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Abstract

Background: Despite the great advance of protein structure prediction, accurate
prediction of the structures of mainly β proteins is still highly challenging, but could
be assisted by the knowledge of residue-residue pairing in β strands. Previously, we
proposed a ridge-detection-based algorithm RDb2C that adopted a multi-stage
random forest framework to predict the β-β pairing given the amino acid sequence
of a protein.

Results: In this work, we developed a second version of this algorithm, RDb2C2, by
employing the residual neural network to further enhance the prediction accuracy. In
the benchmark test, this new algorithm improves the F1-score by > 10 percentage
points, reaching impressively high values of ~ 72% and ~ 73% in the BetaSheet916
and BetaSheet1452 sets, respectively.

Conclusion: Our new method promotes the prediction accuracy of β-β pairing to a
new level and the prediction results could better assist the structure modeling of
mainly β proteins. We prepared an online server of RDb2C2 at http://structpred.life.
tsinghua.edu.cn/rdb2c2.html.

Keywords: Mainly β proteins, β-β residue pairing, Protein structure prediction, Ridge
detection, Residual neural network

Background
The atomic structures of proteins are fundamental to their functions, and therefore

protein structure prediction, the field of computationally predicting the atomic structure

of a protein from the amino acid sequence, is always of great importance in protein

science. In the last decade, the accuracy of protein structure prediction has been tremen-

dously improved, particularly with the rapid algorithm development in the protein resi-

due contact prediction [1, 2]. Conventionally, two residues are defined as in contact when

their Cβ atoms are positioned within a distance cutoff of 8 Å. Contact information be-

tween all residues pairs thus composes a residue contact map, which may provide suffi-

cient distance restraints to improve conformational sampling and model selection or

even to directly construct the atomic structure model [3]. The contact map of a protein

could be obtained from the multiple sequence alignment (MSA) [4–7], by analyzing the
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correlated mutations between all pairs of residues in evolution using programs like

PSICOV [8, 9], GREMLIN [9], CCMpred [10], FreeContact [11] and PconsC2 [12]. More

recently, with the application of computer vision and deep learning techniques in contact

prediction, protein residue contacts could be more reliably predicted, for instance, by

methods like RaptorX-Contact [13–15], TripletRes [16], DeepMetaPSICOV [17], SPOT-

Contact [18] and DeepConPred2 [19], which enormously benefits the tertiary structure

prediction of proteins [20].

Despite these advances, structure prediction of the mainly β proteins are still highly

challenging. Particularly, the pairing residues in interacting β strands are usually dis-

tantly positioned in the amino acid sequence, which toughens the prediction of inter-

acting patterns between β strands and thus the correct identification of topology. The

prediction of β-β residue pairing has attracted much attention since 1990s, and many

programs have been developed, such as BetaPro [21], MLN/MLN-2S [22, 23], CMM

[23] and BCov [20]. These methods, however, rely on the knowledge of native second-

ary structures during modeling and suffer great performance loss when predicted sec-

ondary structures are used.

With the quick development in protein residue contact prediction, β-β residue

pairing could be more reliably identified from the predicted residue contact map, be-

cause a pair of parallel/antiparallel β strands should exhibit strong contiguous signals

in the diagonal/off-diagonal directions even in the presence of noises. As the first β-β

contact prediction algorithm that exhibits robust performance in the absence of native

secondary structures, bbcontacts uses two hidden Markov models to identify the paral-

lel and antiparallel contacting patterns and achieves a remarkable promotion on predic-

tion accuracy against all previous tools [24]. RDb2C, later developed by us, adopts the

ridge detection to locate the strong signals of interacting β strands on a predicted con-

tact map and then utilizes a multi-stage random forest framework to refine the β-β

residue pairing [25]. Besides the performance gain over bbcontacts, the prediction re-

sults of RDb2C could further improve the structure modeling of mainly β proteins in

practice. Albeit successful, bbcontacts and RDb2C are both developed based on the

shallow learning techniques, unlike the wide application of deep learning techniques in

residue contact prediction.

