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Abstract: Terpenes from marine-derived fungi show a pronounced degree of structural 

diversity, and due to their interesting biological and pharmacological properties many of 

them have aroused interest from synthetic chemists and the pharmaceutical industry alike. 

The aim of this paper is to give an overview of the structural diversity of terpenes from 

marine-derived fungi, highlighting individual examples of chemical structures and placing 

them in a context of other terpenes of fungal origin. Wherever possible, information 

regarding the biological activity is presented. 
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1. Introduction 

Marine-derived fungi continue to produce chemically diverse new natural products with interesting 

pharmacological properties [1–3]. In terms of the overall number of secondary metabolites, polyketides 

are clearly dominating the chemical literature, followed by prenylated polyketides (―meroterpenes‖), 

peptides and alkaloids. Terpenes, which are in the focus of this special issue of Marine Drugs, thus 

seem to play a less conspicuous role in the natural products chemistry of fungi from marine 

environments, but as will be shown, this lack in quantity does not translate into a lack in quality. 

The aim of this paper is to provide an overview of the structural diversity of terpenes from  

marine-derived fungi, highlighting individual examples of chemical structures and placing them in a 

context of other terpenes of fungal origin. Wherever possible, information regarding the biological 

activity is presented. Without claiming to achieve comprehensive coverage, the focus will exclusively 

be on true terpenes, divided into the classical biogenetic subclasses, i.e., monoterpenes, sesquiterpenes, 

diterpenes, sesterterpenes, triterpenes including steroids, and tetraterpenes or carotenoids. Excluded 

from this are natural products that only in part consist of a terpene-derived skeleton, most importantly 
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prenylated polyketides (―meroterpenes‖), but also prenylated alkaloids or prenylated peptides, of 

which there are numerous examples. 

2. Examples of Terpenoids 

2.1. Monoterpenes 

Monoterpenes have only rarely been reported from fungi in general, let alone marine-derived 

strains. A notable exception is the new chlorinated monoterpene, (1S,2S,3S,4R)-3-chloro-4-(2-

hydroxypropan-2-yl)-1-methylcyclohexane-1,2-diol (1) which was isolated from the fermentation 

broth of the mangrove endophytic fungus Tryblidiopycnis sp., obtained from Kandelia woody tissue in 

Hong Kong [4]. 

(1S,2S,3S,4R)-3-chloro-

4-(2-hydroxypropan-2-yl)-

1-methylcyclohexane-1,2-diol (1)

Cl

OH

OH
HO

 

2.2. Sesquiterpenes 

The first new terpene at all from marine-derived fungi was dendryphiellin A (2) from the obligate 

marine deuteromycete Dendryphiella salina [5]. Compound 2 is structurally unusual in two ways—

firstly, at the time of its isolation it represented the first trinor-eremophilane identified from fungi so far, 

and moreover, also its fatty acid-derived ester side chain had not previously been reported from fungi.  

dendryphiellin A (2, R1 = CH2OH, R2 = H, R3 = H)

dendryphiellin A1 (3, R1 = COOH, R2 = H, R3 = H)

dendryphiellin B (4, R1 = CH3, R2 = OH, R3 = H)

dendryphiellin C (5, R1 = CH3, R2 = H, R3 = H)

dendryphiellin D (6, R1 = CH3, R2 = H, R3 = OH)

dendryphiellin G (11)
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Subsequent studies by the same research group resulted in the report of further trinor-eremophilanes, 

dendryphiellins B (4), C (5), and D (6), together with the intact eremophilanes, dendryphiellins E (7), 

F (10), and G (11)[6]. Dendryphiellins E (7) and G (11) were found to exist in equilibrium with their 
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corresponding hemiacetals, while the ethyl acetal in dendryphiellin F (10) probably formed during the 

isolation of dendryphiellin E (7) with ethanol. Additionally, the free carboxylic acids comprising the 

side chains of 2 and 4 were isolated from extracts of D. salina. The configuration of the methyl groups 

in the side chains was established by synthesis of the corresponding acids. Further investigation of the 

same deuteromycete yielded another trinor-eremophilane, dendryphiellin A1 (3), as well as the two 

intact eremophilanes, dendryphiellins E1 (8) and E2 (9)[7]. 

Two new eremophilane sesquiterpenes, 3-acetyl-9,7(11)-dien-7-hydroxy-8-oxoeremophilane (12) 

and 3-acetyl-13-deoxyphomenone (13) were produced by the marine fungus Penicillium sp. BL27-2, 

isolated from sea mud in the Bering sea [8]. 13 had been synthesized in the course of the structure 

elucidation of sporogen A0 I from a mycophilic Hansfordia sp. [9], but had not been previously 

reported as a natural product. The epoxide 13 displayed pronounced cytotoxic activity in the 

nanomolar range when tested against three different cell lines, while the ring-opened alcohol 12 was 

less active by several orders of magnitude. 

3-acetyl-9,7(11)-dien-7-hydroxy-8-oxoeremophilane (12) 3-acetyl-13-deoxyphomenone (13)

O

AcO

OH

O

AcO
O

 

From the extract of the fungus Microsphaeropsis sp., isolated from the sponge Myxilla incrustans, 

the eremophilane metabolite microsphaeropsisin (14) was obtained [10]. Compound 14 is 

characterised by a trans-configuration of CH3-14 and CH3-15 which is only rarely observed for 

eremophilane sesquiterpenes, and displayed moderate antifungal activity towards Eurotium repens and 

Ustilago violacea.  

microsphaeropsisin (14)
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An undisclosed mangrove endophytic fungal strain yielded the closely related new sesquiterpene, 

microsphaeropsisin A (15)[11]. Unfortunately, due to its instability neither the relative stereochemistry 

nor the biological activity of 15 could be investigated. 

