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Abstract

Background: Human hair is one of the essential components that define appearance and is a useful source of samples for
non-invasive biomonitoring. We describe a novel application of imaging mass spectrometry (IMS) of hair biomolecules for
advanced molecular characterization and a better understanding of hair aging. As a cosmetic and biomedical application,
molecules whose levels in hair altered with aging were comprehensively investigated.

Methods: Human hair was collected from 15 young (2065 years old) and 15 older (5065 years old) volunteers. Matrix-free
laser desorption/ionization IMS was used to visualize molecular distribution in the hair sections. Hair-specific ions displaying
a significant difference in the intensities between the 2 age groups were extracted as candidate markers for aging. Tissue
localization of the molecules and alterations in their levels in the cortex and medulla in the young and old groups were
determined.

Results: Among the 31 molecules detected specifically in hair sections, 2—one at m/z 153.00, tentatively assigned to be
dihydrouracil, and the other at m/z 207.04, identified to be 3,4-dihydroxymandelic acid (DHMA)—exhibited a higher signal
intensity in the young group than in the old, and 1 molecule at m/z 164.00, presumed to be O-phosphoethanolamine,
displayed a higher intensity in the old group. Among the 3, putative O-phosphoethanolamine showed a cortex-specific
distribution. The 3 molecules in cortex presented the same pattern of alteration in signal intensity with aging, whereas
those in medulla did not exhibit significant alteration.

Conclusion: Three molecules whose levels in hair altered with age were extracted. While they are all possible markers for
aging, putative dihydrouracil and DHMA, are also suspected to play a role in maintaining hair properties and could be
targets for cosmetic supplementation. Mapping of ion localization in hair by IMS is a powerful method to extract
biomolecules in specified regions and determine their tissue distribution.
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Introduction

Roles of human hair
Hair significantly influences the appearance and is one of the

components of the human body that determine how individuals

look for their age [1]. Hair changes chemically and physically as a

result of various environmental assaults and undergoes intrinsic

degeneration with aging, resulting in an alteration of its

appearance, e.g., color and shine; feel, e.g., wettability and softness;

and structure, e.g., formation of split ends and frizz [2]. Therefore,

hair care is a huge industry, which supplies products such as

shampoos and conditioners to clean, protect, and provide a

desirable look and feel to hair [3].

At the same time, hair is used as an index of body properties.

The advantages of hair over other commonly used samples such as

blood or urine as an indicator include ease and painlessness of

sampling, ease of storage, and the possibility of monitoring past

exposure [4,5,6]. Forensically, hair has been utilized as trace

evidence for the investigation and successful prosecution of

individuals suspected of being involved in crimes [7].

Molecules constructing human hairs
Hair keratin proteins and hair keratin-associated proteins

(KAPs), composed of large gene families, are the predominant

structure proteins in the hair [8,9]. In the human hair cortex,

keratin intermediate filaments (KIFs) are produced from hair
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keratins, cross-linked with KAPs through extensive disulfide

bonds, and rigid hair shafts are produced.

Methods for molecular research of hair
Nearly all methods reported in the literature identify analytes in

the hair by headspace solid phase microextraction-gas chroma-

tography-mass spectrometry (MS), or more recently, by gas

chromatography-tandem MS [10] and liquid chromatography-

MS [11]. However, as samples are generally prepared by the

elution of molecules with an organic solvent, these methods

provide neither visual information nor analyte localization within

the hair strand. In this regard, several techniques involving

secondary ion MS and multi-isotope imaging MS (IMS) are used

for the determination of elemental composition of a cross-section

of hair; however, detectable targets are limited to elements

[12,13,14].

Matrix-assisted laser desorption/ionization (LDI) or LDI-based

IMS enables the analysis of much larger biomolecules because of

the soft ionization principle used and is a powerful tool for

investigating biomolecules comprehensively without the use of

time-consuming extraction, purification, or separation procedures

for biological tissue sections [15,16,17]. Although IMS is used

for detecting drugs in the hair for forensic purpose [18],

comprehensive analysis of molecules in hair by using IMS is

yet to be done. Earlier, we developed an imaging mass

spectrometer with a higher spatial resolution than the original

ones [19]. This was utilized for IMS analysis of hair sections in

the present study.

