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Abstract: The research presented in this manuscript proposes a novel Harris Hawks optimization
algorithm with practical application for evolving convolutional neural network architecture to classify
various grades of brain tumor using magnetic resonance imaging. The proposed improved Harris
Hawks optimization method, which belongs to the group of swarm intelligence metaheuristics,
further improves the exploration and exploitation abilities of the basic algorithm by incorporating a
chaotic population initialization and local search, along with a replacement strategy based on the
quasi-reflection-based learning procedure. The proposed method was first evaluated on 10 recent
CEC2019 benchmarks and the achieved results are compared with the ones generated by the basic
algorithm, as well as with results of other state-of-the-art approaches that were tested under the
same experimental conditions. In subsequent empirical research, the proposed method was adapted
and applied for a practical challenge of convolutional neural network design. The evolved network
structures were validated against two datasets that contain images of a healthy brain and brain with
tumors. The first dataset comprises well-known IXI and cancer imagining archive images, while
the second dataset consists of axial T1-weighted brain tumor images, as proposed in one recently
published study in the Q1 journal. After performing data augmentation, the first dataset encompasses
8.000 healthy and 8.000 brain tumor images with grades I, II, III, and IV and the second dataset
includes 4.908 images with Glioma, Meningioma, and Pituitary, with 1.636 images belonging to each
tumor class. The swarm intelligence-driven convolutional neural network approach was evaluated
and compared to other, similar methods and achieved a superior performance. The obtained accuracy
was over 95% in all conducted experiments. Based on the established results, it is reasonable to
conclude that the proposed approach could be used to develop networks that can assist doctors in
diagnostics and help in the early detection of brain tumors.

Keywords: swarm intelligence; Harris Hawks optimization; exploitation–exploration trade-off;
chaotic; quasi-reflection-based learning; convolutional neural networks; classification

1. Introduction

As technology advances further every year, people are recognizing new means of
solving certain problems with greater quality, precision, and efficiency. One of the tech-
nological domains that uncovered broad possibilities, and continues to do so, is artificial
intelligence (AI). AI is not something that was revealed in the near past; it has existed for
decades, but has only recently gained popularity among researchers and companies. The
reason for this is the breakthrough in its processing power and storage capabilities, which
increased the potential for more advanced AI applications. Today, almost every field uses
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some kind of AI, such as medicine, economy, marketing, etc. Moreover, most people are
unaware that AI is influencing their life in multiple ways.

As AI is applied to a wide variety of fields, different methodologies and algorithms
exist within this domain. Therefore, various AI taxonomies can be found in the modern
literature; however, from the authors’ perspective, one of the most important taxonomies
splits AI methods into two categories: metaheuristics and machine learning. Metaheuristics
are problem-independent, high-level algorithms that provide a set of strategies to develop a
heuristic for solving a particular problem and, as such, they cannot guarantee an optimum
problem solution. However, they can obtain satisfying (in most cases, near-optimum)
solutions in a rational amount of time [1].

Further, based on the type of phenomena that they emulate, metaheuristics can
be divided into those that are inspired and those which are not inspired by nature [2].
Examples of non-nature inspired metaheuristics include tabu search (TS) [3] and differential
evolution (DE) [4]. The two most prominent groups of nature-inspired metaheuristics
include evolutionary algorithms (EA), which simulate the process of natural evolution,
and swarm intelligence, which mimics a group of organisms from nature.

Swarm intelligence algorithms are known as efficient solvers of many NP-hard chal-
lenges [5]. Although many swarm algorithms have been devised in the recent decade,
there is always a space for new ones, as well as for improvements in the existing ones, as a
universal algorithm that can successfully tackle all problems cannot be created.

The main focus of the research proposed in this manuscript is the development of an
enhanced Harris Hawks optimization (HHO) algorithm that addresses the observed flaws
of its basic version. The HHO is a recently proposed, yet well-known swarm intelligence
metaheuristics [6] that showed great potential in tackling many real-world challenges [7,8].
In this study, the authors tried to further investigate and expand the HHO’s potential by
incorporating a chaotic mechanism and a novel replacement strategy that enhance both the
exploitation and exploration of the basic algorithm, with only a small additional overhead
in terms of computational complexity and new control parameters.

Established practice from the modern computer science literature states that when
a new optimization method is devised, or an existing one is improved, it should first be
validated on a more extensive set of so-called benchmarks and then applied to a practical
problem. According to the no free lunch theorem (NFL), a method that performs equally
well for all types of problems does not exist, and for some method to be tagged as well-
performing, it should obtain a good average performance for most benchmark instances.
Following this strategy, the proposed, enhanced HHO was first validated against a set of
10 novel CEC2019 bound-constrained benchmarks and, in these experiments, the near-
optimum control parameter values, that obtain the best average results, are determined.

To further validate the proposed HHO, a method was adopted to tackle the practical
issue of evolving convolutional neural network (CNN) hyper-parameters. One of the
greatest challenges and obstacles in devising high-performing CNNs is the fact that a
universal network, which will obtain a good performance for all problems, does not exist.
Therefore, untrainable CNN parameters, which are known in the literature as hyper-
parameters, should be finetuned to better fit certain optimization problems. Some of these
parameters determine the overall CNN architecture (design); more precisely, they define
the number and types of layer, along with their size in terms of the kernel, number of
neurons and connections that are used. Other parameters determine the type of optimizer
and activation function that is used, the learning rate value, etc. Noting this, there can
be an infinite number of combinations in which one CNN can be structured, which itself
represents one instance of NP-hard optimization problems.

The proposed HHO is utilized to find a proper CNN structure for the classification
of magnetic resonance imaging (MRI) brain tumor grades. This specific dataset is chosen
because the MRI brain tumor grades’ classification represents a very important task in
the domain of medicine, which can potentially save lives and, therefore, the basic moti-
vation behind this practical application is engaging efforts to further enhance the CNNs
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classification performance for this dataset and devise an "early warning" tool that will help
doctors to diagnose brain tumors in early stages of development. Moreover, according to
the literature survey, the potential of swarm intelligence for developing CNN structures
for these types of data is not investigated enough. Rxamples of previous research from
this domain are efforts shown in [9,10]. Thus, by evolving CNN structures for MRI tumor
datasets, we aim to acccomplish the following objectives: first, to evaluate the proposed
method for a specific practical problem and to try to improve the classification accuracy for
this very important dataset.

In practice, it would be impossible to examine all possible hyper-parameters’ values,
and for each hyper-parameter, lower and upper bounds are defined by the domain expert,
as shown in [9]. In this way, by adjusting the search space boundaries, the evolved CNN’s
structures target specific MRI brain tumor grade classification datasets, not any generic
dataset.

It is noted that the practical application of the research shown in this manuscript
represents the continuation of the investigation shown in [10]. Additionally, in the proposed
study, other well-known swarm algorithms are also implemented for CNN design, and a
broader comparative analysis is established. Most of these metaheuristics have not been
evaluated for this challenge before.

Based on the above, the research proposed in this manuscript is guided by two basic
investigation questions:

• Is it possible to further improve the basic HHO algorithm by addressing both search
processes—exploitation and exploration?

• Is it possible to evolve a CNN that will establish better classification metrics for MRI
brain tumor datasets than other state-of-the-art methods proposed in the modern
literature?

The contribution of proposed study is three-fold:

• An enhanced version of the HHO metaheuristics has been developed that specifi-
cally targets the observed and known limitations and drawbacks of the basic HHO
implementation;

• It was shown that the proposed method can generate high-performing CNN structures
for MRI brain tumor classification that establish better performance metrics than other
outstanding methods proposed in the literature;

• Other well-known swarm intelligence algorithms were tested for CNN design and a
broader comparative analysis was performed.

The remainder of this paper is structured as follows: Section 2 provides a short
overview of theoretical background relevant to proposed research along with literature
review, Section 3 first provides basics of the HHO, then summarizes its drawbacks, and
finally proposes the enhanced version of this promising algorithm. Sections 4 and 5 are
practical, where results of the proposed method along with comparative analysis with
other state-of-the-art methods are first reported for standard CEC2019 benchmarks and
then for CNN design for MRI brain tumor grade classification. The final Section 6 exhibits
the closing remarks, and suggests possible future work in this field along with limitations
of the performed study.

2. Preliminaries and Related Works

The goal of this section is to introduce readers to some basic concepts that serve as
a background for this paper. Moreover, this section provides a literature review of the
relevant topics.

2.1. Swarm Intelligence

Swarm intelligence algorithms come from a group of nature-inspired optimizers.
These are population-based, iterative approaches that incrementally try to provide a solu-
tion for the problem at hand. Each individual from the population represents one potential
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solution, while communication between solutions is established by using some kind of
indirect communication mechanism without a central component. The search process
is guided by exploitation (intensification) and exploration (diversification) mechanisms,
where the first one performs a search in the neighborhood of existing solutions and the
latter explores previously undiscovered parts of the search space.

In most cases, it is possible to spot the natural phenomenon that algorithm simulates
from its name, e.g., particle swarm optimization (PSO) [11], firefly algorithm (FA) [12],
artificial bee colony (ABC) [13], seagull optimization algorithm (SOA) [14], bat algorithm
(BA) [15], etc. [16,17].

With all advanced strategies of how the best swarm algorithms operate, they are
successfully applied even outside research circles. Consequently, they make a huge contri-
bution to real-world problems such as cloud computing and task scheduling [18,19], wire-
less sensor network localization and routing [20,21], numerous fields of medicine [22–24],
prediction of COVID-19 cases [25], anomaly detection [26], etc. [27,28].