07H239-A (16)
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Fungal strain LL-07H239 was obtained from a frond of the mangrove palm, Nypa sp. and identified 

as belonging to the Xylariaceae based on its DNA sequence [12]. Upon fermentation in potato dextrose 

broth, the novel acylated eremophilane sesquiterpene 07H239-A (16) was detected, which displayed 

cytotoxicity toward a variety of cancer cell lines. Interestingly, the 3-oxoprop-1-en-2-yl-sustituted 

eremophilane carboxylic acid moiety in 16 is also present in integric acid, an HIV-1 integrase inhibitor 

produced by a terrestrial Xylaria sp. [13,14], while the branched unsaturated fatty acid substituent in 

16 is identical to the one present in the structurally related sesquiterpenoid Sch 420789, which 

displayed phospholipase D inhibiting properties and was obtained from an unidentified fungus [15].  

The marine-derived ascomycete fungal strain CNL-523 was isolated from an unidentified ascidian 

in the Bahamas, and based on its DNA sequence, it was found to belong to the family Diatrypaceae, 

and to be related to the genus Cryptosphaeria [16]. Chemical analysis resulted in the isolation of 

cryptosphaerolide (17), an ester-substituted sesquiterpenoid related to the eremophilane class, but 

structurally unusual in terms of the presence of an exomethylene function. The same sesquiterpenoid 

skeleton is present in the recently described berkleasmin A, a metabolite of the terrestrial saprobic 

fungus, Berkleasmium nigroapicale [17]. In the Mcl-1/Bak fluorescence resonance energy transfer 

(FRET) assay, 17 displayed inhibitory activity towards the Mcl-1 protein, a cancer drug target 

involved in apoptosis. In addition, 17 also showed significant cytotoxicity against the HCT-116 human 

colon carcinoma cell line, with IC50 values in the lower M range. Its 8-O-methylated congener 

exhibited similar bioactivity, while the free alcohol resulting from cleavage of the ester substituent was 

neither cytotoxic nor active in the Mcl-1/Bak FRET assay. 

Peribysins A–J (18–27) are a group of eremophilane-type sesquiterpenoids produced by 

Periconia byssoides which was isolated from the sea hare Aplysia kurodai [18–21]. They have raised 

considerable interest and have become the subject of synthetic efforts due to their ability of inhibit the 

adhesion of human-leukemia HL-60 cells to HUVEC at lower M concentration, and thus are two 

orders of magnitude more potent than the standard control in this assay system, herbimycin A.  
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peribysin F (23, R1 = -OH, R2 = H)

peribysin G (24, R1 = -OH, R2 = OH)

peribysin J (27, R1 = -OH, R2 = OH)  

While the initial structure proposals for peribysins C (20) and D (21) suggested highly unusual 

furofuran skeletons, the structures were later revised based on CAST/CNMR prediction of 
13

C-NMR 

chemical shift values and geometric analyses with molecular and quantum mechanics  
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calculations [22]. The absolute configuration for peribysin E (22) was initially established by the 

modified Mosher’s method, but later revised by total synthesis [23,24]. Interestingly, biological 

activity was only observed for the natural (+)-peribysin E, but not for its enantiomer.  

A salt-water culture of an unidentified marine fungus, isolated from the marine sponge  

Jaspis aff. johnstoni yielded three new sesquiterpenes, chloriolins A (28), B (29), and C (30), 

chlorinated analogs of the terrestrial coriolin-type sesquiterpenes, besides the known coriolin B and 

dihydrocoriolin C [25]. Coriolins have been reported from the terrestrial basidiomycete, 

Coriolus consors [26–28]. Like the coriolins, 29 and 30 possess a hirsutane sesquiterpene skeleton, 

while 28 is probably derived via oxidative degradation, extruding C-5 and reverting the 

stereochemistry at C-3. 

35
O

chloriolin B (29, R = OH)

chloriolin C (30, R = H)

chloriolin A (28)
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In a follow-up study by the same research group, the salt water culture of another unidentified 

fungus, this time obtained from the sponge Haliclona sp. was shown to produce several new hirsutane 

sesquiterpenes, hirsutanols A–C (31–33) and ent-gloeosteretriol (35)[29]. The latter compound is the 

enantiomer of the known gloeosteretriol from the terrestrial Gloeostereum incarnatum [30], and also 

shares the same planar structure with arthrosporol from a terrestrial arthroconidial fungus [31]. Under 

similar salt-water fermentation conditions, several terrestrial isolates of Coriolus consors were 

investigated, and one ATCC-derived culture provided hirsutanol D (34), featuring the new isohirsutane 

skeleton. However, none of the different fungi was able to produce chlorinated compounds. Hirsutanol 

A (31) and ent-gloeosteretriol (35) displayed antibiotic activity towards B. subtilis. 

