time locked to the original data.

2.3. Load data

EEG-DABS uses 6 default frequency bands, delta (0.5–4 Hz), theta (4–8 Hz),

alpha (8–12 Hz), beta1 (12–18 Hz), beta2 (18–30 Hz), and gamma (30–60 Hz).

Four additional frequency bands may be added and the size of the frequency bands

may be changed. However, this must be done prior to loading the data. Once
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“Specify Frequency Bands” is selected, a new window will appear allowing the

user to enter the start frequency, end frequency, and the name of each frequency

band. In addition, the user defined frequency bands can be saved and loaded so the

user does not have to repeat entering the same information (Fig. 1B).

To begin processing, which can occur off-line, all original EEG recordings must be

saved as text files. The recordings should have two data entries, time and voltage,

[(Fig._1)TD$FIG]

Fig. 1. EEG-DABS layout. A, The main window of EEG-DABS allows the user to change the default

analysis parameters, choose the frequency bands they want to use, generate new control powers,

generate a normalization file, and load and analyze their data. B, The first step when using EEG-DABS

is to select which frequency bands will be used for the analysis. Checking “Specify Frequency Bands”
opens a new window where the start frequency, end frequency, and name of frequency band can be

entered. Previously used frequency ranges can instead be loaded by clicking the “Load Previous

Frequency Bands” button. Pressing “Done” will store the frequency band data and close the window. C,

If the file has no problems, the raw EEG will be displayed. When “New Control Powers” is selected,

new buttons will appear allowing the user to enter a region (in min) where they want to generate their

control powers. EEG-DABS uses median decaying memory normalization, which requires a minimum

of 120 epochs to begin. A 2 s epoch requires a range of at least 4 min (4 min X 60 s ÷ 2 s per epoch =

120 epochs). The region used for normalization can be changed by selecting “New Normalization”
however it must be done after the new control file is created.
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each displayed in its own column. If files contain anything other than 2 data

columns, an error will occur. Once the data is loaded, the Load Data function

advances through the recording, adding NaN (not a number) values whenever there

are missing voltage values (e.g when files have been edited to remove recording

artifacts), in order to correct inconsistencies in the file. EEG-DABS also has no

restrictions on the length of file or if there are breaks in time. Therefore, the

recording does not have to be continuous, which maintains flexibility when

generating ECoG data over great lengths of time. This is beneficial for recordings

that were paused and then later resumed. While the data is being imported, a

“Loading Data . . . ” message appears, which will be replaced with “Done” when

the import has finished.

Note: Before loading data, analysis parameters must be chosen or the defaults will

be used. This is the last time a user can change the parameters and will be

prompted with a warning message before they can proceed.

2.4. Generating new control data

In order for the program to detect events, EEG-DABS must compare normalized

power values in each selected spectral band from the experimental recordings, to

normalized control power values in the same spectral bands from a comparator

baseline recording. The program was designed to allow the user to generate their

own baseline file. The baseline data file could be a period of ECoG during a pre-

defined behavioral state (e.g. awake exploring) from a naïve animal for comparison

between animals, or it could be a period of ECoG from the same animal for

comparison to a later treatment or experimental condition. The user is also able to

create an average baseline using multiple animals (see below).

When creating new control data, the user must first select the “New Control

Powers” check box, which exposes two new features; two boxes to enter a range of

time and a button labelled “Generate Control Powers” (Fig. 1A). The user will then
import data by selecting their file of interest, causing a figure of the raw, un-

normalized EEG to appear (Fig. 1C). The displayed figure allows the user to

determine the region of EEG they wish to use for their baseline. The region that the

user determines should be inputted into the time boxes in minutes, and then

“Generate Control Powers” button should be clicked, which creates a baseline file.

If the data is not in the correct format, an error will appear. The generated file

contains the mean powers at each frequency band and their respective standard

deviation, based upon the preselected analysis parameters. Due to the normaliza-

tion process, the first 120 epochs need to be blank (see Section 2.6: Median

Decaying Memory) or an error will appear. One hundred and twenty epochs for the

default parameters (2 s epoch) would require 240 s or 4 min of recording.