As the popularity of swarm intelligence metaheuristics grows, numerous different
solutions are reported that enhance vast realms of AI methods and techniques. One of the
most recent and prominent research fields is hybrid methods of swarm intelligence and
various machine learning models adapted for a large number of real-world problems. Some
practical machine learning challenges that are successfully tackled with swarm intelligence
include feature selection [29–31], training artificial neural networks (ANNs) [32,33], text
clustering [34] and many others [35,36].

2.2. Convolutional Neural Networks

The CNNs are well-known and widely utilized methods from the deep learning area,
and they are capable of providing outstanding results in different application domains.
The CNNs have achieved outstanding results in the areas of computer vision, speech
recognition, and natural language processing (NLP) [37–40].

The CNN model is based on the visual cortex of the brain, which consists of several
layers. This structure starts with the input layer, and every subsequent layer receives the
outputs of the previous layer as its inputs, processes the information, and sends it to the
next layer. After each of the layers in the network, data become more filtered. In this way,
each layer produces output more detailed data, while the first layer can process more easily,
without losing important features. Layers in the CNN structure are separated into three
groups: convolutional, pooling, and fully connected (or dense).

Convolutional layers are responsible for filtering the data by utilizing the convolu-
tional operation and extracting the features in a smaller size than the input. Typical sizes
include 3 × 3, 5 × 5, and 7 × 7. Convolutional function over the input vector can be
mathematically represented by Equation (1):

z[l]i,j,k = w[l]
k x[l]i,j + b[l]k , (1)

where z[l]i,j,k represents value of the output feature of the k-th feature map at position i, j
and layer l. Representation of the input at location i, j is given as x; w represents the filters,
while the bias is denoted as b.

After convolution, the activation is performed, by using the following expression:

g[l]i,j,k = g(z[l]i,j,k) (2)

where the g(·) denotes the non-linear function using the output.
Pooling layers have the task of reducing the resolution. Two commonly used variants

of pooling layer implementations are max and average pooling. The function that defines
the pooling is given with Equation (3).

y[l]i,j,k = pooling(g[l]i,j,k). (3)
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where y denotes the output of the pooling operation.
Finally, fully connected layers have the task of carrying out the classification process.

Classification is performed by the softmax layer in the case of multi-labeled datasets, or by
the logistic layer (sigmoidal) in the case of binary classification.

The CNN training is usually executed by utilizing gradient-descent-based meth-
ods [41]. The goal of these optimizers is to minimize the loss function over a series of
steps called epochs. In each epoch, network weights and biases are adjusted, so the loss
function is minimized. Again, in the literature, as well as in practical applications, many
loss functions exist and some of the most commonly employed are binary and categorical
cross-entropy H for binary and multi-label classification tasks, respectively. The function is
specified by two distributions p and q across discrete variable x, as shown in Equation (4).

H(p, q) = −∑
x

p(x)ln(q(x)) (4)

One of the problems that CNNs face is creating a model that will perform well on
both the training set and the new data. In many practical uses, the model performs well
on the training data; however, it fails to establish a satisfying classification accuracy on
the testing data. This problem is known in the literature as over-fitting. Many methods
have been proposed to address this issue; however, one of the most commonly used is
the dropout technique [42], which falls in the domain of regularization. Dropout is not
considered computationally expensive, but is a very efficient approach that prevents the
over-fitting problem by the random removal of some neurons in the fully connected layer
during the training process.

The standard, traditional way to determine the appropriate CNNs design, as well as
a classic ANN architecture, for a given problem is to evaluate them by first performing
training on the train set and then executing testing on previously unseen data. As already
noted in Section 1, this represents a major issue in this domain, which is known as the
tuning of hyper-parameters (optimization). Unfortunately, this procedure is lengthy and
time-consuming; moreover, it is based on "trial and error" and requires human intervention.
Recently, many automated frameworks based on metaheuristics that generate CNN struc-
tures for a given task, are devised [43]. Due to the NP-hard nature of the hyper-parameters’
optimization challenge, metaheuristics, especially swarm intelligence, proved very efficient
methods for devising such frameworks [44–46].

It should also be emphasized that the HHO algorithm has already been implemented
to optimize ANN and CNN hyperparameters in previous research [7,47]. However, since
every problem is specific, and by taking the NFL into account, the HHOs potential to
evolve a CNN’s structure to classify MRI brain tumor images has not been established.

2.3. MRI Brain Tumor Grades Classification

Glioma tumors are the most frequent type of brain tumor in the adult population [48].
They are classified into four grades, corresponding to severity levels ranging from I to
IV [49]. Gliomas classified as grade I are considered benign, while grade IV gliomas
represent malignant tumors that spread fast. One of the key factors of the successful
treatment of patients with glioma is a fast diagnostics and early detection [50]. However,
in practice, this procedure is complicated and includes magnetic resonance imaging (MRI),
followed by invasive biopsy if a tumor is suspected. It can take weeks, sometimes months,
for a procedure to finish and to obtain a decisive answer. To speed up the process, the
usage of computer-aided tools is necessary to help doctors interpret the MRI images and
classify the grade of the tumors [51,52].

For tumor diagnosis, MRI is the only non-invasive methodology that provides valuable
data in the shape of 2D and 3D images. The CNNs are known and proven classifiers that can
be utilized to help in the identification of objects in MRI images and perform segmentation.
However, since the MRI dataset is specific and different from other, especially generic,
datasets, the CNN with a specific design should be evolve,d and that is why some most



Sensors 2021, 21, 6654 6 of 33

recent research from this domain utilizes MRI paired with CNNs and swarm intelligence
metaheuristics [10,53].

3. Proposed Method

In the beginning, this section introduces the basic HHO. Then, it points out the noticed
deficiencies of original HHO implementation and, finally, the modifications that target the
observed flaws of the basic HHO are proposed at the end of this section.

3.1. Original HHO

The HHO algorithm, as its name states, is inspired by different Harris Hawks’ strate-
gies during their attacks on prey in nature. These attacking phases consist of three steps:
exploration, the transition from exploration to exploitation, and, finally, the exploitation
phase. The algorithm was initially proposed by Heidari et al. in 2019 [6].

In the exploration phase, the HHO algorithm strives to find the closest solution to
the global optimum. During this phase, an algorithm is randomly initialized on multiple
locations and, step-by-step, moves closer to its prey, mimicking how hawks attack in their
natural surroundings. To achieve this efficiently, the HHO utilizes two strategies with
equal probabilities, determined with parameter q as follows [6]:

X(t + 1) =

{
Xrand(t)− r1|Xrand(t)− 2r2X(t)|, q ≥ 0
(Xbest(t)− Xm(t))− r3(LB + r4(UB− LB)), q < 0.5,

(5)

where q, together with r1, r2, r3 and r4, represent random numbers from the range [0, 1],
which are updated in each iteration, X(t + 1) is the solutions’ position vector for next
iteration, while Xbest(t), X(t) and Xm(t) denote the best, current and average solutions’
positions in the ongoing iteration t. Finally, LB and UB are lower and upper bounds of
variables that define the scope of solutions in the search space. Furthermore, to obtain an
average position of the solutions Xm(t), the simplest averaging approach is employed:

Xm(t) =
1
N

N

∑
i=1

Xi(t), (6)

where N presents the total number of solutions and Xi(t) is location (position) of individual
X at iteration t.

During the exploration phase, the HHO can change from exploitation to exploration
for different amounts of time, depending on the strength of the solution (prey energy). The
strength of solution updates in each iteration is as follows:

E = 2E0(1−
t
T
), (7)

where T expresses the maximal number of rounds (iterations) in a run and E0 initial
strength of pray energy, which changes randomly inside the [−1, 1] interval.

During the exploitation phase, the hawk attacks its prey. However, the prey tries to
escape, so the hawk needs to change between different strategies in order to exhaust and
consequently catch the prey . In a real situation, hawks will try to come closer and closer to
the prey, to make it easier for them to catch it. To incorporate this into the optimization
algorithm, they change their attacking pattern from softer to harder. When |E| ≥ 0.5, a soft
besiege is applied, while when |E| < 0.5, hard besiege occurs.

When r ≥ 0.5 and |E| ≥ 0.5, the prey still has energy, so hawks will encircle
softly to make the prey more exhausted. This behavior is modeled with the following
expressions [6]:

X(t + 1) = ∆X(t)− E|JXbest(t)− X(t)| (8)

∆X(t) = Xbest(t)− X(t), (9)



Sensors 2021, 21, 6654 7 of 33

where ∆X(t) is a vector difference between the best solution (prey) and solution position
in iteration t. Attribute J is randomly changed in each round and simulates the target
escaping strategy:

J = 2(1− r5), (10)

where r5 is randomly generated number in interval [0, 1]). In a case when r ≥ 0.5 and
|E| < 0.5, prey is exhausted and hawks can perform a hard attack. In this case, the current
positions are updated as:

X(t + 1) = Xbest(t)− E|∆X(t)| (11)

Furthermore, in the situation when the prey still has some energy available, a soft
push is performed before the hawks’ attack can occur. This form of attack utilizes zig-zag
movements known as leapfrog movements, which are common in nature. To perform this,
the hawk can evaluate the following rule:

Y = Xbest(t)− E|JXbest(t)− X(t)|, (12)

and then dive in a leapfrog pattern as follows:

Z = Y + S× LF(D), (13)

where D is the dimension of a problem and S represents a random vector of 1× D size,
while LF is levy flight function, calculated as:

LF(x) = 0.01× u× σ

|v|
1
β

, σ = (
Γ(1 + β)× sin(πβ

2 )

Γ( 1+β
2 )× β× 2(

β−1
2 )

)
1
β (14)

Hence, the strategy for updating individuals’ positions is calculated as follows:

X(t + 1) =

{
Y, if F(Y) < F(X(t))
Z, if F(Z) < F(X(t)),

(15)

where Y and Z are calculated by utilizing Equations (12) and (13).
Finally, in the r ≤ 0.5 and |E| < 0.5 case (hard besiege with progressive rapid dives),

the prey does not have energy, and a hard attack is utilized before hawks hunt down the
prey. Therefore, hawks decrease their average distance from the pray using the following
strategy:

X(t + 1) =

{
Y, if F(Y) < F(X(t))
Z, if F(Z) < F(X(t)),

(16)

where, contrary to Equation (15), Y and Z are obtained using the following rules:

Y = Xbest(t)− E|JXbest(t)− X(t)| (17)

Z = Y + S× LF(D) (18)

In the modern literature from the domain of swarm intelligence, the two most com-
monly used methods for calculating algorithms’ complexity are established: the first one
only accounts for the number of fitness function evaluations (FFEs) because this operation
is the most expensive in terms of computational resources [54] and the second one, besides
FFEs, also includes the cost of updating solutions’ positions [6,17,55]. The cost of generating
the initial population is excluded because it is relatively inexpensive compared to the cost
of the solutions’ update process. Both methods calculate complexity in terms of T; however,
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if the total number of FFEs is taken as the termination condition when comparing the
performance of different algorithms, a comparison in terms of complexity is not needed.