O
R

OH

hirsutanol A (31, R = -OH)

hirsutanol B (32, R = -OH)
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The marine fungus Aspergillus versicolor, isolated from the surface of the Caribbean green alga 

Penicillus capitatus, yielded four new sesquiterpenoid nitrobenzoyl esters (36–39), belonging to the 

cinnamolide class of drimane sesquiterpenes [32]. Compound 36 was responsible for essentially all of 

the HCT-116 colon carcinoma cell cytotoxicity observed for the crude extract, and displayed a mean 

LC50 of 1.1 μg mL
−1

 in the NCI’s 60 cell-line panel. In a parallel study conducted by a different 

research group, 36 was also isolated from a total of five strains of Aspergillus insulicola that were 

obtained from the green algae Penicillus sp. and Batophora sp., an unidentified green alga, and from a 
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decaying leaf of the mangrove plant Rhizophora mangle from the Bahamas [33]. By these authors, 36 

was given the name insulicolide A, and HPLC diode-array analyses revealed its presence in the 

extracts of several terrestrial isolates of Aspergillus versicolor as well as in some extracts of terrestrial 

isolates of A. bridgeri and some isolates of A. sclerotiorum. 

38 (R1 = H, R2 = 4-nitrobenzoyl)

39 (R1 = 4-nitrobenzoyl, R2 = H)

insulicolide A (36, R = OH)

                      (37, R = H)
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Seven new drimane sesquiterpenoids, hydroxylated derivatives of drim-7-en-6-one (40–42) and 

esters of 6,9-dihydroxy-5-drim-7-en-11,12-olide with polyunsaturated acid substituents at C-6 

(45–48), together with the known compounds deoxyuvidin B (43), strobilactone B (44), and  

RES-1149-2 (49), were obtained from cultures of the fungus Aspergillus ustus, which was isolated 

from the Mediterranean sponge Suberites domuncula [34,35].  

strobilactone B (44)

ustusol A (40, R1 = H, R2 = OH, R3 = OH)

2,9,11-trihydroxydrim-

7-en-6-one (41, R1 = -OH, R2 = H, R3 = OH)
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                     (45, R = COOH)
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Compounds 45, 46, and 49 showed cytotoxic activity against a panel of tumor cell lines, and 46 was 

the most active with an EC50 value of 0.6 g mL
−1

 against the L5178Y cell line. In a study which was 

published almost simultaneously, another isolate of Aspergillus ustus, obtained from the rhizosphere 
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soil of the mangrove plant Bruguiera gymnorrhiza in Hainan, China, produced eight drimane 

sesquiterpenes, termed ustusols A–C (40, 50, 51) and ustusolates A–E (52–55, 46), out of which two 

proved to be identical to the ones reported from the sponge-derived fungal strain mentioned above, 

besides another occurrence of RES-1149-2 (49)[36]. In this latter report, the absolute configuration of 

40 was established based on its CD spectrum and the octant rule for cyclohexenones, and 46 and 54 

were found to exhibit moderate cytotoxicity, while 52 was weakly active. It is noteworthy that 

compounds 41 and 50, reported from the two research groups as C-2 epimers, displayed virtually 

identical 
13

C NMR data, and are thus very likely to be identical. RES-1149-2 (49) had previously been 

described as a metabolite from A. ustus var. pseudoreflectus isolated from a soil sample [37,38], and 

was found to act as endothelin type B receptor antagonist [39]. 

The fungus Cadophora malorum, isolated from the green alga Enteromorpha sp. was subjected to 

long-term fermentation in a medium supplemented with sea salt. Chemical analysis revealed the 

presence of the known (+)-sclerosporin (56), besides the four new hydroxylated derivatives,  

15-hydroxysclerosporin (57), 12-hydroxysclerosporin (58), 11-hydroxysclerosporin (59), and  

8-hydroxysclerosporin (60)[40]. Sclerosporin was initially characterised as a sporogenic metabolite of 

a terrestrial isolate of Sclerotinia fruticula, and is a rare example of a fungal-derived cadinane-type 

sesquiterpene [41,42]. The new compounds 57–60 were subjected to a variety of assays, but were 

found devoid of significant biological activity, apart from 60 which showed a weak fat-accumulation 

inhibitory activity against 3T3-L1 murine adipocytes. 

                  sclerosporin (56, R1 = H, R2 = H, R3 = H, R4 = H)

15-hydroxysclerosporin (57, R1 = OH, R2 = H, R3 = H, R4 = H)

12-hydroxysclerosporin (58, R1 = H, R2 = OH, R3 = H, R4 = H)

11-hydroxysclerosporin (59, R1 = H, R2 = H, R3 = OH, R4 = H)

  8-hydroxysclerosporin (60, R1 = H, R2 = H, R3 = H, R4 = OH)

COOH
H

H

R1

R2

R3

R4

 

Four new phenolic bisabolane-type sesquiterpenoids, (+)-methyl sydowate (61),  

7-deoxy-7,14-didehydrosydonic acid (62), 7-deoxy-7,8-didehydrosydonic acid (63), and (+)-sydowic 

acid (64), together with the known (+)-sydonic acid (65) were isolated from a marine-derived 

Aspergillus sp., which was in turn isolated from the gorgonian Dichotella gemmacea collected from 

the South China Sea [43]. The enatiomer of 64, (−)-sydowic acid as well as the corresponding racemate, 

and sydonic acid (65) had previously been obtained from terrestrial strains of Aspergillus sydowi 

[44–46]. 61, 64 and 65 exhibited weak antibacterial activity against Staphylococcus aureus, but were 

inactive against methicillin-resistant S. aureus. 

