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Abstract

An important challenge in drug discovery and disease prognosis is to predict genes that are preferentially expressed in one
or a few tissues, i.e. showing a considerably higher expression in one tissue(s) compared to the others. Although several
data sources and methods have been published explicitly for this purpose, they often disagree and it is not evident how to
retrieve these genes and how to distinguish true biological findings from those that are due to choice-of-method and/or
experimental settings. In this work we have developed a computational approach that combines results from multiple
methods and datasets with the aim to eliminate method/study-specific biases and to improve the predictability of
preferentially expressed human genes. A rule-based score is used to merge and assign support to the results. Five sets of
genes with known tissue specificity were used for parameter pruning and cross-validation. In total we identify 3434 tissue-
specific genes. We compare the genes of highest scores with the public databases: PaGenBase (microarray), TiGER (EST) and
HPA (protein expression data). The results have 85% overlap to PaGenBase, 71% to TiGER and only 28% to HPA. 99% of our
predictions have support from at least one of these databases. Our approach also performs better than any of the databases
on identifying drug targets and biomarkers with known tissue-specificity.
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Introduction

In pharmaceutical development the understanding of gene

expression across human tissues is highly relevant in numerous

stages. For example,

N In Target Selection, to ensure that the potential drug target is

expressed only in the relevant tissues.

N In Biomarker identification, to ensure that measurable analytes

originate from the right source tissue.

N To ensure that drug transporters and drug metabolic proteins

are expressed in relevant tissues.

It is well known that finding suitable targets, biomarkers and

proteins involved in drug transport and metabolism impacts the

success rate of late stage clinical trials.

Historically, most drugs have been designed to target proteins

without any detailed and extensive knowledge about the protein’s

global expression within the body. Only a few drugs in clinical use

target proteins encoded by genes preferentially expressed in only

one tissue, e.g. omeprazole (ATP4A), flecainide (SCN5A), orlistat

(PNLIP, LIPF), methimazole (TPO) and dapagliflozin (SLC5A2) -

for more information regarding these see DrugBank [1]. In recent

years the interest has grown for biomarkers for the purpose of

prognosis, monitoring of disease progression, effect of treatment,

or for patient stratification. Since biomarkers for practical reasons

are measured in blood plasma or serum, the specific source of the

analyte is crucial (besides being responsive to disease activity). One

of the most commonly used biomarkers in the clinic since long

time back [2,3] is c-reactive protein encoded by CRP, which is

uniquely expressed in the liver in response to inflammatory

processes or tissue damage in the body. Other examples of tissue-

specific and more disease-specific blood biomarkers are prostate-

specific antigen (PSA), encoded by the KLK3 gene uniquely

expressed in the prostate, and cardiac troponin T expressed from

the TNNT2 gene in the heart.

A growing number of techniques allowing for extensive,

detailed, and sensitive quantification of gene expression gives the

opportunity to identify genes that are preferentially expressed in a

single tissue so called tissue-specific genes or tissue-selective genes that

are constrained to a limited number of similar tissues [4]. This is

an important auxiliary step in the process of developing new drugs

and biomarkers. Although several public resources exist for

predicting whether genes are tissue specifically expressed, the

knowledge remains low and one cannot rely on an individual data

source or database to find reliable answers.

Data obtained from different experiments will vary depending

on the applied technology, the experimental design and the

biological context. The combination of multiple datasets enables
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assessing hypotheses in a context-independent setting where study-

specific biases are undermined. Basically two different approaches

can be taken where data is either combined at the data-level (low-

level), where raw data sets are integrated, or at the interpretative

level (high-level), where the outcome from several independent

analysis are combined [5]. Microarray analysis is a well established

technology where the amount of data is growing rapidly. Different

groups are often conducting experiments aiming at resolving the

same or similar scientific questions but uses different protocols,

platforms, data formats and analysis methods. Both high- and low-

Table 1. Some additional information regarding to the 5 datasets.

DATA SOURCE
NUMBER OF PROBE
SETS

NUMBER OF TISSUES
BEFORE MAPPING

NUMBER OF
TISSUES AFTER
MAPPING DATA TYPE

GNF1H 22283 84 34 HG-U133a

GDS3113 44928 32 27 ABI Human Genome Survey Microarray

GeAZr 32878 100 55 HG-U133a,b

GSE7307 53998 105 42 HG-U133plus2

doi:10.1371/journal.pone.0070568.t001

Table 2. Predicted tissues after optimization on the mixed set of training genes.