Article No~e00344

6 http://dx.doi.org/10.1016/j.heliyon.2017.e00344

2405-8440/© 2017 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

http://dx.doi.org/10.1016/j.heliyon.2017.e00344


Note: If the user wants to make a new control powers file composed of multiple

animals, they must first create new control powers for each individual animal.

Next, they need to generate an array of means and standard deviations for each

selected spectral band powers for the group. Once this is completed, they will need

to open the “controls.mat” file in MATLAB, replace the values stored in that array

with the new calculated multi-animal means and standard deviations, and save the

file with the same name. EEG-DABS only uses “controls.mat” for its comparison

with the experimental segments of ECoG (Supplemental File 2).

2.5. Normalization

The GUI allows the user to manually select a region of EEG used for normalization

of their file. Similar to generating new control data, if “New Normalization” is

selected, boxes appear for the user to enter the start and end time. The region

selected must be at least 120 epochs long (see Section 2.6: Median Decaying

Memory) or an error will appear again. Once “Generate Normalization” is pressed,
the normalization values are stored and will continue to be used until “New
Normalization” is selected again.

Note: If the user is also planning on creating a new control powers file, it must be

done prior to this point. A message will appear warning the user that both boxes

need to be checked before continuing with normalization. If “New Control

Powers” and “New Normalization” are both selected, the user will first generate

the control powers which then displays a prompt for the user to then enter the

normalization region. The region of EEG used to generate control power data and

normalization can be the same.

2.6. Median decaying memory

Before events can be detected, signal normalization must be performed in order to

limit variations in spectral power that might occur, due to variations among

animals in ECoG signal quality or slow changes that occur over time. The goal of

normalization is to adjust the raw power values among animals to reduce

variability and thus facilitate power comparisons. A more limited, previous method

(Sick et al., 2013), normalized spectral powers derived from ECoG signals at each

epoch by dividing them by the power obtained from the frequency band out of the

range of interest (e.g. power value in the 100–200 Hz frequency band). This type of
normalization works well but assumes first that there are no changes in spectral

power in that frequency range due to experimental conditions, and second that any

long-term changes in power due to changes in signal quality are proportional over

all frequency bands. EEG-DABS utilizes median decaying memory normalization

to overcome these constraints. This method normalizes power in each spectral band

to the power of the preceding set of epochs in the same spectral band.
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Median decaying memory is based on the Osorio-Frei method for seizure

detection, which normalizes the power of the EEG foreground power (FP) to the

background power (BP) with an exponentially decaying memory (Osorio et al.,

1998). The foreground power is a moving window over the recent 2 s sequence

defined as

FP kð Þ ¼ median yk
2; yk�1

2; : : : ; yk�q1þ1
2

n o
(1)

with q1 = 480, which is the order of the median filter. The background power is

defined as:

BP kð Þ ¼ 1� λð Þmedian FP k � 1ð Þ : : : FP k � 120ð Þf g þ λBP k � 1ð Þ (2)

Inital conditions : BPð1Þ ¼ FPð1Þ

where λ is the decaying rate for the background (λ = 0.99923) and k is the index of

the current epoch that is being analyzed. The relative power (RP) is calculated by:

RP kð Þ ¼ FP kð Þ�BP kð Þ (3)

In simple terms, median decaying memory normalizes the current epoch to the

median power of the previous 120 epochs (Osorio et al., 1998; Kuhlmann et al.,

2009). The effect is to normalize power values and to faithfully detect more rapid

changes in power while eliminating slower, systematic changes in power.

Beginning with the alpha frequency, its power is calculated for 120 epochs (only

in the predetermined frequency range) and its median is then determined (Eq. (2)).

The median value will then be used to normalize alpha for the subsequent 120

epochs (Eq. (3)). This process will repeat for every frequency band and will

continue through the entire recording. In this way, each epoch is individually

normalized without overlap and any changes that would occur in the recording,

such as a gradual dampening, will be corrected with median decaying memory.