In this work, we present a second version of RDb2C. The new algorithm RDb2C2 still

uses the ridge detection method to infer the characteristics of interacting β strands

[26–29], but engages the residual neural network (ResNet) to further improve the pre-

diction of β-β residue pairing [30]. When compared to the previous version, RDb2C2

exhibits a significant improvement (> 10 percentage points) in F1-score in the Beta-

Sheet916 [21] and BetaSheet1452 [20] test sets, and could better facilitate the structure

modeling of mainly β proteins.

Implementation
As shown in Fig. 1, for each query protein sequence, RDb2C2 starts with the two con-

tact maps predicted from DeepConPred2 and CCMpred, respectively. Similar to the

previous version, the algorithm adopts the γ-normalized ridge detection method intro-

duced by Lindeberg to extract the ridge features and also collects sequence features as

well as additional features to compose the whole feature set. All features are fed into a

ResNet model with 15 blocks for predicting the β-β residue pairing. Notably, in
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addition to the traditional convolution layers, ReLU activation, instance normalization

(IN) and shortcut connection, we also incorporated two normalization operations that

have been proved as useful for contact prediction, the row normalization (RN) and col-

umn normalization (CN) [31], into the cell-based ResNet structure. Output of RDb2C2

Fig. 1 The workflow of our method. RN, CN and IN denote row, column and instance normalizations,
respectively. RELU refers to the ReLU activation function. CONV stands for convolution layer
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is a probability matrix listing the probabilities of all residue pairs to form hydrogen-

bonded interactions in β strands.

Dataset

We established our training set from the protein domain database CATH (version 4.2)

[32]. Since RDb2C2 focused on residue pairing in β strands, we only retained the do-

mains of the α/β and β categories but removed the overly short ones (< 30 residues).

We then eliminated the redundancy within the training set by only retaining the do-

mains in the CATH S35 set (a CATH subset with pairwise sequence identity < 35%)

[33]. We took BetaSheet916 [21] and BetaSheet1452 [20], two conventional sets for

evaluating β-β contact prediction, as our test sets. Redundancy between the training

and test sets were strictly eliminated by removing all domains from the training set that

fall into the same CATH fold groups as domains in the test sets. Because the secondary

structure prediction method we used (Spider3 [34], see below) could not process the

unknown residue X, we deleted all proteins containing residue X in their amino acid

sequences. Finally, our training set contained 458 domains, whereas the BetaSheet916

and BetaSheet1452 test sets contained 858 and 1294 domains, respectively.

Model features and network architecture

RDb2C2 adopted the ridge detection method to capture the residue pairing pattern be-

tween interacting β strands from the predicted contact maps, as applied in our previous

version RDb2C. However, we only retained the ridge height and ridge direction as ridge

features based on results of feature selection, where the model performance was re-

evaluated after removing each type of features. Besides the 2D features like the pre-

dicted contact maps and ridge features, we included the following 1D features: second-

ary structure probabilities predicted by Spider3 and identities of amino acids encoded

by one-hot vectors. At last, we took the number of homologous sequences in MSA (fol-

lowing the definition in [13]) and the protein length as 0D features. The 2D, 1D and

0D features were broadcast together as the input for the neural network model. Differ-

ent from our previous version RDb2C, in this work, we adopted Spider3 instead of the

DeepCNF [34, 35] to estimate the secondary structure probability, and enriched the

raw contact prediction results by DeepConPred2 in addition to CCMpred [10, 19].

We adopted the ResNet architecture in RDb2C2 to improve the prediction of β-β

residue pairing. Notably, we incorporated two normalization operations that have been

proved as useful for contact prediction, RN and CN [31], in the cell-based ResNet

structure. Specifically, each ResNet block included two sequential repeats of

normalization, leaky ReLU activation and 3 × 3 convolution. However, we applied RN/

CN and IN as the normalization operations in the two repeats, respectively (see Fig. 1).