The fungus Verticillium tenerum, isolated from an unidentified marine alga, yielded two new 

hydroxylated bisabolane-type sesquiterpenes, verticinol A (66) and B (67)[47]. Although the two new 

compounds were tested for a variety of effects, i.e., antibacterial, antifungal, antialgal, antiplasmodial, 
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antiviral, and cytotoxic activity as well as protein kinase inhibition or fat-accumulation inhibitory activity 

against 3T3-L1 murine adipocytes, they did not display significant activity in any of these test systems. 

(+)-methyl sydowate (61, R = CH3)

(+)-sydowic acid (64, R = H)

O

OH

ROOC

7-deoxy-7,14-didehydro-
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Two new bisabolane sesquiterpenoids, (+)-curcutetraol (68) and (−)-curcutriolamide (69) were 

obtained in a co-cultivation experiment of the marine bacterium CNH-741 and the fungus CNC-979, 

isolated from marine sediment [48]. The absolute configuration of 68 was determined by comparison 

of its experimental CD spectrum with the spectra predicted by quantum-chemical CD calculations. 

Although 68 and 69 bear structural similarity to known bisabolanes from terrestrial fungi such as 

sydonol from an unidentified member of the genus Aspergillus [49], or waraterpol from Penicillium sp. 

[50], it is not possible to definitely assign the actual producing organism in the co-cultivation study, or 

to decide whether the biosynthesis of 68 and 69 might have been induced by the presence of the 

other microorganism. An unidentified filamentous fungus, collected from driftwood in New Caledonia, 

was found to produce the bisabolane sesquiterpene, (−)--bisabolol (70)[51], which hitherto was only 

known as a typical plant metabolite, for example from chamomile (Matricaria recutita). 

(+)-curcutetraol (68)

OH

HOH2C
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curcutriolamide (69)
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cyclonerodiol (71)
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Cyclonerodiol (71) is a farnesane sequiterpenediol which was originally described from terrestrial 

plants, but later discovered to have a widespread occurrence in fungi, including the genera Giberella, 

Fusarium, Trichoderma, and Trichothecium. Occasionally, 71 has also been detected in  
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marine-derived fungi; examples include fungi of the genera Botrytis [52] and Myrothecium [53] as 

well as an unidentified fungus [54], obtained from the green alga Enteromorpha compressa and the red 

alga Gracillaria verrucosa, respectively. 

The fungus Drechslera dematioidea was isolated from the inner tissue of the marine red alga 

Liagora viscida, and proved to be a very rich source of new sesquiterpene derivatives [55]. 

Fermentation yielded ten new sesquiterpenoids, namely isosativenetriol (72), drechslerines A–G (73–79), 

9-hydroxyhelminthosporol (80), and sativene epoxide (81). In addition, a series of known 

sesquiterpenes were also detected, including helminthosporol, originally described as a plant growth 

regulator from Helminthosporium sativum [56], cis-sativenediol, a plant growth promotor produced by 

the same fungus and also by Cochliobolus setariae [57], and (+)-secolongifolene diol, again produced 

by Helminthosporium sativum and also by H. victoriae [58]. From a structural point of view, the 

sesquiterpenes produced by Drechslera dematioidea belong to four different classes of irregular 

terpenes, i.e., isosativene (72), seco-sativene or helminthosporene (helminthosporol and 73–80), 

sativene (cis-sativenediol and 81), and secolongifolene (secolongifolene diol). Most of the compounds 

displayed modest antifungal activity and were devoid of antialgal activity towards the green alga 

Chlorella fusca, and were also inactive against brine shrimp, nematodes, and Mycobacterium tuberculosis. 

However, drechslerins E (77) and G (79) and helminthosporol exhibited antimalarial activity against 

Plasmodium falciparum. 
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A culture of the marine fungus Kallichroma tethys grown in an enriched seawater medium gave the 

new tricyclic sesquiterpene, isoculmorin (82), besides traces of its isomer, culmorin (83)[59].  

isoculmorin (82)

11

6

OH
CH2OH

H H

culmorin (83)

OHH HHO
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Compound 82 differs from culmorin and all other known hydroxyculmorin derivatives in the lack 

of oxygenation at C-11. Culmorin and its hydroxylated congeners, but not isoculmorin, are widely 

distributed in various terrestrial Fusarium species, commonly found as pathogens on cereal crops 

[60,61]. Very often they co-occur with thrichotecenes such as deoxynivalenol (DON), which are also 

sesquiterpenes, but are characterised by a heavily rearranged and oxygenated carbon framework. Very 

recently, a terpene cyclase termed CLM1 has been identified in Fusarium graminearum, which 

produces longiborneol (11-deoxyculmorin) and is required for culmorin biosynthesis [62].  

Trichothecenes are well-known sesquiterpene toxins produced by several fungi from the genera 

Fusarium, Myrothecium, Trichothecium, and Trichoderma, most of which are parasitic on cereals such 

as maize, wheat, rye, barley, and rice [63]. Very often, besides a highly rearranged  

sesquiterpenoid-derived part, trichothecenes carry two additional polyketide-derived hydroxyacid 

moieties at C-4 and C-15, which can be linked via an ether or an ester bridge to give rise to a macrocycle. 