Molecular markers for aging in hair
The characterization of hair aging with regard to the alteration

of molecular mass and distribution of molecules within the hair

structure is essential for the development of better cosmetic

products. It is predicted that in the future, improvements in hair-

care product development will target specific molecules [20], and

thus, the supplementation of molecules impaired during aging or

addition of their functional analogues to hair care products would

be beneficial to this section of the market.

The identification of molecules in hair that could define an

individual’s age has important forensic applications. This is

because the age, which is one of most vital pieces of information

in an investigation, cannot be determined definitively by the use of

microscopically measured indices such as hair diameter or

ellipticity [7,21].

Molecules related to aging in hair, however, have not been

comprehensively investigated, with the exception of some trace

minerals analyzed by atomic absorption spectrometry [22,23].

Therefore, as the first target for utilizing our method, we chose

investigation of biomarkers that could distinguish human age.

The objective of this article is to describe an initial assessment of

the application of IMS for comprehensive detection of aging-

related molecules in cross-sectioned hair.

Results

Visualization of molecular distribution in cross-sectioned
hair

Figure 1A provides images of hair sections obtained from

subjects aged 2065 years (hereafter termed 20 YO group) and

5065 years (50 YO group). As a typical result of IMS analysis, the

ion distribution at a mass-to-charge ratio (m/z) of 125.99, detected

with the highest intensity among hair-specific ions, is presented in

Figure 1B.

Human scalp hair is composed of a core structure of a centrally

located medulla, cortex consisting of different cell types, and

surrounding layer of cuticle cells (Figure 1C)[24]. Figure 1D

depicts the definition of regions of interest (ROI) corresponding to

cortex and medulla. As shown in Figure 1A, S1, and S2, the shape

and size of hair sections were different among samples. Thus, the

areas that were considered to correspond to the medulla were

observed only in 38 hair sections out of 90 in the light microscopic

images of the sections. Mean signal intensity of the ion at m/z

125.99 in the cortex did not show statistically significant difference

from that in the medulla (p = 0.15, paired t-test; Figure 1E).

In order to confirm that cross-sectional area does not show

linear alteration with aging and thus cannot be used as an

indicator of aging, the area composed of both the cortex and

medulla was counted and compared between the 2 age groups.

There was no significant difference in cross-sectional area between

the 20 YO and 50 YO group (p = 0.082, unpaired t-test; Figure 1F),

while large sectional area over 11,000 mm2 was only seen in the

20-YO group (Figure 1G).

Selection of hair-specific molecules
As a preliminary step in the detection of markers for aging,

principal hair-specific molecules were extracted. The top 50

signals in the ROI in the cortex and medulla were selected from

each of signal intensity values obtained from the analysis of

subjects No. 1, 2, 3, 16, 17, and 18 (Figure S3A), and 56 ions

chosen from more than 1 of these 6 subjects were listed (Figure

S3B). Among these, 31 ions with a mean hair-specific intensity at

least 3-fold and statistically significantly (p,0.05, paired t-test)

higher than the mean background intensity (black area in

Figure 1D) were selected as hair-specific molecules (red letters in

Figure S3B).

Extraction of putative aging markers
In order to find putative aging markers, those molecules that

exhibited a significant difference in the signal intensity between the

2 age groups from among the 31 hair-specific molecules were

determined. The mean signal intensities at m/z 153.00 and 207.04

were higher in the 20 YO group than in the 50 YO group

(p = 0.0064 and 0.013, respectively; unpaired t-test; Figures 2A and

C). In contrast, the ion at m/z 164.00 was observed to have a

significantly higher intensity in the 50 YO group than in the 20

YO group (p = 0.0067; Figure 2B). Even when the sections whose

areas were over 11,000 mm2 were excluded from the analysis to

reduce possible diameter effects, the significance of the differences

was not altered (p = 0.0052, 0.0064, and 0.043 for m/z 153.00,

164.00, and 207.04, respectively; unpaired t-test; Figure 2D, E,

and F).

As already evaluated by selection of hair-specific ions, these 3

molecules were specific to hair sections (Figure 2G, H, and I).
Among the 3 putative aging markers, only the one at m/z 164.00

presented a cortex-specific distribution (p = 0.70, 0.0044, and 0.97

for m/z 153.00, 164.00, and 207.04, respectively; paired t-test;

Figure 2J, K, and L). Hair-specific distribution of the molecules

and cortex-specific distribution of the molecule at m/z 164.00 in

each subject’s sample was confirmed by mapping of ion

distribution (Figure 2M, N, and O).