We tested architectures with different hyper-parameters: the number of blocks, the

number of channels, and whether the RN/CN was applied or not. Starting from 10

blocks and 30 channels without RN/CN, the model performance raised gradually, with

the increase of depth and channel number as well as the application of RN/CN. We

stopped at 15 blocks and 45 channels with RN/CN applied, in the comprehensive con-

sideration of computational cost and model performance. All models were trained fol-

lowing 5-fold cross validation in the training set, where the cross entropy was taken as
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the loss function and was optimized by the Adam Optimizer [36] using a learning rate

of 1e-4.

Evaluation

We engaged Precision, Recall and F1-score to measure the algorithm performance. Pre-

cision is the fraction of truely predicted instances among all predicted instances, Recall

is the fraction of the truely predicted instances among all true instances, and F1-score

is the harmonic mean of Precision and Recall:

Precision ¼ TP
TP þ FP

Recall ¼ TP
TP þ FN

F1‐score ¼ 2� Precision� Recall
Precisionþ Recall

ð1Þ

where TP, FP and FN represent true positives, false positives and false negatives, respect-

ively. True samples denote the residue pairs forming β-β hydrogen bonds in the native

structure, while positive data denote the residue pairs predicted as forming β-β hydrogen

bonds by a predictor. Here, we abandoned the traditional evaluation of the coarse-grained

strand-level interaction but focused on the residue-level interaction, because the latter

contains more useful information for modeling the 3D structure of a target protein.

Tertiary structure prediction

Same as our previous work [25], we collected mainly β proteins and generated their ter-

tiary structure models following the CONFOLD protocol by taking the top 1 L predic-

tions as distance constraints, where L is the protein length. As the native and predicted

β-β contacts are always less than 0.5 L, these residue pairs are insufficient for reliable

modeling. We enriched the residues pairs to 1 L by taking the high-ranked and non-

redundant contact pairs from the DeepConPred2 results. We adopted distance range of

3.5–6 Å to constrain the Cβ atoms of residue pairs predicted from RDb2C2 that were

expected as of high confidence. Simultaneously, we used the distance range of 3.5–10 Å

to constrain the Cβ atoms of residue pairs from DeepConpred2. The best TM-score

from the top 5 models was chosen for the evaluation.

Results
Model optimization and evaluation

Features and hyper-parameters of our model were optimized based on 5-fold cross val-

idation in the training set, while the model performance was evaluated on two conven-

tional test sets of β-β contact prediction, BetaSheet916 and BetaSheet1452. Table 1

Table 1 F1-scores (%) of models with various hyper-parameters in the 5-fold cross-validation as
well as the BetaSheet916 and BetaSheet1452 sets

Evaluation 10 blocks
30 channels
w/o RN/CN

10 blocks
45 channels
w/o RN/CN

15 blocks
45 channels
w/o RN/CN

15 blocks
45 channels
w/ RN/CN

Cross-validation 61.82 62.33 62.20 63.17

BetaSheet916 71.60 71.42 71.48 72.08

BetaSheet1452 72.18 72.37 72.08 73.21

Shao et al. BMC Bioinformatics          (2020) 21:133 Page 5 of 12



shows the model performance at different numbers of blocks and channels as well as

with or without RN/CN operations. Clearly, the model achieves better performances

with RN/CN applied and in deeper and wider networks. Finally, in the consideration of

both model performance and computational cost, we stopped at the network model of

15 blocks and 45 channels with RN/CN applied.

The robust performance and steady prediction results of our models in the two test

sets support the appropriateness of model training. Interestingly, all tested models show

better performance in the test sets than in the cross validation. This is mainly because

the proteins in the training/validation set have smaller number of homologous se-

quences in the MSA and thus are harder targets than those in the test sets (Fig. 2).