From the marine environment, the first trichothecene producing fungi, Acremonium neo-caledoniae 

from New Caledonia [64], and Myrothecium roridum from Palau [65], both originated from wood 

samples. The deuteromycete, Acremonium neo-caledoniae was identified based on morphological 

criteria and by 18S rDNA sequencing. The considerable cyotoxicity of its crude extract could be 

attributed to the presence of the known trichothecenes verrucarin A, isororidin A, and the new 

congener verrol 4-acetate (93)[64]. From Myrothecium roridum, a new member of the roridin family, 

12,13-deoxyroridin E (91) was obtained, which differs from the known roridin E (86) by the lack of 

the epoxide function in the sesquiterpenoid part. Although 91 displayed IC50 values of 25 and  

15 ng mL
−1

 towards HL-60 and L1210 cell lines, respectively, its activity was reduced about 80 fold in 

comparison to 86 [65]. In a subsequent study, the same fungal strain was reported to produce three new 

macrocyclic trichothecenes, 12'-hydroxyroridin E (87), roridin Q (88), and 2',3'-deoxyroritoxin D (98), 

while one new compound, roridin R (2',3'-dihydro-2'-hydroxyroridin H, 97), was isolated from 

Myrothecium sp., together with the known foridins A and H, and isororidin E [66]. 88 is characterized 

by a unique ether moiety at C-13' and thus contains a third hydroxyacid moiety. 87, 88 and 97 

displayed cytotoxic activity towards the murine leukemia cell line L1210 with IC50 values of 0.19, 

31.2, and 0.45 M, respectively, while 98 showed antifungal activity against S. cerevisiae at 1 g/disc. 

A saltwater culture of Myrothecium verrucaria, isolated from the Hawaiian sponge Spongia sp. yielded 

three new trichothecenes, 3-hydroxyroridin E (89), 13'-acetyltrichoverrin B (94), and miophytocen C 

(95), together with the known roridin A (84), roridin L (90), verrucarin M (92), roridin M (96), 

verrucarin A, isororidin A, epiroridin E, trichoverrin A, and trichoverrin [67]. When establishing the 

stereostructures of the new compounds by a combination of NMR spectroscopy and chemical 

transformations, the previously unreported stereochemistry of 90, 92, and 96 were also elucidated. All 

isolated compounds were shown to possess significant cytotoxicity against murine and human tumor 

cell lines, apart from 95 which lacks the epoxide function present in all other congeners. A total of 

16 fungal strains were isolated from various tissues of the fish, Argyrosomus argentatus (white croaker). 

Screening for antifungal activity against the human pathogenic C. albicans, Aspergillus niger, and 

Trichophyton rubrum identified a Myrothecium sp. as the most active isolate, which produced the 

known trichothecenes roridin A (84), verrucarin A, and 8-acetoxyroridin H [68]. In a systematic 

screening for antimicrobial activity towards gram-positive and gram-negative bacteria as well as 

S. cerevisiae and the two plant pathogenic fungi Sclerotinia sclerotiorum and Magnaporthe grisea, a 
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total of nine fungal strains obtained from the sponge Axinella sp. collected in the South China Sea 

were investigated. The most active isolate was identified as Myrothecium sp., and chemical analysis 

revealed the presence of the known roridin A (84) and roridin D (85), which were found to be 

responsible for the antifungal activity [69]. 
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2.3. Diterpenes 

Perhaps the most intriguing class of fungal diterpenes are the phomactins, a group of  

platelet-activating factor (PAF) antagonists produced by the fungus Phoma sp. obtained from the shell 

of the crab Chionoecetes opilio. 

phomactin B (100, -OH)

phomactin B1 (101, -OH)

phomactin A (99)

(= Sch 49028)

O

O
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After the initial report of phomactin A (99)[70], further derivatives phomactins B (100), B1 (101), 

B2 (102), C (103), D (104)[71], and subsequently phomactins E (105), F (106) and G (107)[72] were 

reported from the same fungal strain. Of this series, phomactin D (104) proved the most potent 

congener and inhibited PAF receptor binding with an IC50 value of 0.12 M, and platelet aggregation 

with an IC50 value of 0.80 M. Independently, researchers from Scheringh Plough in the US reported 

further phomactin derivatives Sch 47918 (103, identical to phomactin C) as well as Sch 49026, 

Sch 49027 and Sch 49028 (later found to correspond to phomactin A, 99) from a terrestrial Phoma sp., 

isolated from a leaf litter sample of mixed Quercus species, which was collected in a second growth 

mixed hardwood lot in Baton Rouge, Louisiana [73,74]. Later on, an unidentified marine-derived 

fungus that was isolated from the surface of the marine brown alga Ishige okamurae, and based on 

DNA sequence analysis was grouped into the order Dothideales and thus was taxonomically not 

closely related to the genus Phoma, was identified as the producer of phomactin H (108)[75], and most 
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recently, three further derivatives, phomactin I (109), 13-epi-phomactin I (110), and phomactin J 

(111)[76]. Due to their interesting biological properties, phomactins have been the subject of numerous 

synthetic efforts, including successful total syntheses and the preparation of numerous synthetic 

derivatives which greatly contributed to a better understanding of structure-activity relationships, 

which has been reviewed in detail [77]. Interestingly, there is increasing evidence that phomactins 

share a common biogenetic origin with the plant-derived diterpene alkaloid paclitaxel  

(also known as taxol), with the precursor, geranylgeranyldiphophate, undergoing cyclisation to the 

common biosynthetic intermediate, verticillenyl cation, which then is further modified either into 

taxadiene, the precursor of paclitaxel, or alternatively, into phomactatriene, which would then give rise 

to the phomactins [78–80]. In a fascinating study, the induction of biosynthesis of four new pimarane 

diterpenoids, libertellenones A–D (112–115) was observed when of a marine -proteobacterium 

(strain CNJ-328) was added to an established 3-day-old culture of the marine-derived fungus 

Libertella sp., isolated from an ascidian that was collected in the Bahamas [81]. 

libertellenone A (112, R = H)

libertellenone C (114, R = OH)
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When cultured alone, neither the fungal strain nor the bacterium produced diterpenoid metabolites. 