Following the second method, as was suggested in [6], the complexity of the original
HHO is described as follows:

• Number of FFEs in the initialization phase-O(N)
• Number of FFEs in the solutions’ updating phase-O(N · T)
• Cost of solutions’ updating phase-O(N · D · T)

Taking all the above into account, the computational complexity of the HHO is derived
as follows:

O(HHO) = O(N) + O(N · T) + O(N · D · T) = O(N · (T + T · D + 1)) (19)

More details about HHO can be captured from [6].

3.2. Motivation for Improvements and Proposed Enhanced HHO Method

Notwithstanding the outstanding performance of basic HHO [6], by conducting
simulations with standard CEC bound-constrained benchmarks, it was noted that the
original version can be further improved by addressing both processes—exploitation and
exploration.

For some testing instances, especially with a higher number of dimensions, it happens
that, in early iterations, the algorithm gets stuck in sub-optimal domains of the search
space. After analyzing the diversity of convergence and solutions in such scenarios, it was
concluded that if the “early” best solutions miss the right part of the search space, then most
of the solutions also converge there and it is hard for the HHO to “escape” from this region.
In other words, solution diversity for some problems is not satisfying in early execution
cycles, and that is extremely dangerous if most of the solutions are generated far from
the optimum domain. However, after some iterations, by performing HHO exploration,
promising domains are discovered. However, this usually happens in the final stages of
execution, when it is late for the search process to perform fine-tuning in this region, and
consequently, less good solutions are generated at the end of a run.

The above-mentioned limitation of the basic HHO can also be viewed from the
perspective of exploration–exploitation balance. Namely, in early iterations, this trade-off
is biased towards exploitation, while in later iterations, when it should move towards
exploitation, the intensification–diversification trade-off is in an equilibrium.

To address the above-mentioned issues in the original HHO, this study proposes three
modifications.

The first modification is chaos-based population initialization. The idea of embedding
chaotic maps in metaheuristics algorithms was first introduced by Caponetto et al. in [56].
The stochastic nature of most metaheuristics approaches is based on random number
generators; however, many recent studies have shown that the search process can be more
efficient if it is based on chaotic sequences [57,58].

Chaos is defined as non-linear movements of the dynamic systems that exhibit ergodic-
ity and stochasticity, and are susceptible to initial conditions. Generation of the population
by chaotic sequences has previously been used in multiple metaheuristics approaches
in various domains. Some examples include chaotic multi-swarm whale optimizer for
boosting the support vector machine (SVM) that assists doctors in medical diagnostics [57],
chaos-enhanced firefly metaheuristics, applied to the mechanical design optimization
problem [59], K-means clustering algorithm enhanced with chaotic ABC [60], and many
others [58,61,62].

Many chaotic maps are available, such as the circle map, Chebyshev map, intermit-
tency map, iterative map, logistic map, sine map, sinusoidal map, tent map, and singer
map. After performing experiments with all the above-mentioned chaotic maps, the best
results were achieved with a logistic map, and this was chosen for implementation in HHO.
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The chaotic search is implemented in the proposed HHO by generating the chaotic se-
quence in accordance with the constraints of the observed problem, and then the generated
sequence is used by individuals for exploration of the search space. The proposed method
utilizes the chaotic sequence β, that starts from the initial random number β0, generated by
the logistic mapping, according to the Equation (20):

βi+1 = µβi × (1− βi), i = 1, 2, . . . , N − 1, (20)

where µ and N are the chaotic control parameter and size of population, respectively. The
µ usually has the value 4 [62], as was also set in this study, to ensure chaotic movements of
individuals, while 0 < β0 < 1 and β0 6= 0.25, 0.5, 0.75, 1.

The process of mapping solutions to generated chaotic sequences is accomplished
with the following expression for each parameter j of individual i:

Xc
i = βiXi, (21)

where Xc
i is new position of individual i after chaotic perturbations.

Taking all these into account, the details of chaotic-based population initialization are
provided in Algorithm 1.

Algorithm 1 Pseudo-code for chaotic-based population initialization

Step 1: Generate standard random population P of N solutions with expression: Xi =
LB + (UB − LB) · rand(0, 1), i = 1, ...N, where rand(0, 1) is pseudo-random number
drawn from the interval [0, 1].
Step 2: Generate chaotic population Pc of N individuals by mapping solutions from P to
chaotic sequences using expressions (20) and (21).
Step 3: Calculate fitness of all solutions from P and Pc.
Step 4: Sort all solutions from P ∪ Pc according to fitness.
Step 5: Select N best individuals from sorted set P ∪ Pc as initial population.

In this way, the quality of solutions is improved at the beginning of a run and the search
agents may utilize more iterations for exploitation. However, despite the efficient chaotic-
based initialization, when tackling challenges with many local optima, metaheuristics
may still suffer from premature convergence. As noted above, the exploration of basic
HHO, which is crucial for avoiding premature convergence, should be improved, which
motivated the introduction of the second modification.

One of the most efficient available strategies for improving both intensification and ex-
ploration, as well as its balance, is the quasi-reflection-based learning (QRL) procedure [63].
By using the QRL, quasi-reflexive-opposite solutions are generated and if, for example, the
original individual’s position is far away from the optimum, there is a good chance that its
opposite solution may be in the domain in which an optimum resides.

By applying the QRL procedure, the quasi-reflexive-opposite individual Xqr of the
solution X is generated in the following way:

Xqr = rnd
(

LB + UB
2

, X
)

, (22)

where rnd
(

LB + UB
2

, X
)

generates random number from uniform distribution in range[
LB + UB

2
, X
]

. This procedure is executed for each parameter of solution X in D dimensions.

The proposed improved HHO adopts a simple replacement strategy of the worst and
best individuals from the population based on the QRL. Applying the QRL mechanism
yields the best performance in early iterations by significantly improving exploration if the
current worst solution (Xworst) is replaced with the quasi-reflexive-opposite best individual
(Xqr

best). However, based on empirical research, in later iterations, when exploitation should
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be intensified, it is better if the Xbest is replaced with its quasi-reflexive-opposite. In both
cases, a greedy selection is applied and a solution with a higher fitness value is kept in the
population for the next iteration.

Finally, the third modification that was incorporated into the basic HHO is chaotic
search (CS) strategy [64] around the Xbest solution. During practical experiments, it was
noted that, for very challenging benchmarks, e.g., multi-modal shifted and rotated func-
tions [65], in late iterations, the Xbest may become “trapped” in one of the local optima and,
in such scenarios, the QRL mechanism is not able to generate Xqr

best with better fitness than
the original Xbest. The consequence of such scenarios is a quality of worse solutions at the
end of a run and, consequently, worse mean values.

The abovementioned case is mitigated by employing the CS strategy in the following
way: in later iterations, if the Xbest cannot be improved in best threshold (bt) fitness function
evaluations (FFEs), instead of generating Xqr

best, the CS is performed around the Xbest. The
CS strategy for generating the chaotic current best (Xc

best) is described with the following
equations:

Xc
best = (1− θ)Xbest + θS (23)

S = LB + βbest(UB− LB) (24)

where βbest is a new chaotic sequence for the Xbest determined by Equation (20) and θ is
dynamic shrinkage parameter that depends on the current FFEs and the maximum number
of fitness function evaluations (maxFFEs) in the run:

θ =
maxFFEs− FFEs + 1

maxFFEs
(25)

Dynamic λ enables a better exploitation–exploration trade-off by establishing wider
and narrower search radius around the Xbest in lower and higher iterations, respectively.
The FFEs and maxFFEs can be replaced with t and T when the total number of iterations
in a run is considered the termination condition.

Finally, to control which of the proposed two QRL or the CS strategies will be triggered,
another control parameter, adaptive behavior, denoted as ψ, is introduced. This procedure
is mathematically described with the following three expressions:

Xworst = Xqr
best, if ψ < FFEs (26)

Xbest = Xqr
best, if ψ ≥ FFEs and k < bt (27)

Xbest = Xc
best, if ψ ≥ FFEs and k ≥ bt, (28)

where k is incremented every time Xbest cannot be improved by QRL and bt stands for the
predefined Xbest improvement threshold. The FFEs simply represents the current number
of fitness function evaluations and can be replaced with t if the number of iterations is taken
as the termination condition. The above expression will execute if, and only if, the newly
generated solution is better than the current solution, according to the greedy selection
mechanism.

Since metaheuristics are stochastic methods in which randomness plays an important
part, empirical simulations are the most reliable way of determining how the control
parameters’ values affect the search process. Additionally, in the case of the proposed
enhanced HHO, as shown in Section 4, the values of control parameters ψ and bt, that,
on average, obtain the best performance for a wider set of benchmarks, are empirically
determined.