Notably, our model was only trained in a small training set of 458 domains, when

compared with the BetaSheet916 and BetaSheet1452 test sets that contain 858 and

1294 domains, respectively. In an alternative approach, we enlarged the training set by

incorporating all proteins from the BetaSheet916 set, re-trained the model and then

tested the performance in the BetaSheet1452 set. The new model only exhibits limited

improvement in F1-score (from ~ 73% to ~ 75%). Hence, current choice of training set

does not impair the model generalizability significantly.

We also evaluated the importance of all features in our final model (15 blocks, 45

channels, with RN/CN) by subtracting the corresponding features and using the new

feature combination to re-conduct the model optimization and cross validation. As

shown in Fig. 3, all features have positive contribution to the model performance.

Particularly, removal of the ridge features elicits a reduction of ~ 1 percentage point to

the F1-score, which supports the importance of this feature for extracting β-β pairing

information even in the deep-learning-based models.

Fig. 2 The cumulative distribution of the N/L in the training set vs. the BetaSheet916 and BetaSheet1452
sets. Here, N represents the number of the homologous sequences in the MSA and L represents the length
of the target protein
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Comparison with RDb2C and bbcontacts

We evaluated the performance of RDb2C2 against the previous version RDb2C as well

as another state-of-the-art method bbcontacts in the BetaSheet916 and BetaSheet1452

test sets. Here, the evaluation was conducted at the residue level instead of the strand

level, since the detailed pairing information will benefit the structure modeling. As

shown by the Precision-Recall (PR) curves, RDb2C2 outperforms the other two

methods in the whole range by a large margin (Fig. 4). Particularly, at the suggested

cutoffs, RDb2C2 achieves an F1-score of 72.26 and 73.22% in the BetaSheet916 and

BetaSheet1452 sets, respectively. In contrast, the values for RDb2C and bbcontacts are

61.45 and 56.15% in the BetaSheet916 set, and 63.18 and 57.52% in the BetaSheet1452

set, respectively. The improvement of RDb2C2 over the previous version is > 10 per-

centage points in F1-scores.

We then calculated the F1-scores of RDb2C2 and RDb2C for individual proteins in

two test sets for a more detailed comparison (Fig. 5). Clearly, RDb2C2 remarkably out-

performs the previous version: 82.69% of the proteins in the BetaSheet916 set have

higher F1-scores in the RDb2C2 prediction, whereas the number slightly increases to

84.39% in the BetaSheet1452 set.

Protein contact prediction has achieved significant advances in recent years and highly

accurate contact maps may intrinsically contain the residue pairing information between

β strands. To further validate the necessity for the development of specific β-β residue

pairing predictors, we compared our method with a recently developed, end-to-end differ-

entiable contact predictor DeepECA [37] for inferring the β-β residue pairing on Beta-

Sheet916 and BetaSheet1452 sets. Notably, we extracted predicted contacts between β

Fig. 3 The feature importance to the performance. “-” indicates the corresponding feature was removed in
this feature combination
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residues (“E” or “B” in the DSSP [38] definition) in the DeepECA prediction results for

evaluation, which may slightly overestimate the performance of this program because of

the utilization of knowledge of native secondary structure. Table 2 lists the precision, re-

call, F1-score and AUPRC (i.e. area under the PR curve) values for DeepECA and RDb2C2

as well as RDb2C and bbcontacts. Clearly, pure contact predictors like DeepECA under-

perform specifically developed predictors like RDb2C2, RDb2C and bbcontacts in the pre-

diction of β-β residue pairing. Considering the importance of hydrogen-bonded β-β

residue pairing information in the structural modeling of mainly β proteins, methodo-

logical development of specific β-β residue pairing prediction is still essential.