Based on structural properties, libertellenones A–D (112–115) are very likely produced by the fungus, 

since pimarane diterpenes have never been reported from bacteria. Curiously, the marine bacterium 

CNJ-328, which is capable of inducing diterpenoid biosynthesis, is the same strain that induced the 

production of the chlorinated benzophenone antibiotic, pestalone in a culture of the fungus 

Pestalotia sp., as previously reported by the same research group [82]. However, libertellenones A–D 

(112–115) did not show antibiotic activity towards the inducing marine bacterium, nor were active 

against multidrug-resistant human pathogenic bacterial strains. When tested against the HCT-116 

human adenocarcinoma cell line, libertellenone D (115) showed pronounced cytotoxic activity with an 

IC50 value of 0.76 M, while 112–114 were less active by almost two orders of magnitude. 

Chemical analysis of the endophytic fungus Apiospora montagnei, isolated from the alga 

Polysiphonia violacea led to the discovery of the new pimarane diterpene myrocin A (116)[83]. 116 is 

closely related to myrocin B, a diterpene previously isolated from the terrestrial fungus 

Myrothecium verrucaria [84]. 

myrocin A (116)
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The fungus Acremonium striatisporum was isolated from superficial mycobiota of the sea 

cucumber, Eupentacta fraudatrix collected from the Sea of Japan. Over the course of eight years, it 

was repeatedly studied and proved to be an exceptionally rich source of new isopimaradiene diterpene 

glycosides, virescenosides N–X (118, 120, 122–131)[85–88]. 

virescenoside A (117, R1 = OH, R2 = H, gly = alt)
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Additionally, the known virescenosides A (117), B (119), and C (121), previously described from 

terrestrial strains of Oospora virescens (later called Acremonium luzulae, while the currently accepted 

name is Gliomastix luzulae) were also obtained. In most virescenosides, the sugar is an unusual  

-D-altropyranose. Most of the virescenosides showed cytotoxic effects on developing eggs of the sea 

urchin Strongylocentrotus intermedius, accompanied by cytotoxic activity against Ehrlich carcinoma 

cells. Hypoxysordarin (132) was isolated from the fermentation broth of the facultative marine 

Hypoxylon croceum, obtained from a mangrove estuary driftwood sample [89].  
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Compound 132 showed lower MICs against several filamentous fungi than its parent compound, 

sordarin which lacks the unsaturated short-chain fatty acid substituent at the sordarose sugar unit, and 

which was originally reported from the terrestrial fungus, Sordaria araneosa [90]. 

Structurally closely related is zofimarin (133), a compound which was isolated from the fungus 

Zopfiella marina obtained from a marine mud sample by Japanese researchers at Sankyo laboratories, 

and which only had been reported in the patent literature [91]. Sordarin-type diterpene glycosides are 

of great interest due to their ability to selectively inhibit fungal protein synthesis through their 

interaction with the elongation factor 2 (EF2), and show a widespread distribution among terrestrial, 

but only occasionally among marine-derived fungi [92]. 

2.4. Sesterterpenes 

A Fusarium sp., tentatively identified as F. heterosporum, was isolated from driftwood in a 

mangrove habitat in the Bahamas. Fermentation in a seawater-based medium led to the discovery of 

two groups of sesterterpenes, neomangicols A–C (134–136)[93] and mangicols A–G (137–143)[94]. 

Very likely, neomangicol C (136) is an artefact resulting from conversion of neomangicol A (134) or B 

(135) by a complex dehydrohalogenation process.  
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Mangicols A–G (137–143) possess an unprecedented spirotricyclic sesterterpene skeleton. Based on 
13

C-acetate labelling studies, a biosynthetic route starting from geranylfarnesyldisphosphate was 

proposed, which upon cyclisation would undergo various 1,2-alkyl shifts and 1,2-hydride shifts. A 

rearrangement of the proposed cationic intermediate would also account for the biosynthesis of the 

neomangicols via an analogous pathway. Neomangicols A (134) and B (135) and mangicols A–G 

(137–143) displayed moderate cytotoxic activity against a panel of cell lines, and additionally, 
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neomangicol B (135) was active against B. subtilis, while mangicols A (137) and C (139) significantly 

inhibited phorbol myristate acetate-induced edema.  

The ophiobolins represent a class of unusual sesterterpenes so far described for a number of 

terrestrial fungi, including representatives of the genera Ophiobolus, Cochliobolus, Helminthosporium, 

Cephalosporium, Aspergillus, and Drechslera [95]. From a culture of the fungus Emericella variecolor 

obtained from a marine sediment, two new congeners, 6-epi-ophiobolin G (145) and 6-epi-ophiobolin N 

(146), and six known ophiobolins were isolated [96]. 
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In the course of the structure elucidation, the configuration of the C-6 proton in ophiobolin G (144) 

was revised from  to , and the previously not reported stereochemistry of ophiobolin H (147) was 

determined by spectroscopical means and chemical correlation with ophiobolin K. All of the isolated 

compounds showed cytotoxicity against a neuroblastoma cell line. When testing different culture 

media, it was found that cultivation of the fungus on solid media increased the yield in ophiobolins 

about ten-fold in comparison to fermentation in liquid media. In a subsequent report, ophiobolin H 

(147) was also detected in the culture broth of the fungus Aspergillus ustus, which was isolated from the 

Mediterranean sponge Suberites domuncula [35]. 