Notwithstanding that the enhanced HHO metaheuristics adopts chaotic population
initialization, QRL replacement, and CS strategies, for the sake of simple naming conven-
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tions, the proposed method is titled enhanced HHO (eHHO) and its working details, in a
form of pseudo-code, are provided in Algorithm 2.

Algorithm 2 Proposed eHHO pseudo-code
Inputs: The population size N and maximum FFEs number (maxFFE)
Initialize population Xi , (i = 1, 2, 3, . . . N) according to Algorithm 1
Initialize FFEs = 0
while FFEs ≤ maxFFEs do

Calculate the fitness values of all individuals
Set Xbest as the location of current best solution
for each solution Xi do

Update the initial energy E0 and jump strength J
Update E
if |E| ≥ 1 then

Exploration phase
Update the location vector

end if
if |E| < 1 then

Exploitation phase
if r ≥ 0.5 and |E| ≥ 0.5 then

Soft besiege
Update the location vector by soft besiege

else if r ≥ 0.5 and |E| < 0.5 then
Hard besiege
Update the location vector by using hard besiege

else if r < 0.5 and |E| ≥ 0.5 then
Soft besiege with progressive rapid dives
Update the location vector by using soft besiege with rapid dives

else if r < 0.5 and |E| < 0.5 then
Hard besiege with progressive rapid dives
Update the location vector using hard besiege with progressive rapid dives

end if
end if

end for
if ψ < FFEs then

Generate Xqr
best

Perform greedy selection between Xworst and Xqr
best

else if ψ ≥ t and k < bt then
Generate Xqr

best
Perform greedy selection between Xbest and Xqr

best
else

Generate Xc
best

Perform greedy selection between Xbest and Xc
best

end if
end while
Return Xbest
Post-process results and visualization

As shown in Sections 4 and 5, the proposed eHHO managed to achieve a better
performance than the basic HHO. However, according to the NFL theorem, there is always
a trade-off. The proposed eHHO employs additional control parameters ψ and bt and
performs N more, and one more FFEs, during initialization and throughout its iterations,
respectively. Moreover, the eHHO updates one more solution in each iteration.

Following the same approach as that used to calculate computational complexity, as
well as the costs (Equation (19)), in terms of T, the eHHO complexity can be expressed as:

O(eHHO) = O(2 · N) + O((N + 1) · T) + O((N + 1) · D · T) (29)

4. CEC2019 Benchmark Functions Experiments

According to good experimental practice, the proposed approach was verified with the
standard unconstrained benchmark functions, set before application to a concrete practical
task. The introduced eHHO method was evaluated on the 10 recent benchmark function
set, introduced in the Congress on Evolutionary Computation 2019 (CEC2019) [66], and
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the obtained experimental results were compared to other modern approaches, which are
followed by the standard statistical tests.

The CEC2019 bound-constrained benchmark function details are provided in Table 1.

Table 1. CEC 2019 benchmark characteristics.

No. Functions Fi = Fi(x∗) D Search Range

CEC01 Storn’s Chebyshev Polynomial Fitting Problem 1 9 [−8192, 8192]
CEC02 Inverse Hilbert Matrix Problem 1 16 [−16,384, 16,384]
CEC03 Lennard-Jones Minimum Energy Cluster 1 18 [−4, 4]
CEC04 Rastrigin’s Function 1 10 [−100, 100]
CEC05 Griewangk’s Function 1 10 [−100, 100]
CEC06 Weierstrass Function 1 10 [−100, 100]
CEC07 Modified Schwefel’s Function 1 10 [−100, 100]
CEC08 Expanded Schaffer’s F6 Function 1 10 [−100, 100]
CEC09 Happy Cat Function 1 10 [−100, 100]
CEC10 Ackley Function 1 10 [−100, 100]

4.1. Experimental Setup and Control Parameters’ Adjustments

The performance of the suggested eHHO metaheuristics was evaluated by compar-
ative analysis with the basic HHO, and nine other modern metaheuristics approaches,
namely elephant herding optimization (EHO) [67], EHO improved (EHOI) [68], salp swarm
algorithm (SSA) [69], sine cosine algorithm (SCA) [70], grasshopper optimization algorithm
(GOA) [55], whale optimization algorithm (WOA) [17], biogeography-based optimiza-
tion (BBO) [71], moth–flame optimization (MFO) [72] and particle swarm optimization
(PSO) [11].

The simulation results obtained with the above-mentioned algorithms for the same
benchmarks were reported in [68]. However, in the study proposed in this manuscript,
experiments are recreated to validate the results of [68] and establish a more objective
comparative analysis. The methods in [68] were tested with N = 50 and T = 500, and this
setup may lead to a biased comparative analysis because not all algorithms utilize the same
number of FFEs in one iteration. Therefore, in this study, the termination condition for all
approaches was set according to the total utilized FFEs, and to establish similar conditions,
as in [68], the maxFFEs was set to 25,000 (50× 500).

The results are reported for 50 separate runs, while the average (mean) and standard
deviation (std) results were taken as performance metrics. The value of dynamic behavior
parameter ψ was determined empirically and set to maxFFE/4; in this case, to 6250
(25,000/4). Similarly, by performing extensive simulations, the mathematical expression for
calculating bt value is derived: round((maxFFE− ψ)/(10 · N)), where round represents a
standard function that rounds input to the closest integer. In this case, the bt was set to
38 ((25,000–6250)/10×50). Other parameters are adjusted as is suggested in [6]. All other
HHO and eHHO control parameters are dynamic, and their values are adjusted throughout
the run according to the FFEs and maxFFEs. For more details, please refer to Section 3.1.

Control parameters for other metaheuristics included in the analysis were adjusted as
suggested in the original manuscript.

A brief summary of eHHO control parameters used throughout the conducted experi-
ments is given in Table 2.

Table 2. The eHHO control parameters overview.

Parameter Interpretation Value

Population size (N) 50
Maximum number of FFEs (maxFFEs) 25,000
Dynamic behavior (ψ) maxFFEs/4 = 6250
Best threshold (bt) round((maxFFE− ψ)/(10 · N)) = 38
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4.2. Results and Discussion

The results from the ten conducted CEC2019 simulations are presented in Table 3. The
reported results are shown as scientific notations, and the best mean values for each of the
benchmark instances are shown in bold for easier reading. It is noted similar performance
metrics to those reported in [68] were obtained.

Table 3. Evaluation of results achieved by different well-known metaheuristics on CEC2019 benchmark function set.

Function Stats EHOI EHO SCA SSA GOA WOA BBO MFO PSO HHO eHHO

CEC01 mean 4.76× 104 1.35× 107 9.83× 109 3.21× 109 1.61× 1010 1.03× 1010 3.52× 1010 7.17× 109 6.75× 1011 9.49× 104 1.66× 103

std 2.14× 103 7.91× 106 6.95× 109 1.42× 109 8.99× 109 9.14× 109 2.32× 1010 8.69× 109 2.34× 1011 2.53× 103 1.23× 103

CEC02 mean 1.70× 101 1.72× 101 1.75× 101 1.73× 101 1.74× 101 1.73× 101 8.87× 101 1.74× 101 8.56× 102 2.42× 101 1.25× 100

std 3.66× 10−16 7.29× 10−15 5.19× 10−3 6.55× 10−5 3.23× 10−2 1.95× 10−3 2.45× 101 4.17× 10−15 3.87× 102 1.33× 101 7.44× 10−18

CEC03 mean 1.27× 101 1.27× 101 1.27× 101 1.27× 101 1.27× 101 1.27× 101 1.27× 101 1.27× 101 1.27× 101 1.27× 101 1.27× 101 *
std 3.95× 10−16 7.44× 10−16 3.25× 10−4 3.11× 10−15 6.47× 10−4 7.94× 10−6 5.25× 10−7 4.38× 10−5 4.12× 10−4 8.45× 10−4 5.17× 10−12

CEC04 mean 1.28× 101 1.55× 101 8.32× 102 3.25× 101 1.51× 102 2.65× 102 6.95× 101 1.38× 102 6.92× 101 3.81× 101 3.60× 100

std 4.26× 100 8.52× 100 3.85× 102 1.09× 101 1.13× 102 1.39× 102 2.99× 101 1.15× 102 5.43× 101 2.55× 101 0.62× 100

CEC05 mean 1.05× 100 1.07× 100 2.23× 100 1.35× 100 1.33× 100 1.67× 100 1.31× 100 1.13× 100 1.55× 100 1.14× 100 1.01× 100

std 3.25× 10−3 2.41× 10−2 7.81× 10−2 2.33× 10−1 1.21× 10−1 3.86× 10−2 9.63× 10−2 6.56× 10−2 1.18× 10−1 4.73× 10−2 1.40× 10−3

CEC06 mean 8.33× 100 9.45× 100 1.04× 101 3.79× 100 6.19× 100 9.14× 100 5.78× 100 4.92× 100 1.03× 101 9.96× 100 1.75× 100

std 6.23× 10−1 1.31× 100 8.15× 100 1.23× 100 1.33× 100 1.05× 100 2.99× 10−1 2.13× 100 3.35× 100 7.29× 10−1 6.59× 10−3

CEC07 mean 1.42× 102 1.81× 102 6.38× 102 2.89× 102 2.87× 102 4.53× 102 4.92× 100 3.19× 102 5.97× 102 4.31× 102 4.98× 100

std 1.13× 102 1.51× 102 2.78× 102 2.25× 102 1.75× 102 2.25× 102 1.21× 100 2.15× 102 1.89× 102 1.95× 102 3.29× 100

CEC08 mean 2.69× 100 3.15× 100 5.77× 100 5.08× 100 5.49× 100 5.75× 100 4.81× 100 5.45× 100 5.10× 100 3.73× 100 1.44× 100

std 9.15× 10−2 1.44× 100 7.29× 10−1 7.83× 10−1 5.14× 10−1 7.29× 10−1 1.03× 100 5.62× 10−1 7.33× 10−1 5.99× 10−1 4.14× 10−4

CEC09 mean 2.29× 100 2.41× 100 8.75× 101 2.38× 100 2.45× 100 5.16× 100 3.75× 100 2.46× 100 2.65× 100 4.78× 100 1.63× 100

std 5.55× 10−3 2.18× 10−2 5.63× 101 5.33× 10−2 6.41× 10−2 5.29× 10−1 3.14× 10−1 6.76× 10−2 8.45× 10−2 1.17× 10−1 6.77× 10−5

CEC10 mean 1.92× 101 2.11× 101 2.08× 101 2.03× 101 2.00× 101 2.05× 101 2.07× 101 2.02× 101 2.06× 101 2.04× 101 1.53× 101

std 3.49× 100 7.29× 100 6.45× 100 8.19× 100 6.67× 100 3.52× 10−1 7.13× 100 6.66× 10−1 9.81× 102 1.33× 100 1.14× 100

* All methods obtained the same result.