GENE GNF1H GeAZr GSE7307 GDS3113 TISSUE ANNONTATION

FXYD2 T T T = Kidney

PAX8 T T T T = Thyroid

HABP2 T T T T T = Liver

SAA4 T T T T T = Liver

CPN2 T T T T T = Liver

ASGRT T T T T T = Liver

LIPC T T T T = Liver

SFTPC T T T T T = Lung

SFTPB T T T T T = Lung

KLK2 T T T T,S T = Prostate, S = Salivary gland

ACPP T T T T T = Prostate

CA3 T T T T T = Thyroid

APOC3 T T T,S T,S T = Liver, S = Small intestine

KLK3 T T T T T = Prostate

LOR T T T,S T T = Skin, S = Vulva

ENO3 T T T - T = Heart, S = Muscle

ITIH2 T T T T,S T = Liver, S = Spinal cord

DPEPT T,S T = Kidney, S = Pancreas

TTR T T,S T = Liver, S = Retina

USPT3 T T T T = Muscle

VIM

RPL4T

E2F4

XPOT

UQCRH

SEPWT

YWHAQ

PSD

PSMB5

CFLT

T and S represent predicted tissues per gene after consensus voting (See method section). Empty white means one of the following: ubiquitously expressed, no tissue
with strong support or no data. Bold indicates that the predicted result is exactly (T), or partial agreement (T,S), the same as the HuGEindex.org database. A more
detailed table is shown in the supplementary material where results from individual methods are presented (Table S2).
doi:10.1371/journal.pone.0070568.t002
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level integration are used in practice [6,7,8,9,10,11,12,13] and

there they have different advantages and limitations. High-level

integration has the important advantage that it allows for mixing

data obtained from different technologies, e.g. data from

microarray and RNA-seq.

In this study we combine datasets from multiple sources at the

high-level to discriminate between genes that are specific, 2-selective

(preferentially expressed in two tissues) and those that are

ubiquitously expressed (i.e. more than two tissues). We use four

human microarray datasets together with three different methods.

The methods are trained and tested on positive and negative gene

sets using cross-validation. The output from each method is

combined using a consensus vote. Finally, we run the selected

methods on the entire datasets and output a combined list of

results using a rule-based score.

Materials and Methods

Datasets
Four human microarray datasets were used: GNF1H (Human

U133A/GNF1H Gene Atlas) [14], NCBI GEO GDS3113 [15],

NCBI GEO GSE7307 [16] and GeAZr (licensed from GeneLo-

gic). The CEL files from GEO were downloaded and processed in

R (version 2.9) using Bioconductor (version 2.4). Only normal

human tissue samples were selected for the analysis. All datasets

except GDS3113 have been processed by the MAS5 algorithm

and log2 transformed before further analyses. GDS3113 were

normalized using the Limma method (see [15] for details). Table 1

lists some additional information regarding the datasets.

ROKU-SPM
ROKU [17] uses Shannon entropy to predict whether a gene is

specifically or ubiquitously expressed across a set of tissues. If a

gene is predicted specific, an outlier detection method is used to

identify the tissue [18]. Another measure, SPM, is used by the

PaGenBase database [19]. It is a normalized specificity measure,

based on the expression vector, which is between 0 and 1. A value

close to 1 indicates specificity and a value close to 0 indicates

ubiquitous expression.

We found that both ROKU and SPM had some limitations

with respect to some data patterns. ROKU can easily be modified

to incorporate the SPM value as a parameter to overcome these

limitations. Basically both SPM and the entropy are used to

predict whether a gene is specific, 2-selective or ubiquitously

expressed. Two SPM values and the entropy are used as

parameters in the optimization (see Text S1 for a detailed

description). The modified ROKU-SPM method has been used in

the analyses.

Decision function
The decision function [20] uses the gap (g) between the

intensities, a specificity value (sp), and a decision value (d) to

determine whether a gene is preferentially expressed or not. g, d

and sp are used as parameters in the optimization.

Bayes factor
The Bayes factor approach [21] quantifies how much evidence

there is to support specificity. This method can only be applied to

datasets with multiple samples per tissue.