The obligate marine fungus Halorosellinia oceanica, collected in Thailand, was found to produce 

halorosellinic acid (148), an ophiobolane sesterterpene with weak antimalarial activity (MIC value of 

200 μg mL
−1

)[97]. Re-examination of the same fungus provided another new ophiobolane sesterterpene, 

17-dehydroxyhalorosellinic acid (149)[98].  

A marine-derived Aspergillus sp. was found to produce a new sesterterpene epoxide-diol named 

aspergilloxide A (150)[99]. The carbon skeleton of 150, for which the name asperane is proposed, 

represents a new addition to the architectural diversity of the sesterterpenoid class of secondary 

metabolites. When tested for cytotoxic properties, the acetylation product of 150 was moderately 

active against a human colon carcinoma cell line, while the parent compound was inactive. 
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aspergilloxide (150)
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2.5. Triterpenes 

The fungus Phomopsis sp. was isolated from the Chinese mangrove plant, Hibiscus tiliaceus. 

Chemical analysis revealed four new unusual ring A-seco-oleanes, namely 3,4-seco-olean-11,13-dien-

4,15,22,24-tetraol-3-oic acid (151), 3,4-seco-olean-11,13-dien-4,7,22,24-tetraol-3-oic acid (152), 

3,4-seco-olean-13-en-4,7,15,22,24-pentaol-3-oic acid (153), and 3,4-seco-olean-13-en-

4,15,22,24-tetraol-3-oic acid (154)[100]. 
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Oleane-type triterpenes are frequently found in terrestrial plants, but have only rarely been reported 

from microbial including fungal sources, while this investigation detected A-seco-oleanes for the first 

time in fungi. Interestingly, some fungi are able to converting oleananes into A-seco-oleanes, which 

might be relevant with regard to the biosynthetic origin of the compounds under study [101,102]. 

Besides a series of different metabolites from other biogenetic groups, the rearranged triterpene, 

6,16-diacetoxy-25-hydroxy-3,7-dioxy-29-nordammara-1,17(20)-dien-21-oic acid (155) was isolated 

from a culture of the fungus Aspergillus sydowi PFW1, obtained from a driftwood sample collected 

from the beach of the island of Hainan in China [103]. Compound 155 displayed significant antibiotic 

activity towards Escherichia coli, Bacillus subtilis and Micrococcus lysoleikticus. The new friedelan 

triterpene, 3-hydroxyfriedelan-17-carboxylic acid (156) was isolated from an unidentified mangrove 

endophytic fungus [104]. 

Bioassay-guided fractionation following hemolytic properties led to isolation of the pentacyclic 

triterpenoid sapogenin miliacin (3-methoxyolean-18-ene, 157) from a culture of the fungus 

Chaetomium olivaceum, obtained from marine bottom sediments of the Kuriles islands [105]. 157 had 

initially been described from the seeds of switch grass, Panicum miliaceum [106] and later found to 

occur rather widespread in higher terrestrial plants, but had not been described as a metabolite of 

marine-derived fungi before. 
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6,16-diacetoxy-25-hydroxy-
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2.6. Steroids 

The fungus Gymnascella dankaliensis was isolated from the Japanese sponge Halichondria japonica, 

and yielded a series of structurally unusual steroid-type compounds, the pattern of which varied 

depending on media composition [107,108]. Dankasterones A (158) and B (159) were obtained when 

glucose in the original medium was replaced by soluble starch, while gymnasterones A (160), B (161), 

C (162) and D (163) were isolated from malt-glucose-yeast media. 158 and 159 are most unusual 

steroids possessing a 13(14→8)abeo-8-ergostane skeleton, which so far only has been described once 

from nature, resulting from a photochemical reaction of the insect molting hormone,  

20R-hydroxyecdysone [109]. 
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On the other hand, 160 is structurally intriguing since it represents an unprecedented steroid 

alkaloid with an additional ring and an amide-linked side chain derived from gymnastatins, a group of 

polyketides likewise described from Gymnascella dankaliensis. 161 is a rare example of steroids with 

an epoxide-substituted D ring, while 162 and 163 contain an unusual 4,6,8(14)-conjugated triene 

system. 158, 159 and 161–163 exhibited significant growth inhibition against the murine P388 cancer 

cell line, whereas 158 also exhibited potent growth inhibition against human cancer cell lines. 
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isocyclocitrinol (164, R = H)
22-O-acetylisocyclocitrinol (165, R = Ac)
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Isocyclocitrinol (164) and its 22-acetyl derivative (165) were detected in the culture broth of a 

Penicillium citrinum which had been isolated from a sponge of the genus Axinella collected in Papua 

New Guinea [110]. 164 and 165 feature a most unusual bicyclo[4.4.1] A/B ring steroid system which 

arises from incorporation of 19-CH3 into the ring by 1,2-migration, yielding two fused seven-membered 

rings with a double bond at the bridgehead. The novel carbon framework of 165 was confirmed by X-ray 

crystallographic analysis. Structurally, both isocyclocitrinol congeners are related to cyclocitrinol 

(166) isolated from a terrestrial Penicillium citrinum [111], the structure of which was revised in the 

course of the structure elucidation of isocyclocitrinol. 164 and 165 showed weak antibacterial activity 

against Staphylococcus epidermidis and Enterococcus durans.  