A comparative analysis of the results provided in Table 3 indicates that the upper-
level performance of the suggested eHHO approach is better than the other compared
algorithms. For the majority of CEC2019 functions (more precisely, eight out of ten), eHHO
achieved the best mean values. The exceptions include CEC03 benchmark, where all
algorithms obtained the same mean value, and CEC07 test instance, where the BBO, on
average, managed to achieve the best quality of solutions. Additionally, it can be noted that
the eHHO algorithm drastically improves the performance of basic HHO metaheuristics,
which obtained mediocre results compared to other approaches, justifying the goal of
devising an enhanced HHO algorithm.

In modern computer science theory, when comparing different algorithms, it is typi-
cally not enough to declare that one algorithm is better than others only in terms of the
obtained results. It is also necessary to determine if the generated improvements are
significant in terms of statistics. Therefore, a Friedman test [73,74] and two-way variance
analysis by ranks were employed to determine if there is a significant difference in the
results of the proposed eHHO and other methods encompassed by the comparison. The
Friedman test results for the 11 compared algorithms over the 10 CEC19 functions are
presented in Table 4.

The results presented in Table 4 statistically indicate that the proposed eHHO algo-
rithm has a superior performance when compared to the other ten algorithms, with an
average rank value of 1.6. The basic HHO obtained an average ranking of 6.4. Additionally,
the Friedman statistics (χ2

r = 51.4) is larger than the χ2 critical value, with 10 degrees of
freedom (18.3), at the significance level α = 0.05. As the result, the null hypothesis (H0) can
be rejected, and it can be stated that the suggested eHHO achieved significantly different
results to the other ten algorithms.
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Table 4. Friedman test ranks for the compared algorithms over 10 CEC2019 functions.

Function EHOI EHO SCA SSA GOA WOA BBO MFO PSO HHO eHHO

CEC01 2 4 7 5 9 8 10 6 11 3 1
CEC02 2 3 8 4.5 6.5 4.5 10 6.5 11 9 1
CEC03 6 6 6 6 6 6 6 6 6 6 6
CEC04 2 3 11 4 9 10 7 8 6 5 1
CEC05 2 3 11 8 7 10 6 4 9 5 1
CEC06 6 8 11 2 5 7 4 3 10 9 1
CEC07 3 4 11 6 5 9 1 7 10 8 2
CEC08 2 3 11 6 9 10 5 8 7 4 1
CEC09 2 4 11 3 5 10 8 6 7 9 1
CEC10 2 11 10 5 3 7 9 4 8 6 1

Average 2.9 4.9 9.7 4.95 6.45 8.15 6.6 5.85 8.5 6.4 1.6
Rank 2 3 11 4 7 9 8 5 10 6 1

Furthermore, the research published in [75] reports that the Iman and Davenport’s
test [76] could provide more precise results than the χ2. Therefore, Iman and Davenport’s
test was also conducted. After calculations, the result of the Iman and Davenport’s test
is 9.53E + 00, which is significantly larger than the critical value of the F-distribution
(F(9, 9× 10) = 1.93E + 00). Consequently, Iman and Davenport’s test also rejects H0. The
p− value is smaller than the significance level for both the executed statistical tests.

Results for Friedman and Iman and Davenport’s test with α = 0.05 are summarized
as follows: Friedman value = 5.14E + 01, χ2 = 1.83E + 01, Iman− Davenport value =
9.53E + 00, F critical value = 1.93E + 00 and p− values of 1.11E− 16 and 1.11E− 13.

Since the null hypothesis was rejected by both performed statistical tests, the non-
parametric post-hoc procedure, Holm’s step-down procedure, was also conducted and
presented in Table 5. By using this procedure, all methods are sorted according to their p
value and compared with α/(k− i), where k and i represent the degree of freedom (in this
work k = 10) and the algorithm number after sorting, according to the p value in ascending
order (which corresponds to rank), respectively. In this study, the α is set to 0.05 and 0.1. It
is also noted that the p-value results are provided in scientific notation.

Table 5. Results of the Holm’s step-down procedure.

Comparison p-Value Rank 0.05/(k − i) 0.1/(k − i)

eHHO vs. SCA 2.37× 10−8 0 0.005 0.01
eHHO vs. PSO 1.64× 10−6 1 0.005556 0.01111

eHHO vs. WOA 5.03× 10−6 2 0.006250 0.01250
eHHO vs. BBO 3.74× 10−4 3 0.007143 0.01429
eHHO vs. GOA 5.38× 10−4 4 0.008333 0.01667
eHHO vs. HHO 6.06× 10−4 5 0.010000 0.02000
eHHO vs. MFO 2.08× 10−3 6 0.012500 0.02500
eHHO vs. SSA 1.19× 10−2 7 0.016667 0.03333
eHHO vs. EHO 1.30× 10−2 8 0.025000 0.05000
eHHO vs. EHOI 1.90× 10−1 9 0.050000 0.10000

The results given in the Table 5 suggest that the proposed algorithm significantly
outperformed all opponent algorithms, except EHOI, at both significance levels α = 0.1
and α = 0.05.

An average convergence speed comparison between proposed eHHO and 10 other
metaheuristics included in the analysis is given in Figure 1. From the presented graphs,
the superiority of the devised approach compared to other methods can be categorically
validated, and a few interesting things can be noticed. First, the effect of chaotic-based
population initialization on the search space exploration is evident—this mechanism
enables eHHO to better identify the boundaries of the optimum search domain at the
beginning of a run. Second, in most challenges, during ψ FFEs, the eHHO managed to
converge to near optimum levels and after this, a fine-tuned exploitation, that further
improved the results’ quality, was performed. However, for problem CEC09 6250 FFEs was
not enough to find a proper part of the search space, which can be clearly seen in the graph.
In this case, somewhere between 5000 aQ!nd 6500 FFEs, the search process was “stuck”;
however, when the CS is triggered, it converges relatively smoothly towards an optimum.
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Figure 1. Graphs for convergence speed comparison for 10 CEC2019 benchmark functions—eHHO
vs. other approaches.

Finally, to demonstrate the effects of the control parameter ψ on the search process,
additional experiments with varying ψ values are conducted by taking ψ increments of 6250
FFEs. Therefore, besides ψ = 6250, as the most promising value for CEC2019 benchmarks,
ψ was adjusted to 0, 12,500, 18,750, and 25,000 in four additional simulations. In the first
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case, when ψ = 0, the greedy selection between Xworst and Xqr
best is be performed in each

iteration, and the exploration process is amplified during the whole run. However, in the
last case, when ψ = 25,000, the greedy selection between Xbest and Xqr

best or Xbest and Xc
best

is executed, favoring intensification around the Xbest. Mean values, calculated over 50
independent runs with varying ψ for CEC2019 simulations, are summarized in Table 6,
where the best results are marked with bold font.

Table 6. Results with varying ψ value of proposed eHHO for CEC2019 benchmark suite.

Function Statistics ψ = 0 ψ = 6.250 ψ = 12.500 ψ = 18.750 ψ = 25.000

CEC01 mean 5.29× 105 1.66× 103 8.74× 103 5.52× 104 7.49× 105

CEC02 mean 4.77× 101 1.25× 100 9.49× 100 1.15× 101 4.83× 101

CEC03 mean 1.27× 101 1.27× 101 1.27× 101 1.27× 101 1.27× 101 *
CEC04 mean 1.35× 101 3.60× 100 0.89× 101 1.28× 101 1.42× 101

CEC05 mean 1.30× 100 1.01× 100 1.08× 100 1.10× 100 1.23× 100

CEC06 mean 4.25× 100 1.75× 100 2.31× 100 3.61× 100 4.50× 100

CEC07 mean 1.13× 101 4.98× 100 4.87× 100 5.21× 100 5.33× 100

CEC08 mean 4.05× 100 1.44× 100 1.85× 100 2.93× 100 4.56× 100

CEC09 mean 2.18× 100 1.63× 100 1.81× 100 2.04× 100 2.49× 100

CEC10 mean 2.00× 101 1.53× 101 1.49× 101 1.87× 101 2.05× 101

Total best 0 7 2 0 0

* All methods obtained the same result.

From the presented table with varying ψ values, a few interesting things can be
observed. First, according to the NFL theorem, there are no universal control parameters’
values that can obtain the best results for all benchmark instances, and that is why the
results generated with control parameter values that establish the best average quality of
solutions are reported. In this case, for seven out of the ten benchmarks, the proposed
eHHO obtains the best performance when ψ = 6.250, while, for two benchmark instances,
it was determined that the best performance is achieved when ψ = 12.500. For the test
instance, with CEC03 for all ψ settings, the same result is achieved. These statistics are
provided in the last row of Table 6.