To confirm that the extracted molecule originated from a single

molecule observed as a peak in the histogram, ROI-specific mass

spectra were structured using values from subject No. 1 as a

typical example. As illustrated in Figures 3B to F, signal intensity at

m/z 125.99, 153.00, 164.00, and 207.04 in hair-specific ROI (red

color) were observed as individual peaks.

Aging Marker Investigation by IMS in Hair Cortex
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Comparison of intensity of the putative markers in the
cortex and medulla between 2 age groups

To determine whether the intensity of the molecule in the

cortex and medulla differed between 20 YO and 50 YO, mean

intensity in each ROI was compared between the 2 age

groups. Figures 4A and C illustrate that the intensities at m/z

153.00 and 207.04 in the cortex were significantly higher in the

20 YO than in the 50 YO group (p = 0.0081 and 0.010,

respectively; unpaired t-test). As shown in Figure 4B, the ion at

m/z 164.00 in the cortex displayed a higher intensity in the 50

YO than in the 20 YO (p = 0.0097). On the other hand, no

significant difference between the 2 groups was observed in the

mean medullary intensity at any m/z value (p = 0.56, 0.95, and

0.38 for m/z 153.00, 164.00, and 207.04, respectively; Figure 4D,

E, and F).

Assignment of putative aging markers
Table 1 shows the assignment of the putative aging markers

extracted above, listing the molecules which exhibited highest

probability in MS/MS analysis and the molecules assumed in

single MS analysis.

From the precursor ion at m/z 207.04, fragment ions at m/z

75.49, 133.07, 138.89, 141.84, 149.53, 151.51, 188.32, and

198.92, fragment ions at m/z 140.88 and 160.26, fragment ions at

m/z 61.06, 84.82, 136.18, 143.88, 148.54, and 191.53 were

detected at the energy level of 10, 30, and 50, respectively (Figure

S4A to E). By searching the fragments obtained at energy level of

10, 30, and 50, the precursor ion was assigned to 3,4-

dihydroxymandelic acid (DHMA), which presented the highest

relative fitness values among all precursor candidates: 81%, 98%,

and 96%, respectively.

Figure 1. Visualization of molecular distribution in hair cross-sections. (A) Images of cross-sectioned hairs are shown, numbered as per the
subject No. Each of the 3 photographs with the same number is from an independent scalp hair. Scale bar: 100 mm. (B) Ion distribution at m/z 125.99.
Scale bar: 100 mm. (C) The principal hair structures are shown. M: hair medulla. (D) ROI corresponding to the hair structures are depicted. White area:
cortex. Red area: medulla. Black area: background. Scale bar: 100 mm. (E) The signal intensity at m/z 125.99 in hair cortex and medulla is shown *:
p,0.05. (F) Cross-sectional area of hair is shown. (G) A histogram of the cross-sectional area is depicted. Black bar: 20-YO group. White bar: 50-YO
group. All values are presented as mean6standard deviation.
doi:10.1371/journal.pone.0026721.g001

Aging Marker Investigation by IMS in Hair Cortex
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M/z 153.00 and 164.00 were speculated to be dihydrouracil
and O-phosphoethanolamine, respectively, which showed a
difference of 0.01 Da or less between the calculated m/z and
query. The ion with the highest intensity among hair-specific ions,
m/z 125.99, was assigned to 2-aminoacrylic acid.

Discussion

In the present study, we applied IMS to cross-sectioned hair

to investigate multiple molecules showing aging-related alter-

ations. Images of hair sections were obtained at high resolution,

Figure 2. Intensity and distribution of putative aging markers. (A–C) Mean signal intensity in the hair section is displayed. (D–F) Mean signal
intensity in the hair section excluding those with sectional area of 11,000 mm2 or larger is displayed. (G–I) Mean signal intensity in the hair section
and background area is displayed. (J–L) Mean signal intensity in the cortex and medulla is displayed. (M–O) Each panel shows ion distribution in cross-
sectioned hair. The number indicates the subject No. Each of the 3 pictures was obtained from an independent scalp hair of a single subject. Scale
bar: 100 mm. (A, D, G, J, M) m/z 153.00. (B, E, H, K, N) m/z 164.00. (C, F, I, L, O) m/z 207.04. All values are shown as mean6standard deviation. *: p,0.05.
**: p,0.01. ***: p,10212.
doi:10.1371/journal.pone.0026721.g002

Aging Marker Investigation by IMS in Hair Cortex
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and the distribution of ions was characterized on a micrometer

scale.