Since every epoch is normalized to the previous 120 epochs, there will be a gap at

the beginning of the experimental file because nothing proceeds it. If a region of

interest appears within the first 120 epochs, the user can manually select a region

they wish to normalize the first 120 epochs to by selecting “New Normalization.”
In Batch file and Raster Plot Only mode, the last 120 epochs of the preceding file

will be used to normalize the beginning of the subsequent file.

2.7. Animals and ECoG recordings

All animal procedures were approved by the Institutional Animal Care and Use

Committee at the University of Miami Miller School of Medicine. To record ECoG

activity, rats had two silver-silver chloride wire electrodes implanted in their skull

to a depth just over the dura (one 2 mm posterior from bregma, 3 mm right of

midline and one 2 mm from lambda, 2 mm lateral to midline). A third electrode,

Article No~e00344

8 http://dx.doi.org/10.1016/j.heliyon.2017.e00344

2405-8440/© 2017 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

http://dx.doi.org/10.1016/j.heliyon.2017.e00344


which served as the amplifier ground, was secured to a screw implanted over the

contralateral hemisphere. The electrode leads were connected to one side of a

magnetic electrical connector (MagsafeTM, Apple, Inc.), which was secured to the

skull with dental acrylic, and the animal’s skin was closed with surgical staples.

Recordings began 24 h after surgery.

Animals were recorded for one hour using a custom made headstage. The

headstage used a unity-gain differential integrated circuit (Linear Technologies

LT1101), high pass filtered above 0.5 Hz, which passed the ECoG signal to an

second stage amplifier (CWE Model 820; MITRE Corporation, Bedford, MA)

providing 100X amplification and additional low-pass filtering at 500 Hz, giving

an effective signal bandpass of 0.5–500 Hz. Using PowerLab and LabChart

software (ADInstruments, Colorado Springs, CO), the signals were then digitized

and recorded. Video was also recorded to measure animal movement. Behavioral

states were visually identified from simultaneous video monitoring of the awake

animals by a blinded observer. Twelve animals were used throughout the

experiments.

3. Results

In order to unbiasedly detect behaviors, a MATLAB program was developed called

EEG-DABS that automatically identifies changes in behavioral states based on

alterations of EEG/ECoG.

Even though EEG-DABS was written in MATLAB, it was only tested on a

Windows operating system, and thus Windows should be a system requirement

before running the program. To demonstrate EEG-DABS behavioral detection

capabilities, the commonly observed “freezing” behavior in Sprague-Dawley rats

was used. The key features of EEG-DABS are as follows: 1) It provides

comparisons of normalized EEG/ECoG powers in multiple spectral bands for

detection of significant differences in power. 2) It can be used along with video

analysis to first detect behaviors of interest and then to quantify the defined

behavior rapidly based on EEG. 3) It allows user-defined frequency bands and

temporal epochs for Fast Fourier Transformations. 4) It normalizes EEG/ECoG

powers using median decaying memory processing to facilitate comparisons

among animals and over long time periods. 5) It allows batch processing of EEG/

ECoG records. To allow flexibility with data analysis, we developed three different

modes to analyze EEG/ECoG data that can work alone or in concert, depending on

the question the researcher is asking: Single File Mode, Batch File Mode, and

Raster Plot Only Mode, which only shows the detected significant events. An

executable version of EEG-DABS is provided in Supplemental File 3 with

examples files available in Supplemental File 4.
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3.1. Establishing user-defined comparator behavioral state for
event detection

A key feature of EEG-DABS is its ability to compare the experimental states of

interest with a baseline/control behavioral state using an EEG/ECoG signal. To

examine freezing behavior, the EEG associated with awake, freely moving

behavior was chosen for the comparator. Awake EEG/ECoG was then selected and

processed to produce normalized control power data that were stored in the

“controls.mat” file.

3.2. Selection of EEG/ECoG single/batch file and analysis output
display

EEG-DABS has the option to analyze the data in three different modes: Single File

Output Fig. 2, Batch File Output, or Raster Plot Only, displaying only EEG/ECoG

power events that are significantly different from control powers. Further

description of these modes and an explanation of the calculations for the analysis

along with examples from data produced in our laboratory are shown below.