Further, it can be observed that the worst results are generated with ψ = 25.000 (the
only exception isthe CEC05 test instance). When ψ is adjusted to 25.000, the eHHO in
each iteration performs exploitation around the current best solution by using either QRL
or CS. Since the basic HHO suffers from poor exploration in early cycles, by conducting
exploitation around the Xbest throughout the whole run, the mean results are worse. This is
because the algorithm often misses promising regions of the search space in early iterations.

It also can be noted that the eHHO outscores BBO in CEC10 benchmark when
ψ = 12.500, while, with ψ set to 6.250, the BBO outperforms the method proposed in
this study, as shown in Table 3. However, the only objective comparative analysis can be
performed when the same control parameter values are used for all benchmark instances,
and the above-mentioned remark cannot be taken into account when comparing the quality
of the results the proposed eHHO with other state-of-the-art approaches.

Finally, to better visualize eHHO performance with varying ψ values, swarm plot
diagrams for some functions over 50 runs are shown in Figure 2.
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Figure 2. The eHHO swarm plots for CEC01, CEC02, CEC09 and CEC10 benchmarks
with varying ψ value.

5. CNN Design for MRI Brain Tumor Grades Simulations

After validating the proposed eHHO on the CEC2019 bound-constrained benchmarks,
following good practice from the literature, simulations for the practical CNN design
challenge were performed. The generated CNN structures were evaluated for classification
tasks on two MRI brain tumor grades datasets.

The CNN hyperparameters’ optimization study adopts a similar approach as in [9].
Instead of training and evaluating millions of possible CNNs architectures, e.g., by using a
grid search, the appropriate architectures were evolved by evaluating only a few hundred
potential candidates using the guided eHHO approach, which leads to a drastic decrease
in the overall computational costs. As in the referenced paper [9], this research utilizes
the dropout technique [42] as the regularization option. This method is not considered
computationally expensive, yet it is a very efficient approach that prevents the over-fitting
problem by the random removal of some neurons in the fully connected layer during the
training process.

All implementations are conducted in Python with TensorFlow and Keras libraries,
along with scikitlearn, numpy and pandas, while matplotlib and seaborn libraries are
used for visualization. Simulations are conducted on Intel®i7 platform with six × NVidia
Geforce RTX 3080 GPUs.

This section first provides information about datasets and pre-processing, followed
by the basic simulation setup (employed hyper-parameters, algorithm adaptations, and
flow-chart) and the obtained results, along with a comparative analysis.

5.1. Datasets Details and Pre-Processing

Similarly, as in [9,10], two datasets are used in experiments. The first dataset (dataset1)
is comprised of 600 normal brain images retrieved from the IXI database [77] and of 591
glioma brain tumor images with four grades (130 retrieved from REMBRANDT reposi-
tory [78], 262 captured from TCGA-GBM dataset [79] and 199 downloaded from TCGA-
LGG dataset [80]). The second dataset (dataset2) consists of 3064 T1-weighted images
with Glioma, Meningioma, and Pituitary brain tumor types, collected from 233 patients by
Cheng et al. [81]. The second dataset can be retrieved from: https://figshare.com/articles/
dataset/brain_tumor_dataset/1512427 (accessed on 28 June 2021).

https://figshare.com/articles/dataset/brain_tumor_dataset/1512427
https://figshare.com/articles/dataset/brain_tumor_dataset/1512427
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Considering normal MRIs, an average of six middle MR slices were taken in the same
intervals for every patient. The slices were utilized to differentiate healthy brains from
brains with tumors. The identification of tumors was performed with the help of contrast
infusion. Since the tumors can vary in size and their respective position in the brain, a
different number of slices was used in various cases.

After the network has been trained, the classification of healthy and ill slices can be
performed. The classifier network is able to recognize and distinguish abnormal images
from healthy brains. This process has a two-fold benefit. First, it assists in identifying the
presence of the tumor, and second, it pinpoints the approximate position of the tumorous
tissue in the observed brain. Finally, it is possible to also determine the approximate size
and the tumor grade.

The same image processing as in [9,10] is employed: pixel values of each image are
normalized to scale [0, 1] and, with the goal of increasing the size of the training dataset,
the data augmentation technique is used.

The MRI requires the setup of specific parameters, including radio-frequency pulse
and gradient. T1 and T2 sequences are usually used in practice, with both providing
specific information about the observed tissue. This research uses the T1 sequence. To
reduce the amount of images required for the healthy brain, six sections were chosen from
MRI images. A healthy brain sample is shown in Figure 3.

Figure 3. Axial MRI sample of a normal person with healthy brain.

To help distinguish the tumor tissue and more precisely determine the tumor borders,
the patients are typically injected with a contrast solution (Gadolinium). These images
can be utilized in the classification of the tumor grade. Figure 4 shows axial MRIs with
Gadolinium infusion of three grades of glioma brain tumors. Finally, Figure 5 shows three
brain tumor cases from the second dataset utilized in this research [81]. As mentioned, all
employed images were normalized to the [0, 1] interval, and their dimension was set to
128× 128 pixels.

The network training on a bigger dataset is considered a successful approach for the
generalization of and reduction in the over-fitting problem. Data augmentation refers
to the process of creating fake data and the addition of these data to the dataset. In this
study, some images were manipulated by utilizing random modifications of the original
ones, including rotation by 10, 20, or 30 degrees in a random direction, translation by
15 pixels, re-scaling the image to 3/4 of the original dimensions, mirroring of the images,
and combining those changes at the same time. The resulting manipulated images were
included in the original datasets.
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Figure 4. Axial MRI samples of different glioma grades: (top) glioma grade 2; (middle) glioma grade
3; (bottom) glioma grade 4.
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Figure 5. Axial brain samples from the public dataset given by Cheng in [81]: (left) glioma; (center)
meningioma; (right) pituitary tumors.

Consequently, the first dataset size is increased to 16,000 and consists of 8000 healthy
and 8000 glioma brain tumor images with grades I-IV. Out of 16,000, 2000 images, which
include 500 images from each category (normal, grade II, III and IV) were used for testing,
while the remaining are used for training. The second dataset initially consisted of a total of
3064 axial images split into three categories: 708 meningioma tumors, 1426 glioma tumors,
and 930 pituitary tumors. After performing the same data augmentation process, each of
the three categories consists of 1521 images utilized for training, and 115 used for the test,
the grand total of 4908 images. More details regarding the pre-processing phase and the
split datasets can be captured from [9,10].

5.2. Basic Experimental Setup

The experimental setup (in terms of data pre-processing, split, validation criteria,
and other simulation parameters) utilized in the proposed research is the same as in
the referenced paper [9]. Moreover, as noted in Section 1, this research represents the
continuation of the study shown in [10].

Hyper-parameters that have been put through the process of optimization included
the number of convolutional layers and filters per layer, along with their respective size,
employed activation function, pooling layer, number of fully connected layers and the
hidden units in each, the number of dropout layers with dropout ratio, type of optimizer,
and finally, the learning rate. Since the search space is enormous, it was limited by
defining hyper-parameters’ possible values within the lower and upper bounds, which
were suggested by the domain expert, as shown in [9]. A full list of hyper-parameters,
together with their corresponding boundaries, is given in Table 7.

Table 7. List of CNN hyper-parameters along with search space boundaries.

Hyperparameter Description Boundaries

Number of convolutional layer (CL) [2, 6]
Number of max-pooling layer (PL) [2, 6]
Number of dense layer (FL) [1, 3]
Number of dropout layers (DL) [1, 3]
Filter size (FS) [2, 7]
Number of filters (FN) [16, 128]
Number of hidden units (UN) [128, 512]
Dropout rate (DR) [0.1, 0.5]
Activation function (AF) [1, 4]
Optimizer (OF) [1, 6]
Learning rate (LR) [0.01, 0.0001]
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The number of convolutional and pooling layers (CL and PL) possible values are
defined by the set {2, 3, 4, 5, 6}. The kernel size of the pooling layer has been fixed to 2× 2.
The filter size (FS) has been limited from 2 to 7. The number of filters (FN) was defined
with the set of possible values {16, 24, 32, 48, 64, 96, 128}. The fully connected (FL) and
dropout (DL) layers’ number was taken from the interval [1− 3]. Concerning the number
of hidden units (UN), this can take values from the set {128, 192, 256, 384, 512}.

The choice of the activation function (AF) was limited to four types, encoded with
numeric values, as follows: ReLU = 1, ELU = 2, SELU = 3, and finally, LReLU = 4. The
dropout rate (DR) and the learning rate (LR) can take any continuous value from the
interval [0.1, 0.5] and [10−4, 10−2], respectively. This research, as in the ones proposed
in [9,10], assumes the cross-entropy is utilized as a loss function with five possible optimizer
(OF) options, encoded with integers (similar to the activation functions), and specified
with the set {Adam = 1, Adamax = 2, Nadam = 3, Adagard = 4, Adadelta = 5, SGD = 6}.
After defining all the hyper-parameters that are subjected to the CNN optimization process,
the search space can be formulated as:

S = {CL, PL, FL, DL, FS, FN, UN, DR, AF, OF, LR} (30)

where every element from the set refers to the corresponding hyper-parameter and its pos-
sible range of values. For more details, the interested reader can refer to the papers [9,10].

Therefore, according to (30), each solution from the population, which represents one
possible CNN structure, is encoded as an array of size 11, and the whole population is
represented as a matrix of N × 11. Moreover, it should also be noted that some solution
parameters are continuous, while some are discrete. Since the boundaries of integer
parameters are relatively low, the search process is conducted by simply rounding the
generated continuous to the nearest discrete value. Based on the previous studies, this is
the most efficient way, with no additional computational burden [18,19].