Speculated relationship between aging and tissue
localization of the extracted molecules

Dihydrouracil, presumed to be a precursor of the ion at m/z

153.00, is an intermediate metabolite of uracil [25], and DHMA,

identified as the ion at m/z 207.04, is a major metabolite of the

catecholamines [26]. Both are released into the circulation after

conversion [25,26] and can thus be transferred to matrix cells

and/or melanocytes via blood vessels in the dermal papilla [27].

Increased apoptosis of follicular melanocytes is a phenomenon

associated with aging [28]. Eumelanin synthesized in bulbar

melanocytes is transferred to matrix cells which proliferate and

differentiate into the hair shaft cortex [29]. The robust binding of

eumelanin to basic molecules by ionic interaction [30] and

aromatic carbon by hydrophobic interaction [31] renders it a

drug-binding site within the hair structure, therefore, the

hydrophobic base dihydrouracil and DHMA with dihydroxyben-

zene ring are foreseeable interaction partners. This might explain

the relationship between aging and reduction of the signal

intensities, and further investigation would be done to validate

this theory.

Dihydrouracil and DHMA were detected in a punctuated,

heterogenous manner through the hair sections. This heterogene-

ity might be explained by the diversity of cellular components of

the hair structure, since a hair fiber is composed of different cell

types including the ortho-, the meso-, and the paracortical cells

[32]. Moreover, recent study has shown that KIFs in the fiber has

several patterns in their arrangement [24]. If such structural

molecules in the hair shaft function as an absorber for the two

molecules or their precursor molecules, the heterogeneity which

was observed here will result.

O-phosphoethanolamine, tentatively assigned to the ion at m/z

164.00, is a metabolite of sphingosine-1-phosphate (S1P) [33].

Aging is associated with increased platelet activation [34], which

leads to enhanced secretion of S1P into the circulation [35]. As

observed in other tissues, increased S1P might be processed to O-

phosphoethanolamine and 2-hexadecanal by S1P-lyase following

internalization by the cells forming the hair structure [36].

The mean signal intensity at m/z 125.99, tentatively assigned to

2-aminoacrylic acid, did not significantly differ between that in the

hair cortex from in the medulla (Figure 1E). Both cortical and

medullar cells are composed mostly of bundles of KIFs and consist

of keratin proteins [24,37], while the hair medulla contains heavily

vacuolated cells. Since 2-aminoacrylic acid, also called dehydroa-

lanine, is a product of post-translational modifications observed in

keratin proteins, its localization both in the cortex and the medulla

is reasonable [38].

Cosmetic perspective
The hair shaft surface is covered with integral lipids, the only

continuous structure that plays a role in maintaining moisture,

luster, mechanical integrity, and stiffness of hair [2,39]. Oil-

containing hair cosmetics have been experimentally proven to

complement or raise the efficacy of endogenous lipids: coconut oil

Figure 3. Hair-specific mass spectra of putative aging markers.
ROI-specific mass spectra in subject No. 1 are presented. Red peaks and
blue peaks are derived from the hair section and background area,
respectively. (A) ROI selection is illustrated: ROI A as hair section and ROI
B as background area. (B) m/z 50 to 300. (C) m/z 125.99. (D) m/z 153.00.
(E) m/z 164.00. (F) m/z 207.04.
doi:10.1371/journal.pone.0026721.g003

Aging Marker Investigation by IMS in Hair Cortex
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to prevent moisture diffusion from the hair [40] and castor oil to

increase luster [41]. Artificial compounds are also utilized to

imitate the function of this integral lipid such as modified silicone

oils to maintain luster [41] and prevent breakage [42].

As dihydrouracil and DHMA have a hydrophobic structure due

to pyrimidinedione and benzenediol, these molecules will have

roles in the integral lipids. Since these levels are impaired with

aging, their supplementation or the addition of mimic molecules

might be effective in improving the function of cosmetic products.

Moreover, since KAPs are hydrophobic and predicted to attach to

these molecules [8], these might directly bind to KIFs, and

increase hair rigidity and appearance.