Example outputs from each of these modes are shown below Fig. 3, Fig. 4.

[(Fig._2)TD$FIG]

Fig. 2. Outline of data analysis. After importing the raw EEG, the GUI will perform a Fast Fourier

Transform separating the signal by power and time for either the specified frequency bands or the 6

default frequency bands. The power at each frequency band is then normalized prior to event detection.

Median decaying memory normalization was utilized to correct any signal alterations that sometimes

occur with chronic recordings. If the normalized experimental power is significantly different from the

normalized control power, based on the Event Limit parameters, the GUI will determine an event has

occurred for this frequency band (denoted as a dot) when analyzing the experimental data. This is

repeated for each frequency band in every epoch. If this is the first time analyzing the data, a new set of

control powers will need to be created prior to experimental analysis. However, a different region for

normalization can be selected after the control file is made.
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3.3. Analysis and event detection

EEG-DABS advances through each EEG/ECoG recording using FFT to compute

power in each of the pre-selected frequency bands. Power in each band is

calculated as the area under the curve, in each frequency band. Using median

decaying memory (see Section 2.6: Median Decaying Memory), power values are

normalized, stored, and plotted over time. The normalized power values are then

compared to the control values using the Event Limit (standard deviation) input

parameter. For every epoch/frequency band in which the power value differs from

the control power value by the number of standard deviations specified, EEG-

DABS will display, a dot signifying an event (Fig. 2). All data were recorded using

the sampling rate of 2000 samples/sec.

[(Fig._3)TD$FIG]

Fig. 3. Analysis Mode: Single File. Once the control powers are generated and the experimental data is

loaded, there are three different types of analyses that can be performed by EEG-DABS. The first is

Single File Mode, which will display two different windows. A, The first window has an independent

graph for each frequency band and the raw EEG. The graph of each frequency band shows where and

when an event occurs with a dot. B, The second window displays the raw EEG and the 6 frequency band

events on the same graph, making it easier to discern patterns that may correspond to a desired behavior.

Article No~e00344

11 http://dx.doi.org/10.1016/j.heliyon.2017.e00344

2405-8440/© 2017 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

http://dx.doi.org/10.1016/j.heliyon.2017.e00344


Note: Temporal resolution for event detection is dependent upon the epoch length.

Increasing temporal resolution of event detection would require shortening epoch

length but may also require changing the parameters of the FFT calculation.

3.4. Single file mode

Single file mode is useful for acquiring control power values and for testing

parameter values for FFT and event detection since it uses smaller data files.

Analyzing with Single File Mode will open two windows. The first window will

have separate graphs of each frequency band with events displayed above their

respective normalized signal, and an additional graph of the raw EEG (Fig. 3A).

The second window displays all the detected significant frequency events plotted

over a single graph of the raw EEG signal (Fig. 3B). Single File mode is beneficial

for analyzing only one file, typically 1 h, in detail. The first window provides more

information by plotting the normalized power bands and detected events. The

second window is useful for deciphering if a pattern of detected events corresponds

to a behavior since all the frequency bands are displayed directly above each other

(Fig. 3B).

[(Fig._4)TD$FIG]

Fig. 4. Batch File and Raster Plot Only Analysis with EEG-DABS. Batch File and Raster Plot Only

Mode are the final two analyses that can be performed with EEG-DABS. A, Batch File analysis mode

will sequentially analyze each file in the selected folder by displaying the frequency band events below

the raw EEG. B, Raster Plot Only mode will analyze all the files in the selected folder and concatenate

the data into one raster plot. Batch File analysis is ideal for verifying patterns associated with a

behavior, and Raster Plot Only analysis is ideal for quantifying a behavior once a pattern has already

been determined. Normal freezing behavior for Sprague-Dawley rats occurred under two conditions,

called Type1 and Type2, which are displayed in raster plot mode (B).
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3.5. Batch file mode

Batch File Mode is designed for analyzing a series of files and ideal for identifying

all instances of an event pattern that corresponds to a behavior of interest across

multiple hour segments. EEG-DABS will analyze the first file, display the data (the

second window from Single File Mode), and then will continue until every

recording has completed in the selected folder (Fig. 4A).