The marine-derived fungus Rhizopus sp., isolated from the bryozoan Bugula sp. collected in Jiaozhou 

Bay, China, yielded six new ergosterols, 3-hydroxy-(22E,24R)-ergosta-5,8,22-trien-7,15-dione (167), 

3-hydroxy-(22E,24R)-ergosta-5,8,14,22-tetraen-7-one (168), 3,15-dihydroxy-(22E,24R)-ergosta-

5,8(14),22-trien-7-one (169), 3,15-dihydroxy-(22E,24R)-ergosta-5,8(14),22-trien-7-one (170),  

3-hydroxyl-(22E,24R)-ergosta-5,8(14),22-trien-7,15-dione (171), and 5,8-epidioxy-23,24(R)-

dimethylcholesta-6,9(11),22-trien-3-ol (172)[112]. All compounds showed cytotoxic activity to 

varying degrees against four different cancer cell lines. 
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Ergosterimide (173) is an unusual steroid derivative, formally a Diels-Alder adduct of maleimide 

and (22E,24R)-ergosta-5,7,14-trien-3-ol. The compound was obtained when investigating the 

endophytic fungus Aspergillus niger EN-13, cultured from the Chinese marine brown alga, 

Colpomenia sinuosa [113]. Maleimide is widely used for technical applications, and due to its high 

reactivity is commonly used as an educt for Diels-Alder reactions in synthetic laboratories. If 

maleimide indeed was a metabolite of the fungus under study, 173 would represent the first natural 

Diels-Alder adduct of this type. 

ergosterimide (173)

HO

NH
O

O
H

H

H

H

 

Six new fatty acid esters of the known steroids (22E)-ergosta-7,22-diene-3,5,6-triol (174–177) 

and (22E)-ergosta-7,22-diene-3,5,6-triol (178, 179) were isolated from the fungus 

Aspergillus awamori isolated from soil around the mangrove plant Acrostichum speciosum in Hainan, 

China, besides various known steroids and their esters [114]. All compounds exhibited mild cytotoxic 

activity against B16 and SMMC-7721 cell lines. Further analysis yielded the two new oxidized sterols, 

(22E)-7-methoxy-5,6-epoxyergosta-8(14),22-dien-3-ol (180) and (22E)-3-hydroxy-

5,6,8,14-diepoxyergosta-22-en-7-one (181) which were mildly cytotoxic towards the lung cancer 

cell line A549 [115]. Conformational analysis on the basis of the observed NOEs in the ROESY 

spectrum indicated that the cyclohexene oxide system in ring B of 180 adopted an endo-boat rather 

than a half-chair conformation.  
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(178, R = palmitoyl)

(179, R = stearoyl)

(22E)-7-methoxy-5,6-epoxy-

ergosta-8(14),22-dien-3-ol (180)

(22E)-3-hydroxy-5,6,8,14-

diepoxyergosta-22-en-7-one (181)

(22E)-ergosta-8(14),22-diene-

3,5,6,7-tetraol (182)

(22E)-cholesta-7,22-diene-

3,5,6-triol (183)

(174, R = palmitoyl)

(175, R = stearoyl)

(176, R = oleooyl)

(177, R = linoleoyl)
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The fungus Penicillium sp. was obtained from an undisclosed moss collected from the South Pole. 

Chemical analysis revealed the presence of a new sterol, ergosta-8(14),22-diene-3,5,6,7-tetraol 

(182), together with four known sterols. 182 exhibited pronounced cytotoxicity against the human liver 

cancer cell line Hep G with an IC50 value of 10.4 g mL
−1

 [116]. 

The known cholesta-7,22-diene-3β,5α,6β-triol (183) was identified from a marine Trichoderma sp. 

that was isolated from deep sea sediment of the South China Sea [117]. When tested for biological 

activity, it displayed weak cytotoxicity towards A549, inhibited Taq DNA polymerase with an IC50 

value of 0.45 mM, and also exhibited moderately inhibitory activity against HIV-1 protease, but was 

devoid of antimicrobial activity. 

2.7. Tetraterpenes (Carotenoids) 

The occurrence of tetraterpenes or carotenoids has only rarely been studied for marine-derived 

fungi. One report describes the first neurosporaxanthin glycoside, neurosporaxanthin -D-glucopyranoside 

(184), as a metabolite of a Fusarium sp. isolated from the seawater surface in Japan [118]. In addition, 

the known carotenoids neurosporaxanthin, -carotene, -carotene, and torulene were also identified. 

Since these pigments have strong 
1
O2 quenching activities, the authors speculated that they might 

contribute to the survival of the fungus in a harsh environment, exposed to active oxygen species and 

free radicals generated by intense irradiation with strong sunlight. 

neurosporaxanthin--D-glucopyranoside (184)

O

O O

HO
OH

OH

CH2OH

 

3. Conclusions 

Terpenes from marine-derived fungi show a pronounced degree of structural diversity, and many of 

them have aroused interest from synthetic chemists and the pharmaceutical industry alike, due to their 

interesting biological and pharmacological properties. Examples include the phomactins and the 

peribysins as ―originally marine‖, and the trichothecenes and the sordarins as ―originally terrestrial‖ 

groups of compounds, even though it is becoming increasingly evident that these distinctions are more 

or less coincidental, with further isolation studies yielding examples of producing organisms from a 

wider range of ecosystems. Thus, even if there are no exclusive classes of marine fungal terpenes, 

marine fungi represent an extremely valuable addition to nature’s vast repository of unique structures 

with intriguing activities. 
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