The hypotheses tested are:

H1 : m1w m2,:::,mj

� �

against the alternative

H2 : not H1

Where mj denotes the population mean of tissue j. Note, H1

corresponds to that the gene is tissue-specific. We have updated

the method to also test the hypothesis of 2-selectivity where we use

the following null-hypothesis

H
(2)
1 : min m1,m2ð Þw m3,:::,mj

� �

Further, we found that the variance between the replicates of each

tissue is very small compared to the variability between the tissues,

which resulted in support for H1 for almost all genes. The

variability of the replicates gives a good estimate of the

reproducibility of the experiment but it neglects the magnitude

of the differences with respect to the variance between the tissues.

We therefore modified H1 to also incorporate this magnitude by

testing

H1 : m1wmmax
2:::j zcs2:::j

where c is a constant, m1 is the maximum mean over all tissues,

s2:::j is the sample standard deviation of tissue 2 to j and mmax
2:::j is the

maximum mean over tissue 2 to j. This means that it is not enough

to have a mean greater than the others, it also needs to exceed the

others by a factor times the variability that is observed between the

other tissues. The same modification was done to H
(2)
1 ,

H
(2)
1 : min m1,m2ð Þwmmax

3:::j zcs3:::j

where m1 and m2 are the largest means over all tissues, s3:::j is the

sample standard deviation of tissue 3 to j and mmax
3:::j is the maximum

Table 3. Rules for the consensus vote.

Method 1 Method 2 Method 3 Consensus vote

T T T T

T T T,S T

T T Uq T

T T T

T T,S T,S T,S

T T,S Uq T

T T,S T

T Uq Uq Uq

T Uq T

T,S T,S T,S T,S

T,S T,S T,S

T,S T,S Uq T,S

T,S Uq Uq Uq

T,S Uq T,S

Uq Uq Uq Uq

Uq Uq Uq

The results from two or three different methods are combined to determine if a
gene is specific (T), 2-selective (T,S) or ubiquitous (Uq). T and S are the identified
tissues.
doi:10.1371/journal.pone.0070568.t003
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mean over tissue 3 to j. We have modified the software in [21] to

incorporate these changes. Simulations, as described [21], were

used to find the Bayes factor thresholds BF1,BF2 (see [21]) and the

constant c. A detailed description of this method is available at the

Chalmers online library [22].

Optimization function
A simple score (s) was used for evaluating how well a method (i)

performs on the training data:

s(Mi,�pp)~

0 if t~1 and g[GS

0 if t=1 or t=2 and g[GU

0:5 if t~2 and g[GS

1 if t=1 or t=2 and g[GS

1 if t~1 or t~2 and g[GU

8>>>>>><
>>>>>>:

where �pp is a parameter vector and t is the number of tissues

identified by method i given �pp and a gene g from either the specific

training set GS (positive set) or the ubiquitous training set GU

(negative set).

The function has a minimum if the method identifies one tissue

for each of the genes in GS and no preferential tissues for the genes

in GU . Therefore, we seek the vector �pp that minimizes the sum of s

of all training genes.

Training and test gene sets
Training and test gene sets were retrieved from the HuGEin-

dex.org database [23]. Five disjoint datasets were selected from the

‘‘Tissue Selective Genes’’ section (in Text S1) which in total

contains seven tissues. The genes were picked in a random fashion

and the expression patterns were manually investigated to exclude

genes which had an expression pattern that contained no signal for

specificity, i.e. not visually detectable by a manual curator or any

of the methods with default parameters. The datasets correspond-

Figure 1. Flow diagram illustrating the procedure for predicting preferentially expressed genes from multiple datasets. The
following steps are taken: 1) The methods (Bayes Factor, ROKU-SPM and Decision F = Decision function) are applied to each dataset separately, 2) The
consensus vote combines the output from the methods, 3) The inner-score combines the output from several probe sets and 4) The total score
integrates the results from all datasets into a common result.
doi:10.1371/journal.pone.0070568.g001

Figure 2. Example GRHPR of how the total score is calculated (see main text).
doi:10.1371/journal.pone.0070568.g002

Tissue Specific Genes from Multiple Sources
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ed to different tissues in order to identify/verify robust parameter

settings: 1) Mixed tissues, 2) Kidney specific, 3) Muscle specific, 4)

Lung or prostate specific and 5) Liver specific. In each dataset we

also added 10 ubiquitously expressed genes from the ‘‘House

Keeping Genes’’ section, also from HuGEindex.org. The five

training/test gene sets are available in the supplementary materials

(Table S2, S3, S4, S5, S6). The gene set containing mixed tissues is

shown in Table 2 where the first 20 genes are specific (i.e. belong

to GS ) and the last 10 are ubiquitous (i.e. belong to GU ). All

datasets were used both for training and testing. Parameters were

estimated from one datasets and were then used to predict genes in

the other datasets (testing).