Endogenicity of extracted molecules
Certain hair products such as shampoo, conditioner, and hair

dye contain compounds classified as having the same organic

structure as the candidate markers we identified. For instance,

among the ethanolamines, diethanolamine is utilized for forming

[43]. However, the possibility that the 3 molecules are derived

from such hair products is limited, because they are not registered

in the 2 comprehensive lists of ingredients used in cosmetic

products, compiled by the American Cosmetic Association [44,45]

and the Japan Cosmetic Industry Association [46].

Principles for further investigation
Identification and confirmation of the functional properties of

molecules discussed above would be pursued in the course of

further studies. For the functional characterization of the cosmetic

applications of dihydrouracil and DHMA, their effect on hair with

regard to molecular aspects such as composition of integral lipids

and moisture deposition, morphological aspects such as luster and

smoothness, and mechanical aspects such as softness and stiffness

merit investigation. For forensic purposes, the applicability of the 3

molecules for identifying individual age will be evaluated.

Hair analysis with this technique would be repeated to clarify

some points raised from this study. For instance, the molecular

mechanism of aging-related reduction of dihydrouracil and

DHMA in cortical area, which we proposed is due to their

binding properties to melanine, remains to be investigated in both

white and black hairs. While we defined the medulla from the

optical microscopic images in the present study, molecular

definition of the medulla using specific markers would be effective

for more accurate analysis. Moreover, analysis of hair sections

from the root to the top would be significant to clarify three-

dimentional distribution of the extracted molecules.

Since, in our study, the analyte was ionized in a matrix-free

condition, matrix-assisted LDI might lead to the discovery of other

molecular marker candidates. In addition, recent techniques have

enabled the application of various types of matrices to IMS

analysis and to the optimization of matrix composition [47,48,49].

Application of novel matrices such as a nano-particle matrix helps

detect novel molecular species [47,50].

Sample availability restricted our analysis to hair from Japanese

female donors. Analyzing male hair or hairs from different ethnic

origins would be a step towards further investigation of the present

results. As a procedure to distinguish sexes based on hair has not

been established [7], investigation of molecules with differential

intensities or different distribution between sexes could be

significant.

Importantly, this technique enabled simultaneous imaging of

fine optical feature and molecular distribution in a single hair

section, which allowed analysis of ion distribution and discrimi-

nation of hair structures, such as cortex and medulla, in a single

sample. The technique, therefore, would be beneficial in every

Figure 4. Putative aging marker intensity in the cortex and medulla. (A–C) Mean signal intensity in the hair cortex in the 20 YO and 50 YO
groups is displayed. (D–F) Mean signal intensity in the hair medulla in the 20 YO and 50 YO groups is displayed. (A, D) m/z 153.00. (B, E) m/z 164.00. (C,
F) m/z 207.04. All values are shown as mean6standard deviation *: p,0.05.
doi:10.1371/journal.pone.0026721.g004

Table 1. Assignment of molecules at m/z 125.99, 153.00, 164.00, and 207.04 (* indicates the molecule identified by MS/MS
analysis.).

Measured
m/z Compound ID CAS No. Compound name

Chemical
formula

Molecular
weight Adduct

Culculated
adduct m/z

125.99 METLIN58164 1948-56-7 2-Aminoacrylic acid C3H5NO2 87.03 [M+K]+ 126.00

153.00 HMDB00076 504-07-4 Dihydrouracil C4H6N2O2 114.04 [M+Na]+ 153.01

164.00 HMDB00224 1071-23-4 O-Phosphoethanolamine C2H8NO4P 141.02 [M+Na]+ 164.01

207.04 HMDB01866 775-01-9 3,4-Dihydroxymandelic acid* C8H8O5 206.33 [M+Na]+ 207.33

doi:10.1371/journal.pone.0026721.t001

Aging Marker Investigation by IMS in Hair Cortex
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field focusing on the molecular distribution in the hair regarding

tissue structure.

In conclusion, we succeeded in applying newly developed Mass

Microscopy to cross-sectioned hair, visualizing molecular distri-

bution in the hair sections. As an initial target for the application

of hair IMS, molecules showing a change in the ion intensity with

aging were comprehensively investigated, and 3 molecules with

altering levels in the cortex were found. They were strong

candidates for aging markers, and 2 of these molecules,

dihydrouracil and DHMA, are proposed as the cosmetic target

molecules.

