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1. Data

Data presented here offer a preliminary characterization of the modulatory soluble components
within the whole of the human amniotic fluid stem cell (hAFS) secretome (Fig. 1 and Table 1). It also
provides in vitro confirmation of the pro-survival cardioprotective and pro-angiogenic potential of
hAFS-conditioned medium on target cells with cardiovascular relevance (Fig. 2), along with its para-
crine proliferative effect on human cardiac progenitors and rodent neonatal cardiomyocytes (Figs. 3
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Fig. 1. hAFS Secretome Profiling. Cytokine and chemokine array of hypoxic hAFS secretome (Hypoxic hAFS-CM) compared to
normoxic control one (Ctrl hAFS-CM) assessed by quantification of positive pixels for each selected cytokine. Upper panel: repre-
sentative images of array membranes in which numbers indicate the corresponding chemokine/cytokine as reported in the graph
below. Red boxes indicate EMMPRIN (*) and IGFBP-2 (x), which are not expressed by Ctrl hAFS-CM. Values are expressed as fold
change of Hypoxic hAFS-CM over Ctrl hAFS-CM and reported in Table 1. þ ve: positive reference control; -ve: negative reference control.
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and 4). Indeed, this dataset supports the subsequent in vivo analyses carried out in the manuscript by
Balbi C. et al. in the International Journal of Cardiology.

2. Experimental design, materials and methods

For detailed Methods please refer to Balbi C. et al. in the International Journal of Cardiology [1].
2.1. Cell culture

hAFS were obtained and cultured as described in Balbi C. et al. in the International Journal of
Cardiology [1]. HumanNCTC 2544 (hNCTC) keratinocytes were purchased (Interlab Cell Line Collection,
Genova, Italy) and cultured in MEM/Earl's Balanced Salt Solution (MEM/EBSS) with 10% FBS, 1% non-
essential aminoacids, 1% L-glutamine, and 1% penicillin/streptomycin (all EuroClone, Italy).

Human adult cardiac progenitor cells (hCPC) were obtained as previously reported [2], from atrial
appendage specimens as clinical waste, at the Division of Cardiac Surgery, San Martino Hospital
(Genova, Italy), following written informed consent and according to local ethical committee autho-
rization (P.R.007REG2013). Briefly, cardiac tissue was cut into fragments of approximately 0.5 mm in
PBS and trypsin solution was added for 10 minutes, then fragments were placed in a culture dish as
primary tissue explant culture in Iscove Modified Dulbecco's Medium (EuroClone, Milano, Italy) with
20% FBS, 1% L-glutamine, 1% penicillin/streptomycin, (all Thermo Fisher Scientific, Waltham, Massa-
chusetts). Cells migrating from explants were collected after 2e3 weeks. Human fetal Sca-1þ CPC and
human adult epicardium derived progenitor cells (hEPDC) were obtained as previously reported [3e5]
from human heart tissue, following written informed consent and according to local Medical Ethics



Fig. 2. In Vitro Cardioprotective and Angiogenic Paracrine Effects driven by the hAFS Secretome. A) mNVCM viability following
H2O2 oxidative stress with or without pre-incubation with 80mg/ml of hAFS-CM or hNCTC-CM, compared to untreated healthy cells
(Ctrl) and evaluated by MTT assay. All values are expressed as mean ± s. e.m of at least n ¼ 3 experiments as fold change over Ctrl
condition (H2O2: 0.41 ± 0.07; hAFS-CM: 0.93 ± 0.04; hNCTC-CM: 0.55 ± 0.03; ****p < 0.0001). On the right, mNVCM representative
pictures: untreated healthy cells (Ctrl), cells exposed to oxidative stress without any secretome priming (H2O2), cells pre-incubated
with hAFS-CM and exposed to oxidative stress (hAFS-CM), and cells pre-incubated with hNCTC-CM and exposed to oxidative stress
(hNCTC-CM); scale bar 100mm. B) mNVCM viability after 1% O2 hypoxic injury, with or without pre-incubation with 80mg/ml of
hAFS-CM or hNCTC-CM, compared to untreated healthy cells (Ctrl) and evaluated by MTT assay. All values are expressed as mean ± s.
e.m of at least n ¼ 3 experiments as fold change over Ctrl condition (1% O2: 0.71 ± 0.02; hAFS-CM: 1.04 ± 0.03; hNCTC-CM:
0.78 ± 0.05; ****p < 0.0001). On the right, representative pictures of mNVCM: untreated healthy cells (Ctrl), cells exposed to 1%
O2 without any secretome priming (1% O2), cells pre-incubated with hAFS-CM and exposed to 1% O2 (hAFS-CM) and cells pre-
incubated with hNCTC-CM and exposed to 1% O2 (hNCTC-CM); scale bar 100mm. C) Tubulogenesis assay on hECFC with or
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Table 1
Cytokine and chemokine profiling of hAFS secretome obtained following following 24h 1% O2 hyp-
oxic preconditioning and compared to normoxic conditions (Ctrl hAFS-CM).