Note: It is recommended to use a maximum of 24 files unless there is sufficient

computer memory allocated (∼2GB of RAM per 60 min file). Even though the

GUI processes files sequentially, the displayed MATLAB figures hold all the data

points into RAM before creating an image. Therefore, the maximum number of

hour segments a computer can handle, depends upon both the amount of files

processed and the sampling rate for each file.

3.6. Raster plot only mode

Raster Plot Only Mode is useful for determining a discrete pattern for a specific

behavior. This analysis mode amalgamates event data from every recording in a

selected folder and presents it as a single raster plot (Fig. 4B). In order to determine

specific behavioral states from raster plot data, we matched video recordings to a

3–5 h segment of events generated in Raster Plot Only Mode. Watching the

freezing behavior and comparing it to the raster plots, distinct, consistent patterns

began to emerge. If a distinctive pattern does not become apparent for a specific

behavior, we altered the default parameters, such as the epoch length, standard

deviation, or frequency bands until a new pattern appears. However, once the

parameters are changed, they must be kept consistent for the duration of that

behavioral analysis.

After the behavior was calibrated, we used a combination of the other two analyses

to quantify the frequency and duration of the determined behavior. Batch File

Mode was utilized first, processing around 10 h of recordings at a time, to quickly

inspect if each hour segment had the behavior we were identifying. Then the hours

of interest were analyzed closer with Single File Mode to confirm and quantify that

behavior. An advantage of Raster Plot Mode was the computer memory

requirements were minimized for large data sets because raw EEG/ECoG signals

were not stored and displayed.

Note: Once EEG-DABS analyzes the data (regardless of analysis mode), it will

create an excel spreadsheet of each frequency band’s total power wherever an

event occurred. This happens at every epoch for each analysis mode. Excel can

then be used to easily detect significant events and quantitation of combinations of

events, in different frequency bands. This information is useful for quantification,

calculating or plotting changes in power over time for any recording.
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3.7. Spectrum view for different behavioral states

EEG-DABS ability to correctly identify behavioral states from a predetermined

pattern was evaluated using the common rodent behavior freezing. An animal was

considered to demonstrate freezing if they were moving prior to the episode and

continued to move after the episode. Independent identification of freezing states

by video analysis indicated that these events were associated with two distinct

electrocorticographic changes. The first type of freezing was associated with

seizure-like, spike/wave discharges (SWDs) that we called Type1. A Type1 event

was accompanied by significant power events in all default frequency bands: delta

(0–4 Hz), theta (4–8 Hz), alpha (8–12 Hz), beta1 (12–16 Hz), beta2 (16–20 Hz),

and gamma (20–60 Hz). Freezing was also noted occasionally without SWDs.

During these freezing states ECoG analysis indicated significant power changes in

frequency bands below 20 Hz. We termed these freezing events Type2. In addition,

we observed differences between the two types of freezing. Type1 freezing was

associated with a maximum power at higher frequencies than Type2, and it had

significantly greater power (Fig. 5) at every frequency we measured. But both

types had much greater power outputs than awake behaviors (Fig. 5). For Fig. 5

analysis, a significance threshold of 3 standard deviations was used, which

produced zero false negatives.

3.8. EEG-DABS detects freezing behavior

The benefit of using EEG-DABS is that once a pattern is determined for a

designated behavior, the behavior will always appear with that pattern.