Training schema
We used the set of parameters, given in the previous sections, for

each method in a simple optimization schema (see Text S1). The

set of parameters that minimized the optimization function was

chosen.

Vocabulary mapping
The four data sources use their own tissue vocabularies.

GNF1H, GeAZr, GDS3113 and GSE7307 with 84, 100, 32 and

105 tissue-terms respectively. Although many of the tissues are

shared in all datasets, it is necessary to reorganize the terms to

enable further analyses of the data. In our analyses we remove

tissues that are out of scope and group tissues that are functionally

or literary similar. We used the Brenda vocabulary [24] and the

four datasets were mapped onto this vocabulary. Some tissues,

such as adrenal gland and adrenal cortex, were grouped together

and the max intensity was used to represent the grouped tissues

(see Table S1 for more details about the groups).

Consensus vote for each dataset
Two or three methods were applied on each dataset depending

on whether there were multiple samples per tissue – a requirement

for the Bayes factor method. A consensus vote was obtained by

combining the result from all methods, using the rules described in

Table 3, to determine if a gene is specific, 2-selective or ubiquitous.

Combining the output from several datasets
A gene is often represented by several probe sets that may be

conflicting with each other and there is no universal rule telling us

which of them to trust more. We have, however, designed a score

that will capture some of the evidence researchers look for when

analyzing several probe sets. For example, if three out of five probe

sets indicate that a gene is specifically expressed in the liver and the

two remaining indicate ubiquitously expressed, we believe there is

enough evidence that points towards specificity for liver. These

rules will be captured by the inner-score, is(T), for tissue T and gene

s. is(T) is calculated for each gene by the following steps:

1. If at least 50% of the probe sets are either specific or 2-selective

and contains the same tissue T, remove all probe sets indicating

ubiquitously expressed – we regard them as non-informative.

2. If at least 50% of the remaining probe sets are either specific

for the same tissue (T) or 2-selective for the same two tissues

(T1,T2), then is(T)~1, for that tissue, or is(T1)~is(T2)~0:5
for the two tissues. Otherwise, is(T), for each detected tissue,

will be the average of the frequency of the tissue over the probe

sets.

The total-score, ts(T), for a gene s and tissue T, will be the

average over the inner-scores, hence constrained between 0 and 1,

over all datasets. A flow diagram summarizing the whole

procedure is shown in Figure 1.

Two examples on how to calculate the score are shown below

for illustrative purposes.
Example 1: GRHPR. There are three probe sets represent-

ing the gene GRHPR in GNF1H, GeAZr and GSE7307, and one

probe set in GDS3113. First, the inner score is(T) is calculated for

each data source separately. In GNF1H, two probe sets out of

Figure 3. Example ASS1 of how the total score is calculated (see main text).
doi:10.1371/journal.pone.0070568.g003

Table 4. Training/Testing.

Training parameter\Testing dataset Mixed tissues Kidney Muscle Lung & Prostate Liver

Mixed tissues 91% 95% 95% 83% 95%

Kidney 90% 95% 93% 83% 95%

Muscle 91% 93% 95% 82% 95%

Lung & Prostate 90% 94% 93% 83% 94%

Liver 91% 94% 93% 81% 95%

The percentage shows the agreement of the detection and HuGEindex prediction. Specific and ubiquitously expressed genes are all considered as positive if agrees
with the prediction. The rows show the dataset used for training, i.e. to estimate the parameters. The columns show the testing on the other datasets.
doi:10.1371/journal.pone.0070568.t004

Tissue Specific Genes from Multiple Sources
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three detect the gene as specific in Liver and Lymph, so the probe

set 214864_s_at (marked with the red line, Figure 2) is regarded as

non-informative (Rule 1), and at least 50% of the remaining probe

sets indicate Liver and Lymph selective, so the inner score will be

0.5 for Liver and 0.5 for Lymph (Rule 2). In GeAZr, as the three

probe sets are all detected as Liver specific, the score for Liver will

be 1. In GSE7307, both 214864_s_at and 216308_x_at are

detected as Liver specific/2-selective, thus probeset 201347_x_at

(marked with the red line in Figure 2) will be regarded as non-

informative and the score for Liver and Kidney will be the average

of 214864_s_at and 216308_x_at (Rule 2). For GDS3113, this

gene is ubiquitously expressed. Second, the total score ts(T) of a

tissue is the average of the all inner scores (sum of scores for each

tissue divided by 4).