Contribution in tertiary structure prediction

Accurate prediction of β-β pairing should be capable of assisting the structure model-

ing of mainly β proteins. In order to evaluate the effectiveness of our method in the

Fig. 4 The PR curves of RDb2C2 (red), RDb2C (blue), bbcontacts (green) in the BetaSheet916 and
BetaSheet1452 sets. The dots indicate the suggested cutoff values as optimized in the 5-fold cross
validation by F1-scores

Fig. 5 Comparison of RDb2C2 and RDb2C for individual proteins of the BetaSheet916 and BetaSheet1452 sets.
The vertical and horizontal axes represent the F1-scores of RDb2C2 and RDb2C, respectively. Each dot stands for
a protein, with green and blue colors highlighting the cases for which RDb2C2 and RDb2C win, respectively
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tertiary structure prediction, we chose 61 mainly β proteins (i.e. with ≥50% β residues)

from the BetaSheet916 set as in our previous work [25], and used the standard CON-

FOLD protocol to fold these proteins by applying the predicted β-β contacts as con-

straints [39]. As the native and predicted β-β contacts are always less than 0.5 L (L is

the number of residues in a protein) and are thus insufficient for model constraining,

we enriched the contacting residue pairs to 1 L by adding the high-ranked and non-

redundant pairs from the results of DeepConPred2. Same to our previous work, con-

straints of 3.5–6 Å were applied to the predicted β-β residue pairs, while constraints of

3.5–10 Å were applied to the enriched pairs. For each target protein, the best TM-score

[3] from the top 5 models was chosen for the evaluation.

As shown in the left panel of Fig. 6, for 68.85% of tested proteins in the BetaSheet916

set, structure models generated by the prediction results of RDb2C2 have higher TM-

scores than those generated by the previous version. This indicates that the improve-

ment in β-β pairing by RDb2C2 indeed enhances the model quality for the tertiary

structure prediction.

Table 2 Comparison of RDb2C2 against DeepECA, RDb2C and bbcontacts on proteins from the
BetaSheet916 and BetaSheet1452 sets

Precision (%) Recall (%) F1-score (%) AUPRC (%)

BetaSheet916 RDb2C2 77.34 67.80 72.26 73.29

DeepECA 21.31 60.76 31.55 16.24

RDb2C 69.91 54.81 61.45 59.88

bbcontacts 59.18 53.41 56.15 NA

BetaSheet1452 RDb2C2 78.71 68.44 73.22 74.15

DeepECA 20.99 60.24 31.13 15.83

RDb2C 69.10 58.19 63.18 61.87

bbcontacts 60.04 55.21 57.52 NA

Evaluation of AUPRC is not applicable for bbcontacts, because this program only outputs prediction results for a part of
residues pairs with high scores. Precision and recall values are obtained at the cutoff of optimal F1-score

Fig. 6 Comparison of TM-scores for structure models constructed using the prediction results of RDb2C2 vs.
other predictors. In the left panel, RDb2C2 is compared with RDb2C on mainly β proteins in the
BetaSheet916 set. In the right panel, RDb2C2 is compared with DeepECA on mainly β proteins collected
from CASP11–13 datasets. The green and blue dots represent the target proteins that have better structure
models when folded using prediction results of RDb2C2 and the rival methods, respectively
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Subsequently, we collected 23 mainly β proteins (i.e. with ≥50% β residues) from the

CASP11–13 datasets (see Table S1) and folded them using the same protocol. In the

control experiment, we folded these proteins using the top 1 L predicted contacts of

DeepECA as constraints (3.5–8 Å for general contacts in CONFOLD). As shown in the

right panel of Fig. 6 and also in Table S1, structure models generated using our method

achieve better quality, which further supports the essential role of β-β residue pairing

prediction algorithms in the tertiary structure prediction of mainly β proteins.

Running time, memory cost and availability

For a 100-residue protein, the overall time and memory cost for the RDb2C2 prediction

are 10 min and 9GB, respectively. We prepared an online server of RDb2C2 at the web-

site of http://structpred.life.tsinghua.edu.cn/rdb2c2.html.

Conclusions
We employed the ResNet architecture to produce a new version of our ridge-detection-

based β-β pairing predictor. The new algorithm RDb2C2 exhibits remarkable improve-

ment over the previous version not only in the prediction accuracy of β-β contacts, but

also in the contribution to practical structure modeling for mainly β proteins. Ridge

features still make positive contribution in the inference of β-β residue pairing

information.
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