Furthermore, the program is designed to allow the user the ability to adjust

parameters in order to optimize detection of a selected behavior, both in frequency

band combinations and detection thresholds. We assessed EEG-DABS’s ability to

correctly identify freezing behavior by examining multiple derivations of that

pattern. As the number of frequency bands used for a pattern increased, the

program detected fewer instances of that pattern and produced less errors

(Fig. 6A). Conversely, fewer frequency bands increased the number of occurrences

of the freezing behavior EEG pattern, and it subsequently generated additional

errors. Patterns using 5, 4, or 3 frequency bands all correctly identified freezing

behavior and produced no errors. Lower frequency bands (0–12 Hz) created the

greatest number of significant events without creating an error (Fig. 6B). Thus,

there appears to be an ideal number of bands or band combinations when selecting

which pattern best represents the behavior of interest. Once behavioral states are

determined, the user can quantify the frequency of the specific behavior and its

total duration (number of events multiplied by the epoch length) with relative ease

using Raster Plot Only Mode. The total number of freezing events that were

independently identified by video monitoring are displayed in Fig. 6C. A

significance threshold of 3 standard deviations were used for Fig. 6 analysis.
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4. Discussion

On a cellular level, cognition and behavior are simply groups of neurons

interacting with each other by synchronizing their rhythmic oscillations over large

regions of the cerebrum (Vetter et al., 2004). Complex rhythmic firings allow

multiple lobes of the brain to communicate together in order to divide and

incorporate various tasks (Lopes da Silva, 1991). In the past, researchers have

proposed to quantify cognition using EEG, by correlating behavior to either

individual frequency bands, evoked potentials, latency in EEG outcomes, or their

spectral densities (Cavanagh and Frank, 2014; Murthy and Khan, 2014; Walsh and

Anderson, 2012). However, all these methods are limited because they generally

require subjective evaluation of the behavior or EEG pattern.

We have created an automated approach to record, save, export, and analyze ECoG

signal in order to detect and quantify different behavioral states. EEG-DABS

unbiasedly generates raster plot data from ECoG signals, which reliably reproduces

[(Fig._5)TD$FIG]

Fig. 5. Determining Power Spectrum using EEG-DABS. Example of three different behaviors

quantified with EEG-DABS. After the GUI calculates an EEG record's power spectrum, it calculates the

power based upon a set of defined frequencies and then compares it with a control power. To assess

freezing behavior, bins were separated into 4 Hz frequency bands ranging from 0–24 Hz. Freezing

behavior appeared under two conditions, identified as Type1 and Type2. Type1 had significant power

events in all frequency bands, whereas Type2 had large increases in power, but only spanning 20 Hz.

There was a difference in awake behavior when the plot was zoomed in (inset). By altering the

frequency bands, standard deviation, and reference recording, the user can isolate the pattern of

significant events for the designated behavior. If the reference recording was from awake animals,

events would occur in both Type1 and Type2. Each instance is comprised of 3 different examples from

4 different animals.
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discernable patterns; a task that would not have been easy or objective in the past.

Once a pattern (that is associated to a behavior) is determined, EEG-DABS can be

utilized to efficiently quantify the frequency and duration of that behavior using a

chronic recording. Since the behavior freezing is easily observable on video, this

response was utilized to evaluate EEG-DABS ability to correctly identify

behavioral states. Freezing events were characterized by two unique raster plot

EEG patterns that we classified as Type1 and Type2. Type1 had large power

increases in frequencies ranging from 0–40 Hz, whereas Type2 only had power

increases up to 20 Hz. EEG-DABS correctly identified both types of freezing

behavior, although Type2 freezing occurred many more times than Type1 freezing.

Furthermore, since Type2 only occurs with Type1, it appears to be a subset of

Type1, suggesting that this characteristic EEG might be part of a more complicated

behavior. In our recordings, large power increases in bands from 0–20 Hz were

always associated with freezing. Whereas, there was a very low likelihood of

freezing occurring without large increases in power in these same bands.

Despite the efficiency and ease of approach, there are some limitations with EEG-

DABS. The program does require manual work initially establishing the detection

criteria for a particular behavior, but once established, it allows behavior

quantitation over long recordings sessions. Since EEG-DABS analysis is

[(Fig._6)TD$FIG]

Fig. 6. EEG-DABS can Correctly Detect Predetermined Behaviors. The greater the number of

frequency bands used, the better EEG-DABS was at recognizing the associated behavior. A, Patterns

using 5, 4, or 3 frequency bands produced no errors, whereas 1 and 2 bands generated many errors. B,

As the number of frequency bands used for a pattern increased, there were less examples where that

pattern was identified. Lower frequency bands (0–12 Hz) were better predictors then high frequency

bands at detecting freezing events and demonstrated minimal errors. The 2 pattern bands (8–16 Hz) also
created no errors but appeared fewer number of times than the 0–12 Hz band. The total number of

independent events, which correspond to each band’s errors are displayed in B. The number of

independently identified events by video analysis are displayed in panel C.
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dependent on the control file and input parameters used, it is subject to variability.