Example 2: ASS1. The gene ASS1 is represented by one

probe set in GNF1H and by two probe sets in GeAZr and

GSE7307, but none in GDS3113. The inner scores in each data

sources are shown in Figure 3. In GeAZr scores for Liver and

Kidney are averaged from the two probe sets. In GSE7307, one

probe set out of two indicates that the gene is 2-selective (Liver and

Kidney) so the ubiquitously expressed probe set (230406_at,

marked with the red line in Figure 3) is therefore non-informative

(Rule 1) and will be disregarded from further calculations. Finally,

the total score (per tissue) is obtained by averaging over the inner

scores over the four datasets.

Public databases
We compare some of our results with the publically available

databases: PaGenBase, TiGER and HPA. In PaGenBase we use

SPM§0:9 as cutoff (the default value). In TiGER we set the

enrichment score to be greater than 5 and the P-value to be less

than 10{3:5. In HPA we interpret ‘‘Strong’’ (Level of antibody

staining) or ‘‘High’’ (level of annotated protein expression) as

indicators of expression in a given tissue. HPA is continuously

updating while PaGenBase and TiGER are static.

Software
R and Perl scripts to perform the analyses in this study are

provided with instructions at GIThub: https://github.com/

ddalevi/tissue-specificity

Results

Training and optimization
We used five distinct training sets, each having a set of

specifically and ubiquitously expressed genes, with respect to

different tissues: 1) Mixed tissues, 2) Kidney specific, 3) Muscle

specific, 4) Lung or prostate specific and 5) Liver specific. Ideally,

the methods should output a single tissue; in some cases also two

tissues, but all other number of outputs should be penalized by the

optimality criterion (see Optimization function in Methods).

Parameters of all method/dataset combinations were estimated

from each of the training gene sets separately resulting in five

different sets of parameters. The training results from the genes of

mixed tissues are shown in Table 2 (the others are shown in the

supplementary materials Table S3, S4, S5, S6). Each of the five

sets of parameters was evaluated (tested) on the four datasets not

used for training (see Table 4). For example, when training on the

Liver dataset we obtained a set of optimal parameters that resulted

in 95% correctly predicted genes in the liver dataset. When this set

of parameters was applied to the other datasets (for testing) we

obtained 95% (Mixed), 95% (Kidney), 95% (Muscle) and 94%

(Lung or prostate). This all-against-all procedure was done to

verify the robustness of the parameters, i.e. what impact will a

slight change in parameter values have on the predictions. As seen

in Table 4, we only observed minor differences between the sets of

parameters and it will be hard to argue that one set is better than

Figure 4. Clustering of data based on the 30 training genes
using the optimal parameters.
doi:10.1371/journal.pone.0070568.g004

Table 5. Summary of results.

Specificity Specific 2-Selective
Total specific or 2-
selective Total

Score Strong High Medium high Medium Strong Medium high

4 out of 4 191 306 143 498 4 27 1169 9354

3 out of 4 113 37 200 62 6 177 595 5179

2 out of 4 147 41 16 663 44 4 915 3550

1 out of 4 1011 6 0 0 160 2 1179 8745

Summation 1462 390 359 1223 214 210 3858 26828

The number of identified specific and 2-selective genes. The specific genes are divided into: strong support (score = 1), high support (0.75#score,1), medium-high
(0.5,score,0.75) and medium support (score = 0.5). The 2-selective genes are divided into: strong support (score = 0.5) and medium-high support (0.3#score,0.5).
The results are also categorized using the coverage: 4 out of 4 means that the gene exists in all four datasets, 3 out of 4 means that the gene exists in three datasets, etc.
Total indicates the number of genes in each category of coverage (e.g. 9354 genes are found in all four datasets).
doi:10.1371/journal.pone.0070568.t005

Tissue Specific Genes from Multiple Sources
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another. Therefore, we decided to use the sets of parameters

obtained from the mixed tissue set as this represents the most

general setting. The complete results from each of the datasets

together with outputs from individual methods are presented in

the supplementary material (Table S2). Note that the Bayes factor

method can only be applied to some of the datasets where we have

multiple samples per tissue. Most methods performed quite well

and in many cases all methods could identify the correct tissue

given by HuGEindex.org (T in Table S2, S3, S4, S5, S6). The

consensus vote (Table 2) resulted in better predictions than those

obtained from the individual methods.