Materials and Methods

Ethics statement
All experiments in this study were specifically approved by the

Ethics Committee at the Hamamatsu University School of

Medicine. Subjects consented in written form to cooperate after

they were informed that they would not incur any disadvantage,

that they could resign from the study, that the researchers were

obliged to protect privileged information, that any identity will not

be revealed, and that the obtained samples will be eradicated after

the study. During sampling, care was taken to preserve the subjects’

appearance and to ensure that the subjects were not distressed.

Reagents
Carboxy methyl cellulose was obtained from Wako Pure

Industries Ltd, Japan (Osaka, Japan). Indium-tin-oxide-coated

slide glasses were obtained from Bruker Daltonics (Bremen,

Germany).

Subjects
This study was performed between August and December 2010

in healthy female Japanese adults divided into 2 groups of those

aged 2065 years and those aged 5065 years.

Sample preparation
Three strands of hair per subject were collected in order to

minimize the effect of scalp location. Hair from the parietal region

was cut at 1-cm distance from the skin. A 1-cm-long section from

the root side of the hair was cut and immersed in 2% carboxy

methyl cellulose, rapidly frozen in liquid nitrogen, and 8-mm-thick

sections were cut perpendicular to the longitudinal axis in a

CM1950 cryostat (Leica Microsystems, Wetzlar, Germany) at

220uC. The section was mounted on a glass slide coated with

indium-tin-oxide.

Imaging mass spectrometry analysis
All IMS experiments were performed in the positive ionization

mode using MS-IT-TOF (Mass microscope; Shimadzu Corpora-

tion, Kyoto, Japan) in the linear positive mode. Nd:YAG laser at

355 nm was used at 40% energy (8 mJ/pulse) and 1000 Hz

repetition rate. The interval between data points was 10 mm,

yielding a total of 289 data points, sufficient to cover the entire

section. Mass spectra were obtained with a scanning mass range of

50 to 300 Da with the mass resolution of 10,000. Images of hair

sections were acquired using the Mass microscope prior to LDI.

MS/MS analysis
MS/MS experiments on hair section were performed by using

scalp hairs of a healthy 31-years-old Japanese subject. In order to

obtain sufficient signals, one hair was used for each measurement.

The molecular weight range for the ion trapping was 1.0 Da

around m/z of each precursor ion. The setting of IMS analysis was

as follows: The laser intensity for fragmentation of either 0, 10, 30,

or 50; gas level of 50; accumulating time of 221 msec; repeating

number of 1; interval between data points of 5 mm. The other

setting status was the same as that of MS analysis of precursor ions.

Comparison of signal intensities in the cortex and
medulla

All IMS data were integrated and normalized with total ion

currents by SIMtools software (in-house software; Shimadzu

Corporation) and imported to Biomap Ion Imaging Software

ver. 3.7 (Novartis Institutes for BioMedical Research, Basel,

Switzerland). TIFF images of specified m/z were generated and

imported to ImageJ software ver. 1.4 (National Institutes of

Health, Bethesda, MD). ROI in the hair section of each subject

were defined by tracing an outline on the image. The hair sections

with the central area with the brightness different from that of the

peripheral area were considered to have medullary structure. ROI

of the medulla was defined as that area, and ROI of the cortex, as

the rest of the section. Only the sections whose medullary areas

were observed were used for statistical analysis for comparing

signal intensity in cortex and medulla. The mean graphical

intensity of each subject’s ROI was measured by ROI analysis

function and exported as a Microsoft Office Excel file. Mean and

standard deviation values of the graphical intensities were

calculated by Microsoft Office Excel 2007 software (Microsoft

Corporation, Redmond, WA). Difference of mean intensity in the

cortex and medulla was assessed using paired Student’s t-test, and

a p value of ,0.05 was considered significant.

Comparison of sectional area between age groups
Total areas of the ROI measured in ImageJ were compared

using unpaired Student’s t-test, and a p value ,0.05 was

considered significant. The sectional area of each hair was

classified into segments from 0 to 13,000 mm2 and the frequency

of the number of the hairs in each segment was depicted as a

histogram.

Selection of hair-specific molecules
Signal intensity values obtained by IMS analysis in subject Nos.