The initial population is generated with random CNN architectures, followed by a
calculation of the fitness for each CNN (candidate solution). The study proposed in [9,10]
evolves 50 (N = 50) possible network structures in 15 iterations T = 15 and this setup, in
the case of most metaheuristics approaches, yields a total number of 800 FFEs (N + N · T).
However, as pointed out in Section 4, not all metaheuristics use the same number of FFEs
in each iteration and, for that reason, in the proposed study, maxFFEs = 800 is used
as the termination condition instead of T = 15. With this setup, similar conditions as
in [9,10] were established. The eHHO control parameter ψ was set to 200, according to the
expression shown in Section 4.1. However, since the CNN design experiment involves a
much lower number of FFEs than CEC2019 simulations, the value for bt was determined
empirically and set to 12, using the expression round((maxFFEs− ψ)/N).

The classification error rate on the test set represents the fitness function and the
optimization goal is to find a CNN architecture with maximum accuracy (lowest error rate).
The training set is split into the training and validation data using the 80− 20 split rule.
Each possible generated CNN structure (candidate solution) is trained on the training set
and validated on the validation set in 100 epochs. With the goal of reducing computational
costs, an early stopping condition is implemented, and if there is no improvement in
validation accuracy in three subsequent epochs, the training will stop. When the training is
finished, the fitness of the CNN structure (candidate individual) is calculated.

Taking all into account, flowchart of proposed eHHO for CNN design (CNN + eHHO)
is given in Figure 6.
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Figure 6. CNN + eHHO main flowchart (left); CNN + eHHO flowchart for calculating fitness (right).

5.3. Results, Comparative Analysis and Discussion

In this study, the performance of the proposed eHHO was compared with other
state-of-the-art metaheuristics along with some classical machine learning approaches. All
methods covered in the comparative analysis were implemented and tested for the purpose
of this research under the same conditions to maintain an unbiased and fair comparison.
Details of the experimental setup are explained in Section 5.2.

All metaheuristics were executed according to the flow diagram shown in Figure 6 in
10 independent runs, and the best results are reported. The adaptations of metaheuristics
for CNN design are labeled with the prefix “CNN”, e.g., CNN + eHHO.

Metaheuristics were used to find a proper CNN structure within the boundaries of a
search space, and this guided exploration is much more efficient than the exhaustive one.
The search space is enormous and there are more than 1 million possible hyperparameter
combinations. With this hyperparameter setup, a grid search cannot execute in a reasonable
amount of computational time; however, by using metaheuristics, a satisfying CNN is
generated by evaluating only 800 possible CNN architectures.
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Due to the abovementioned argument, the grid search, as one of the most commonly
used tools for searching near-optimal hyperparameter values for a specific classifica-
tion/regression problem, is not included in the comparative analysis. Hoewver, the grid
search method that consumes approximately the same processing time as the approach
proposed in this study can only evaluate a few possible CNN structures and, as such,
would be useless in practical implementation.

Besides the original HHO, the following metaheuristics were also included in analysis:
genetic algorithm (GA) implementation proposed in [9], basic FA [82], modified firefly
algorithm (mFA) [10], bat algorithm (BA) [15], EHO [67], WOA [17], SCA [70] and PSO [11].
All methods were tested with the control parameters’ values, suggested in the original
papers, which are summarized in Table 8. For additional details, please refer to original
manuscripts, where the abovementioned methods are proposed for the first time.

Table 8. Control parameters’ setup for metaheuristics included in analysis.

Algorithm Parameters

GA [9] pc = 0.5, pm = 0.2
FA [82] α = 0.5, β = 0.2, γ = 1.0
mFA [10] α = 0.5, β = 0.2, γ = 1.0, TL = 20 FFEs
BA [15] Qmin = 0, Qmax = 2, A = 0.5, r = 0.5
EHO [67] noclan = 5, α = 0.5, β = 0.1, noelite = 2
WOA [17] a1 linearly decreasing from 2 to 0, a2 linearly decreasing from −1 to −2, b = 1
SCA [70] a = 2, r1 linearly decreasing from 2 to 0

Moreover, to further facilitate comparative analysis and better evaluate the robustness
of the proposed CNN + eHHO, some standard network structures (not evolved by meta-
heuristics) were also encompassed in comparative analysis: support vector machine (SVM)
+ recursive feature elimination (RFE) [83], Vanilla preprocessing + shallow CNN [84], CNN
LeNet-5 [85], VGG19 [86] and DenseNet (Keras DenseNet201 instance) [87]. All these meth-
ods were instantiated with default parameters and trained for these particular datasets
under the same conditions as metaheuristics.

Comparative analysis results in terms of classification accuracy between the proposed
eHHO and original EHO, along with other state-of-the-art methods, are provided in
Table 9. The results obtained for the GA and mFA differ from the ones reported in [9,10],
respectively, because, in this study, the maxFFEs is taken as a termination condition.

Based on the results shown in Table 9, even the basic CNN + HHO obtained promising
results compared to other methods. The CNN + HHO performed similarly to CNN + SCA
and better than all other metaheuristics, except for the proposed CNN + eHHO and CNN +
mFA. In both experiments (dataset1 and dataset2), CNN + EHO managed to generate a
CNN that obtains 90.7% and 93.9 % accuracy for dataset1 and dataset2, respectively, which
are the worst results among all the metaheuristics-based approaches. The other methods
showed a similar performance for both datasets.

The proposed CNN + eHHO was established as a more robust and precise method
compared to the CNN + HHO and other presented approaches for this specific task. For
both datasets, the proposed CNN + eHHO managed to establish the greatest classification
accuracy among all competing algorithms. The second best state-of-the-art approach is
CNN + mFA [10]; however, CNN + eHHO outscores this for 2.6% in dataset1 and for 1.5%
in dataset2 simulations in terms of accuracy. These performance improvements may not
seem much; however, taking the sensitivity of medical diagnostics into consideration, even
small enhancements in percent fractions can save lives by confirming glioma tumor cases
in the early phases of progression.

Furthermore, some well-known CNN structures shown in the comparative analysis
are deeper than the best-evolved solutions by metaheuristics, while the networks designed
by metaheuristics achieved better classification accuracy. The metaheuristics enable an
automated means of evolving possible CNN structures in an iterative guided manner
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by trying to minimize the classification error and, when a manual network crafting is
performed, some of the possible hyper-parameters combinations can be examined.

Table 9. MRI tumor grades classification comparative analysis.

Approach Accuracy

Case Study I (dataset1) – Glioma Grade II/Grade III/Grade IV

SVM + RFE [83] 62.5%
Vanilla pre-processing + shallow CNN [84] 82.8%
CNN LeNet-5 [85] 63.6%
VGG19 [86] 87.3%
DenseNet [87] 88.1%
CNN + GA [9] 91.3%
CNN + FA [82] 92.5%
CNN + mFA [10] 93.0%
CNN + BA [15] 91.6%
CNN + EHO [67] 90.7%
CNN + WOA [17] 92.1%
CNN + SCA [70] 92.8%
CNN + HHO 92.8%
CNN + eHHO 95.6%

Case Study II (dataset2) – Glioma/Meningioma/Pituitary

SVM + RFE [83] 71.2%
Vanilla preprocessing + shallow CNN [84] 91.4%
CNN LeNet-5 [85] 74.9%
VGG19 [86] 92.6%
DenseNet [87] 92.7%
CNN + GA [9] 94.6%
CNN + FA [10] 95.4%
CNN + mFA [10] 96.2%
CNN + BA [15] 94.7%
CNN + EHO [67] 93.9%
CNN + WOA [17] 94.5%
CNN + SCA [70] 95.7%
CNN + HHO 95.9%
CNN + eHHO 97.7%

Convergence speed graphs for one of the best runs for the classification error metrics
of compared metaheuristics-based methods are provided in Figure 7. From the presented
graphs, the superiority of CNN + eHHO in terms of solution quality (accuracy) and
convergence speed can be observed. Moreover, it can be observed that the chaos-based
initialization offers a significant advantage to CNN + eHHO upon generation of the initial
population.

Besides the convergence speed, another very important indicator of an algorithm’s
performance is diversity. By observing the best solutions’ diversity, generated at the end of
the runs, the stability of the approach can be investigated. The diversity of the best solution
(generated CNN structure) for all methods included in an analysis over 10 runs is shown
in the box and whiskers diagrams presented in Figure 8.

From the presented graphs, it can be seen that the proposed CNN + eHHO and
CNN + mFA exhibits stable behavior for both datasets, with a relatively low standard
deviation value. Other methods, except for CNN + EHO, also perform well in terms of
stability. However, the CNN + EHO approach exhibits higher standard deviation value,
with an emphasized discrepancy between the best and worst solutions and, in the case of
dataset1, even with some outliers.
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Figure 7. Classification error convergence speed graphs for dataset1 and dataset2 as a direct compar-
ison between proposed eHHO and other metaheuristics.
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Figure 8. Diversity analysis for dataset1 and dataset2 as a direct comparison between proposed
eHHO and other metaheuristics.

To provide better insight into the achieved results, the confusion matrices for both
datasets have been generated for CNN + HHO, CNN + eHHO, CNN + FA and CNN + mFA
approaches, and shown in Figures 9 and 10.

In general, among all algorithms included in the comparative analysis, the two best
approaches that were capable of generating the best-performing CNNs for both datasets are
the proposed CNN + eHHO and CNN + mFA. Nonetheless, both methods for dataset1 and
dataset1 managed to classify each tumor category with high accuracy. From the presented
matrices, it can be unambiguously concluded that the CNN + eHHO performs better.