We also clustered the data, based on the training set, to illustrate

that the results cluster based on dataset rather than method

(Figure 4), which stresses the fact that data is more important than

choice of method, i.e. given optimal parameters. We also added

HPA, TiGER and PaGenBase data in the plot. PaGenBase, which

is based on microarray data, is closer to our results than HPA and

TiGER (protein and EST data).

Combined output of all genes
The optimal parameters for the five datasets were used to apply

the methods on the full datasets. The total-score ts was used to

combine the datasets for each gene. The output genes were

divided into separate groups based on the score. The specific genes

ended up in four groups: 1) ts(T)~1; strong support, 2)

0:75ƒts(T)v1; high support, 3) 0:5vts(T)v0:75; medium-high

support and 4) ts(T)~0:5; medium support. The 2-selective genes

were divided into two groups: 1) ts(T1)~ts(T2)~0:5; strong support

and 2) ts(T1),ts(T2)ð Þ§ 0:3,0:3ð Þ; medium-high support. Further, we

also categorize the genes based on how many datasets that

contributed to the output (so called the coverage, Table 5). For

example, 3 out of 4 in the table means that three out of four datasets

were used when calculating the score (the more the better). In the

previous examples of GRHPR and ASS1 (Figure 2 and Figure 3),

GRHPR is predicted Liver-specific with medium-high support, i.e.

0:5vts(T)v0:75, and coverage 4 out of 4. ASS1 is predicted 2-

selective for Liver and Kidney with medium-strong support, i.e.

ts(T1),ts(T2)ð Þ§ 0:3,0:3ð Þ, and coverage 3 out of 4.

In total we found 3434 specific genes and 424 2-selective genes.

It should be noted that the criteria: strong support and highest

coverage used for selection of the 191 genes are very strict. We

have analyzed the predicted tissues of these genes and compared

them to TiGER, PaGenBase and HPA (Table 6). The overlap is,

as expected, highest with PaGenBase which is a database

containing tissue-specific information based on microarray data.

The second highest overlap is with TiGER – the EST data – and

the most dissimilar is HPA – the protein data. Our predictions in

Table 6 more often agree with the consensus compared to the

individual databases. For example, TPO is not predicted by

TiGER but by the others, and AKAP4 is not predicted by HPA

but the others, and GC is not predicted specific by PaGenBase but

the others. HPA suffers a lot from missing expression data. It is

clear that HPA for many genes, with well documented tissue-

specificity, are output as either 2-selective or ubiquitously

expressed. The agreement with our predictions is: 85% with

PaGenBase, 71% with TiGER and only 28% with HPA (Figure 5).

If we include the cases in HPA where the gene is strongly

expressed not only in the specific tissue, but also in other tissues

(partial agreement), the number is 53%.

Further, we find 11 out of 13 drug-targets and biomarkers with

known tissue-specificity (described in the introduction and

discussion). The two not found are predicted 2-selective including

the correct tissue and results from stomach being missing in two of

the sources. This is better than the databases where PaGenBase,

TiGER and HPA find 6, 5 and 8, respectively (Table 7).

We also analyzed which tissues were detected among the 1462

genes with strong support. The ten most frequently detected tissues

are shown in Figure 6. We can see that testis, the male generative

gland, is with about 46% the top candidate, followed by, liver,

placenta, CNS, muscle, pancreas, kidney, salivary gland, skin,

heart, thymus, blood, Small intestine, etc. Testis has previously

been identified as the top candidate tissue for specific genes both in

human [15] and mouse [25]. In the testis specific genes with

highest score and coverage (Table 6) we find genes associated with

the Gene Ontology term ‘‘spermatogenesis’’ (e.g. PRM1, PRM2,

CCNA1, OAZ3, RPL39L and CCT6B) which is the biological

process where germ-cells undergo division. Of the genes in the

Figure 5. The agreement of the 191 specific genes with strong support and highest coverage, based on our predictions, to TiGER,
PaGenBase (TiSGeD) and HPA. No info means missing data.
doi:10.1371/journal.pone.0070568.g005
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spermatogenesis process we predict 38 genes to be specific (score

$0.5), 35 to testis, one to placenta and one to muscle.