1, 2, 3, 16, 17, and 18 were imported into SIMtools. The peak-

picking procedure was performed to select the top 50 ions in the

range of m/z 50 to 300 with a molecular weight tolerance of 0.05

Da in the ROI of the section. Distribution of an ion selected in

more than 1 of these subjects was visualized by Biomap as an

integrated image that included results from all subjects, and

exported to ImageJ. The area other than the hair section was

defined as background ROI. Mean graphical intensities in ROI

corresponding to each subject’s hair and background area were

measured. Hair-specific ions were defined as ions that met both of

following conditions: (1) The mean intensity in the hair was 3-fold

or more of that in the background. This is a typical method of

peak selection in IMS, considering a peak with a signal:noise ratio

greater than 3:1 to be significant [51]. (2) Difference between

mean intensity in hair and that in the background was significant

by paired Student’s t-test, with a p value of ,0.05.

Comparison of signal intensities between age groups
A mean graphical intensity in the ROI corresponding to each

subject’s hair, cortex, or medulla, was measured. Difference

between mean intensities in the 2 age groups was assessed by

unpaired Student’s t-test, and a p value of ,0.05 was considered

significant.
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To reduce the influence of the diversity in sectional areas to the

result, the analysis excluding hairs with extra-larger sectional areas

was also performed. The first and second sections of Subject No.2,

the second section of Subject No.10, all three sections of Subject

No.11, and the second section of Subject No.14 were excluded.

Region-of-interest-specific mass spectra
IMS results obtained from 3 hair sections of subject No. 1 were

integrated and normalized to total ion currents using SIMtools

and then exported to Biomap. Mass spectra in the ROI

corresponding to the hair and in the background area were

depicted by the ROI Plot procedure.

Assignment of molecules
A search for candidate molecules corresponding to the ion

precursors of the rest of the extracted ions was performed in

Human Metabolome Database (HMDB; Genome Alberta,

Alberta, Canada; http://www.hmdb.ca/) and The METLIN

Metabolite Database (Scripps Center for Metabolomics, La Jolla,

CA; http://metlin.scripps.edu/). Molecules with m/z differences

from the calculated values less than 0.01 Da were searched for.

Since alkali metal adduct ions predominate in the positive ion

mode of LDI [52], a molecule adducted with a sodium ion

([M+Na]+) and another with a potassium ion ([M+K]+) were

selected as candidates. Drug metabolites and molecules from non-

human organisms were excluded from the lists.

Assignment of the precursor molecule by tandem mass analysis

was performed by using MS/MS Search section of HMDB. Peaks

with signal intensity which exceeded the baseline signal 2-fold or

higher were considered as major fragments obtained in secondary

ionization of precursor molecules. The values of m/z and the

relative intensities of these peaks were assigned as queries, and a

molecule with the highest relative fitness values were searched.

Fragments from the precursor ion at m/z 207.04 at energy level of

0, 10, 30, and 50 in Mass Microscope were regarded to correspond

to data at ‘‘Low’’, ‘‘Middle’’, and ‘‘High’’ Energy Level in HMDB,

respectively.

Supporting Information

Figure S1 Light microscopic images of hair sections of
20-YO group. High resolution microscopic images of the hair

sections from the subjects of 20-YO group are presented. *: The

section in which medulla was defined. Scale bar: 100 mm.

(TIF)

Figure S2 Light microscopic images of hair sections of
50-YO group. High resolution microscopic images of the hair

sections from the subjects of 50-YO group are presented. *: The

section in which medulla was defined. Scale bar: 100 mm.

(TIF)

Figure S3 Extraction of hair-specific molecules. (A) The

m/z values with the top 50 intensities in the hair-specific ROI of

each subject are listed. The number over the image indicates the

subject No. Solid lines in a visual image indicate ROI. Scale bar:

100 mm. Bold letter: A value selected in more than 1 subject. (B)

M/z values selected in more than 1 subject in (A) are listed. Red

letter: Finally selected hair-specific molecule.

(TIF)

Figure S4 MS/MS analysis. (A–D) Mass spectra of secondary

ions by fragmentation of the precursor ion at m/z 207.04 are

presented. Measurement of precursor ions at energy level of 0. (B)

Fragmentation at energy level of 10. (C) Fragmentation at energy

level of 30. (D) Fragmentation at energy level of 50. The inserted

pictures present the area on the hair sections on which the lasor

was pulsed for ionization. (E) Light microscopic images of the hair

sections are shown. Lasor-pulsed areas are framed. Scale bar:

50 mm.

(TIF)
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