For example, if an event pattern is calibrated to a behavior, changing the control

file or parameters will likely change the future pattern that emerges and thus would

require a new calibration. Also, EEG-DABS is only as good as the user’s ability to

initially calibrate the program. If the user cannot identify an event pattern that

corresponds to a specific behavior, the program might not be useful. In order to

overcome this limitation, the user has the ability to adjust the specific frequencies

of interest, the standard deviation for event detection, and the reference recording.

Having full control of all parameters maximizes the likelihood of identifying a

unique pattern for a designated behavior. Although the procedure described here

was designed to analyze a single EEG/ECoG trace, there should not be any

limitation on the number of recordings (multiple electrodes) that can be processed.

This would allow spatial analysis of signals, representing changes in different brain

regions.

In order to maximize sensitivity when identifying a behavior, it appears there is an

ideal number and range of frequency bands that determine a specific pattern of a

behavior. Becoming less stringent with the number of bands, increases the

instances of that pattern but also increases the number of “false positives”. This is
why there are three times as many significant events with 1 frequency band as

compared to 3 frequency bands. For example, since only Type1 produces

significant events in higher frequency bands, if we only used Type1 criteria we

would have missed all the lower events associated with Type2 freezing. Therefore,

it is important to find a unique pattern using as many bands as possible that is both

specific and sensitive. Moreover, if there is no significant difference from the

reference recording during a behavior, a possible solution is to move the electrode.

Because EEG-DABS is designed to detect EEG changes associated with behaviors,

it is incredibly important to position electrodes over areas of the brain that have a

large (or suspected to) neuronal output in response to that behavior. In addition,

EEG-DABS should be thought of as an interactive process where the user can

adjust the detection criteria in order to maximize the accuracy, while subsequently

limiting the number of false positives and negatives. For example, increasing the

standard deviation would increase the number of false positives, whereas

decreasing the standard deviation would increase the number of false negatives.

By understanding the limitations of EEG-DABS, the user can better adjust their

parameters in order to discern a specific behavior.

If the EEG of a behavior is well characterized, EEG-DABS has the potential to be

used in many different behavioral analyses and not just simple behaviors such as

freezing (Fig. 7). For example, the whisker system on rats is well understood with

around 250 neurons representing an individual whisker (barreloid) (Van Der Loos,

1976). Mechanoreceptors can respond quickly and synchronously to slight

deflections (Simons and Carvell, 1989), relaying sensory information through
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the ventro-posterior medial nucleus (VPM) (Waite, 1973) to layer IV of the

somatosensory cortex (S1) (Temereanca et al., 2008). EEG-DABS would likely

produce significant and unique patterns in response to a specific whisker

stimulation from recordings of the VPM or S1. Similarly, EEG-DABS might be

able to detect other behaviors such as learning and memory paradigms (Klimesch,

1996; Miltner et al., 1999), motor and olfactory behavioral tasks (Hermer-Vazquez

et al., 2007), fear conditioning (Stujenske et al., 2014; Hellman and Abel, 2007),

stages of sleep (Borbely et al., 1981; Fell et al., 1996), memory consolidation

(Axmacher et al., 2008), and mating (Fang et al., 2012). It is also conceivable that

the GUI could be useful in more complex processes, such as states of awareness or

sleep disorders. In addition, since the method itself is not limited to just surface

recordings of brain waves, it could also be used for deep recordings as well. For

example, the method might be valuable for detecting periodic theta and gamma

rhythms and their relationship to memory consolidation in the hippocampus.

Therefore, the ability to unbiasedly categorize various behavioral states reliably

with EEG-DABS has the potential to accelerate more than just ethology.
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