The 31 2-selected genes with strong and medium-high support

with full coverage were also analyzed (Table S8). The agreement

between the different datasets is, not surprisingly, much lower than

for the specific genes (Figure S1): 21% with TiGER, 32% with

PaGenBase and 9% with HPA. The same numbers for partial

agreement, i.e. at least one matching tissue, are: 61% with TiGER,

68% with PaGenBase and 69% for HPA. The pairs of tissues

detected for the 2-selective genes are shown in the supplementary

materials (Table S10 and Figure S2).

Discussion

Data integration is the cornerstone of future informatics and will

be crucial for effective drug discovery [5]. Two different

approaches can be taken: 1) Low-level integration where the data is

integrated before applying a method and, 2) High-level integration

where the method is applied first and the results are aggregated.

The first approach may sound more appealing but is often

prevented due to the inability of combining data from different

technologies and experiments. High-level integration has the

advantage of more easily include and benefit from new datasets

and technical platforms compared to adjusting a single expression

compendium to accommodate new data. This is especially

important as the field of expression analysis is expanding and

evolving at a very high pace with respect to new studies and

technologies. In high-level integration methods can be optimized

for each data source separately. It can also be applied without

access to the raw data as in meta-analysis of clinical trials where the

aim is to identify general trends from several independent analyses.

The objective of this study was to evaluate the hypothesis of

tissue-specificity over multiple data sources using a high-level

approach. The fundamental reasoning is that if many sources (on

average) point to the same conclusion, we can be more confident.

Two steps are evaluated: 1) Optimize the performance of an

individual method with respect to a dataset, 2) Combine the

outcome from several methods. The first step was achieved by

adjusting the parameters using training genes and with the rule-

based score (i.e. the inner-score). The second step was achieved

with the total score which is basically the average over all sources.

The result is a list of tissue-specific genes which is assessed by two

values: support and coverage. The first tells us how convincing the

identification was (regardless of the number of sources), and the

latter how consistent the identification was over the sources.

In order to qualify for strong support (score = 1) and the full

coverage (4 out of 4, Table 5), a gene must be predicted specific by

all selected method/dataset pairs. In addition it must be

represented on all platforms and expressed in a tissue group

found in each dataset. Many specific genes will never qualify for

this strict requirement but will still have strong support. For

example, the 1011 specific genes predicted by only one method/

dataset pair (Table 5) all have a strong signal but are only found in

one dataset. This is expected since the datasets have large

differences both in size and gene scope.

It is inherently difficult to validate our approach by comparing

the outcome with the ‘‘true’’ picture since this is not known despite

many investigations of gene (and protein) expressions. Most often

such investigations are focused on the tissue of interest while the

majority of organs are omitted or subjected to less detailed

investigation. Even interrogative large omics datasets suffer from

Table 7. Comparing the predicted results with TiGER,
PaGenBase and HPA using a set of 13 drug targets and
biomarkers that are known to have tissue-specific expression.

Target genes PredictedTiGER PaGenBase HPA T

ATP4A T,S T,S,U T Stomach

SCN5A T T Heart

PNLIP T T T,S Pancreas

LIPF T,S T T Stomach

TPO T T,S T Thyroid

SLC5A2 T T,S T T,S Kidney

CRP T T T T Liver

KLK3 T T,S T,S T Prostate

TNNT2 T T T T Heart

TG T S,U T,S T Thyroid

SLC26A4 T T Thyroid

IYD T S T Thyroid

TSHR T T T,S,U T Thyroid

Agreements are shown in bold while disagreements in italic. ‘T’ is the target
tissue, ‘S’ and ‘U’ are other identified tissues. Empty white means: ubiquitously
expressed or no data (see Table S11, S12 and S13 for more information).
doi:10.1371/journal.pone.0070568.t007

Figure 6. The ten most frequently occurring tissues among the 1685 specific genes. Many genes are, e.g., specifically expressed in the
testis (about 41%). All Tissues are shown in Table S9.
doi:10.1371/journal.pone.0070568.g006
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incomplete tissue panels or too low granularity/resolution or

platform-dependent lack of probes. Thus, comparing our data to

that of individual datasets is of little help to detect false negative

and positive results. True positive results should however be

possible to readily confirm. E.g., high scores for tissue-selectivity

were obtained for the genes mentioned in the introductory part.