To further investigate the robustness of the two best-performing CNN classifiers,
other performance metrics are presented for CNN + eHHO and CNN + mFA. These
indicators are shown in Tables 10 and 11. Both approaches were tested, with maxFFEs as
the termination condition, and since FFEs is the most expensive operation, both algorithms
take approximately the same computational time, and the complexity can be neglected.
However, if the total number of iterations is taken as the termination condition, the mFA
would be much more expensive than eHHO because, in each iteration, FA executes two
loops and performs significantly more FFEs [54].

BExplanations for each abbreviation used in Tables 10 and 11 are provided below:

• TP represents the true positives (correct predictions of positive class).
• TN represents the true negatives (correct predictions of negative class).
• FP denotes the false positives (incorrect predictions of positive class).
• FN denotes the false negatives (incorrect predictions of negative class).
• TPR stands for true positives rate, calculated as TP/(TP + FN). This value is also

known as sensitivity, hit rate, or recall.
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• TNR stands for true negatives rate, calculated as TN/(TN + FP). This value is also
referred to as specificity.

• PPV denotes positive predictive value, calculated as TP/(TP + FP). This value is
referred to as precision.

• NPV denotes negative predictive value, calculated as TN/(TN + FN).
• FPR stands for false positives rate, calculated as FP/(FP + TN).
• FNR stands for false negatives rate, calculated as FN/(TP + FN).
• FDR represents false discovery rate, calculated as FP/(TP + FP).
• ACC represents the overall accuracy, calculated as (TP + TN)/(P + N) = (TP + TN)/(TP

+ FP + FN + TN).
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FA and mFA approaches.
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The results given in Tables 10 and 11 show that the proposed CNN + eHHO approach
is capable of achieving notably better results. When dataset1 is considered, the proposed
CNN + eHHO achieves an accuracy of 0.974 for healthy brains (compared to the 0.961
achieved by CNN + mFA), 0.979 for grade II glioma (mFA achieved 0.969), 0.978 for grade
III glioma (mFA scored 0.963), and 0.982 for grade IV glioma (compared to 0.967 achieved
by CNN + mFA). When dataset2 is observed, the proposed eHHO achieved an accuracy
of 0.977 for glioma tumors (compared to 0.962 achieved by mFA), 0.986 for meningioma
tumors (CNN + mFA scored 0.977), and finally, 0.991 for pituitary tumors (while mFA
achieved 0.986).

Table 10. MRI brain tumor classification performance metrics for proposed CNN + eHHO approach.

TP FP TN FN TPR TNR PPV NPV FPR FNR FDR ACC F1
DATASET 1

Normal 487 38 1462 13 0.974 0.974 0.928 0.991 0.025 0.026 0.072 0.974 0.950

Grade II 473 16 1484 27 0.946 0.989 0.967 0.982 0.011 0.054 0.033 0.979 0.957

Grade III 473 18 1482 27 0.946 0.988 0.963 0.982 0.012 0.054 0.037 0.978 0.955

Grade IV 479 16 1484 21 0.958 0.989 0.967 0.986 0.011 0.042 0.032 0.982 0.963

DATASET 2

Glioma 111 4 226 4 0.965 0.983 0.965 0.983 0.017 0.035 0.035 0.977 0.965

Meningioma 113 3 227 2 0.983 0.987 0.974 0.991 0.013 0.017 0.026 0.986 0.978

Pituitary 113 1 229 2 0.983 0.996 0.991 0.991 0.004 0.017 0.009 0.991 0.987

Table 11. MRI brain tumor classification performance metrics for CNN + mFA approach [10].

TP FP TN FN TPR TNR PPV NPV FPR FNR FDR ACC F1
DATASET 1

Normal 474 52 1448 26 0.948 0.965 0.901 0.982 0.035 0.052 0.099 0.961 0.924

Grade II 471 33 1467 29 0.942 0.978 0.935 0.981 0.022 0.058 0.065 0.969 0.938

Grade III 452 27 1473 48 0.904 0.982 0.944 0.968 0.018 0.096 0.056 0.963 0.924

Grade IV 463 28 1472 37 0.926 0.981 0.943 0.975 0.019 0.074 0.057 0.967 0.934

DATASET 2

Glioma 110 8 222 5 0.957 0.965 0.932 0.978 0.035 0.043 0.068 0.962 0.944

Meningioma 111 4 226 4 0.965 0.983 0.965 0.983 0.017 0.035 0.035 0.977 0.965

Pituitary 111 1 229 4 0.965 0.996 0.991 0.983 0.004 0.035 0.009 0.986 0.978

Some of the best-performing CNN structures generated by CNN + eHHO for both
datasets are shown in Figure 11. Most of the best-performing CNN structures generated
for dataset1 consist of six convolutional and max pooling layers with [64, 128] filters,
optimizers Adam or Adagard, LR ∈ [0.01, 0.009] and ReLU activation function. However,
the best-performing CNN architectures for dataset2 include five convolutional and max
pooling layers with [24, 128] filters, optimizers Adam or Adamx, LR ∈ [0.001, 0.0009] and
ReLU or LRelu activation functions.

During simulations, various generated CNN structures evolved by CNN + eHHO
were captured. It was determined that the highest impact on CNN performance for both
datasets is the number of convolutional layers (CL) and the number of hidden units in the
dense layers (UN), while most of the evolved network structures have two fully connected
layers (FL = 2). The impact of CL and UN on the classification performance of some
generated networks for dataset1 and dataset2 is shown in Figure 12.
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Figure 11. Examples of best performing network structures: dataset1 (top); dataset2 (bottom).

Figure 12. Impact of CL and UN in the dense layers on classification accuracy.

Finally, as in the experiments with CEC2019 benchmarks (Section 4), to better de-
termine the influence of control parameters ψ and bt on the CNN + eHHO performance,
additional experiments with varying ψ values are conducted. The ψ was adjusted in incre-
ments of 200 FFEs (ψ = 0, 200, 400, 600 and 800), and the best solution’s accuracy (evolved
CNN structure) is reported from a set of 10 independent runs. The bt value depends on ψ
and was calculated according to the expression shown in Section 5.2. The results of this
experiment for both datasets are summarized in Figure 13.

Figure 13. Effect of control parameter ψ on the CNN + eHHO performance.

From the presented chart, it can be firmly concluded that with ψ set to 200 FFEs,
the proposed CNN + eHHO obtains the best performance. The CNNs that obtain the
lowest accuracy are generated with ψ = 0 (magnified exploration) and ψ = 800 (amplified



Sensors 2021, 21, 6654 29 of 33

exploitation). Moreover, it is interesting to note that in all additional experiments, the CNN
+ eHHO managed to find a CNN structure that outscores all other metaheuristics included
in comparative analysis (Table 9).

6. Conclusions

The research shown in this manuscript proposes an enhanced version of HHO meta-
heuristics. The introduced eHHO algorithm was developed specifically to target the
observed drawbacks of the original method by incorporating the chaotic mechanism and a
novel, quasi-reflexive learning replacement strategy that enhances both the exploitation
and exploration, with only a small additional overhead in terms of its computational
complexity and new control parameters.

In the presented study, two types of experiments were performed. The proposed
eHHO was first validated on a standard bound-constrained CEC2019 benchmark functions
set, according to the firmly established practice in the recent computer science literature.
The method was further validated on the practical problem of CNN design (hyperparame-
ter optimization) and tested for classification of brain tumor MRI images.

The proposed method was compared to other state-of-the-art algorithms and obtained
a superior performance in both conducted experiments. In simulations with CEC2019
instances, eHHO proved to be a robust approach and outscored all opponents in 8 out of 10
test functions. In the second experiment, CNN + eHHO managed to generate CNNs that
are able to classify different grades of glioma tumors and two other common brain tumor
variants with high precision by taking the raw MRI as input. Additionally, in the proposed
study, other well-known swarm algorithms were also implemented for CNN design, and a
broader comparative analysis was established. The CNN + eHHO substantially outscored
all other approaches. In this way, the approach introduced in this study can be utilized as
an additional option to help doctors in the early detection of gliomas and reduce the need
for invasive procedures such as biopsy. It can also reduce the time for diagnostics, as the
time needed to perform the classification is far shorter than the time required to analyze
the biopsy.

Consequently, the contributions of this manuscript can be summarized as follows:
basic HHO was improved and showed a superior performance compared to the other state-
of-the-art methods for standard unconstrained problems and for the practical CNN design
challenge. Furthermore, other swarm intelligence approaches that had not been tested
before for this problem were implemented, and a performance comparison is provided of
different metaheuristics for CNN hyperparameters’ optimization.

It should be stated here that the conducted research has some limitations. First, since
the hyperparameters’ values were limited according to the domain expert from this area,
as stated in [9] (otherwise, the search space would be infinite), not all possible structures
were tested. Second, the eHHO algorithm that generates the possible CNN structures was
not tested on generic datasets, such as CIFAR-10, USPS, Semeion, and MNIST, and this will
be included in one of the future studies. Finally, since there are numerous new networks
and approaches, not all of them could be included in the comparative analysis, as a long
period of time would be needed for testing.

Possible directions of the future work in this area may include testing the proposed
eHHO-driven CNN method for other MRI benchmark datasets and adapting the devised
algorithm for tackling NP-hard challenges from other domains. As part of the future
research, CNN structures evolved with the eHHO method could be evaluated by employing
the semi-supervised learning approach to determine the impact of a smaller training sample
set on the performance [88–90]. Finally, it is also possible to test other metaheuristics
approaches in enhanced versions for the same glioma classification problem.
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Hradec Králové, Czech Republic.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Yang, X.S. Nature-Inspired Metaheuristic Algorithms; Luniver Press: Cambridge, UK, 2010.
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