These were predicted to be specific with high support for SCN5A

in the heart (flecainide for prevention of arrhythmias), high

support for PNLIP and strong support for LIPF in the small

intestine and stomach, respectively (orlistat for reducing lipid

uptake from the gut), strong support for TPO in the thyroid gland

(methimazole for hyperthyroidism), strong support for SLC5A2 in

kidney, medium support for CRP in the liver, high support for

KLK3 in the prostate, and strong support for TNNT2 in the

heart. The low score for ATP4A in the stomach (omeprazole for

neutralizing gastric acid) is caused by the lack of stomach in the

GNF1H dataset.

Another attempt to validate our result is to look for functional

rather than platform/technique-dependent supporting observa-

tions: For instance, diseases specific to the thyroid gland are caused

by mutations in or by autoimmune reactions to the thyroid-specific

genes. Our predictions give strong support for thyroid-specific

expression of the genes TPO (strong support) and TG (strong

support) encoding proteins malfunctions of which cause Hashi-

moto’s thyroiditis (OMIM [26] ID 140300). Thyroglobulin

encoded by TG (strong support) is also well known for its binding

of and thyroid gland-specific storage of iodine. Autoimmune

reactions towards TSHR (strong support) cause Graves disease

(OMIM ID 275000). Mutations in SLC26A4 (strong support) or

IYD (strong support) cause Pendred syndrome (OMIM ID

274600) or iodotyrosine deiodinase deficiency, respectively

(OMIM ID 274800).

New RNA-seq technology [27] will most likely increase the

precision of tissue expression data. The power of this technique is

its dynamic range and that it measures what is there and not what

is asked for. However, this detailed information will be most

valuable when gathered from a complete and extensive tissue

panel if the aim is to identify biomarkers and tissue-specific drug

targets. The approach described in this work is equally important

for other type of omic data including RNA-seq as well as for the

exploitation of micro-RNAs. This recently highlighted class of

nucleic acids is expected to contribute to the options for both

targets and biomarkers. Their property of being stable and

appearing in a cell-free form in blood has already been shown to

reflect the condition of the source organ [28,29,30]. Several data

sources describing the tissue distribution of most of the around 800

micro-RNAs expressed in man are available [31,32].

In addition to tissue-specific gene expressions, we have

identified 2-selective genes and could argue also for the value of

identifying 3-selective genes, etc. The motive is that drugs might

target two tissues with beneficial (or one neutral) effects or that the

drug may access only one organ. An example of the latter situation

is drugs that target an organ in the periphery but do not cross the

blood-brain barrier (e.g. clopidogrel and ticagrelor blocking

P2RY12 on platelets but not neuronal tissue in brain and spinal

cord). An example of 2- or 3-selective expression is provided by

NPC1L1 which is expressed in the liver and intestine and is the

target for the drug ezetimibe. These two examples also highlight

the issue of granularity, coverage, and vocabulary for defining and

grouping tissue. For example, P2RY12 scores selective for spinal

cord and central nervous system (CNS) but is also expressed on

platelets which are the target cells for the drug and not included in

the tissue panels of any of the datasets. Spinal cord and CNS could

with a lower resolution vocabulary be grouped as neuronal tissue.

In the case of NPC1L1 the selective expression in duodenum and

jejunum could be grouped and classified as small intestine-specific

(in addition to liver-specific).

Conclusion

Identifying tissue-specific genes is a difficult problem with many

pitfalls. Despite these we are convinced that our analysis provides

valuable information when formulating and testing new biological

hypotheses. We encourage future method development and

anticipate that our gene sets will be valuable as a benchmark for

new technology data.
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Figure S1 The agreement of the 31 2-selective genes with strong

or medium-high support and highest coverage, based on our

predictions, to TiGER, PaGenBase (TiSGeD) and HPA. No info

means missing data.
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Figure S2 The frequently co-occurring tissues among the 214

predicted 2-selected genes with strong support.
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Table S6 Predicted tissues on liver training genes.
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Table S7 Comparison of Specific Genes.
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target genes with TiGER, PaGenBase and HPA.
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Table S12 Comparision of the predicted results of the 13 drug

target genes with TiGER, PaGenBase and HPA (GeAZr data
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Table S13 Shows the predicted tissue for each of the datasets for

the 13 drug target genes.
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Text S1 Additional information around method, data and

results.
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