Ctrl hAFS-CM Hypoxic hAFS-CM

PAI-1 1 0.90 ± 0.18
IL-17a 1 1.00 ± 0.36
SDF-1a 1 1.00 ± 0.51
IL-11 1 1.29 ± 0.11
MIF 1 1.67 ± 0,49
IL-8 1 2.39 ± 1.32
IL-6 1 3.20 ± 2.41
OPN 1 3.55 ± 1.43
FGF-19 1 3.58 ± 1.98
MCP-1 1 4.23 ± 1.45
GDF-15 1 8.87 ± 4.64

Values are assessed by quantification of positive pixels for each selected cytokine on the array
membrane and are expressed as mean ± s. e.m of the fold change in the cytokine/chemokine
expression of hypoxic hAFS secretome (Hypoxic hAFS-CM) over control normoxic hAFS-CM (Ctrl
hAFS-CM) of n ¼ 3 experiments; FGF-19: Fibroblast Growth Factor 19; GDF-15: Growth/differenti-
ation factor 15; IL-6: Interleukin-6; IL-11: Interleukin-11; IL-17a: Interleukin- 17a: MCP-1:
Monocyte Chemotactic Protein-1; MIF: Macrophage migration inhibitory factor; OPN:
Osteopontin; SDF-1a: Stromal cell-Derived Factor 1-alpha; PAI-1: Plasminogen Activator Inhibitor-1.
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Committee at Leiden University Medical Center (P08.087). hCPC were cultured in Iscove Modified
Dulbecco's Medium (EuroClone, Milano, Italy) with 20% FBS, 1% L-glutamine, 1% penicillin/strepto-
mycin, (all Thermo Fisher Scientific, Waltham, Massachusetts). Human fetal Sca-1þ CPC (fSca-1þ
hCPC) were obtained fromhuman foetal heart tissue, after elective abortionwithoutmedical indication
from 10 to 22 weeks of gestation and sorted for Sca-1 cross-reactivity (MACS MicroBead Kit, Miltenyi
Biotechnology, Bergisch Gladbach, Germany) as previously described [3,4] and cultured on 0.1%
gelatin-coated dishes in M199 (Gibco-Thermo Fisher Scientific, Waltham, Massachusetts)/EGM (3:1)
supplemented with 10% FBS (Gibco-Thermo Fisher Scientific, Waltham, Massachusetts), 10 ng/ml basic
fibroblast growth factor (bFGF), 5 ng/ml epithelial growth factor (EGF), 5 ng/ml insulin-like growth
factor (IGF-1) and 5 ng/ml hepatocyte growth factor (HGF). hEPDC were obtained from human atrial
samples obtained during cardiac surgery, and isolated by separating the epicardium from the under-
lying myocardium [5]. Briefly, the tissue was processed into small pieces and digested in a 0.25%
Trypsin/EDTA solution (Serva, Heidelberg, Germany). Cells were cultured in 1:1 Dulbecco's modified
Eagle's medium (DMEM-glucose low; Invitrogen, Carlsbad, California) and Medium 199 (M199; Invi-
trogen, Carlsbad, California) supplemented with 10% heat-inactivated FCS (Gibco-Thermo Fisher Sci-
entific, Waltham, Massachusetts), and 100 U/ml penicillin/streptomycin (Gibco-Thermo Fisher
Scientific,Waltham,Massachusetts). To avoid hEPDC undergoing epithelial-to-mesenchymal transition
(EMT) while maintaining cobble-like morphology (hEPDCc), the ALK5-kinase inhibitor SB431542
(5e10mm; Tocris Bioscience, Bristol, UK) was added to the culture medium. hEPDC activating epithelial-
without (Ctrl) treatment with 80mg/ml of hAFS-CM (hAFS-CM), hNCTC-CM (hNCTC-CM) or hAFS-CM in presence of Ca2þ signalling
inhibitor BAPTA (hAFS-CM þ BAPTA). Digital images of endothelial tubes were obtained by bright-field light microscopy 10 hours
after plating cells on Cultrex-coated wells; scale bar: 50mm. All values are expressed as mean ± s. e.m of at least n ¼ 3 experiments.
From left to right: number of total TLS per picture (Ctrl: 32.67 ± 2.91; hAFS-CM: 79.33 ± 8.41; hNCTC-CM: 16.80 ± 0.58; hAFS-
CM þ BAPTA: 12.00 ± 4.62; ***p < 0.001, p ¼ 0.0001, ****p < 0.0001); number of meshes per picture (Ctrl: 19.00 ± 0.58; hAFS-CM:
28.00 ± 2.65; hNCTC-CM: 6.80 ± 1.02; hAFS-CM þ BAPTA: 4.67 ± 2.03; *p < 0.05, (p ¼ 0.0185), ****p < 0.0001); number of master
junctions per pictures (Ctrl: 11.33 ± 0.67; hAFS-CM: 39.67 ± 9.26; hNCTC-CM: 4.20 ± 1.24; hAFS-CM þ BAPTA: 11.67 ± 3.33;
**p < 0.01, (p ¼ 0.0059), ***p < 0.001, (p ¼ 0.0005), hNCTC-CM versus hAFS-CM; **p < 0.01, (p ¼ 0.0064), hAFS-CM þ BAPTA versus
hAFS-CM). D) Percentage of hECFC displaying an oscillatory increase in [Ca2þ]i in response to different treatments; all values are
expressed as mean ± s. e.m in 195 cells analysed in the hAFS-CM group and 102 cells for hNCTC-CM group. (hAFS-CM: 77.23 ± 7.72;
hNCTC-CM: no response; ****p < 0.0001). Right panel: representative tracings of the increase in [Ca2þ]i induced by secretome
treatment in hECFC. Ctrl: control untreated cells; H2O2: hydrogen peroxide; hAFS-CM: human Amniotic Fluid Stem Cell-Conditioned
Medium; hNCTC-CM: human keratinocyte NCTC cell-Conditioned Medium; hECFC: human Endothelial Colony Forming Cells; TLS: Tube-
Like Structure length.



Fig. 3. In Vitro Proliferative Paracrine Effect on human CPC and rat NVCM by hAFS Secretome. A-D) Evaluation of proliferative
response from different human CPC subpopulations after treatment with 80mg/ml of either hAFS-CM or hNCTC-CM, compared to
untreated cells (Ctrl) by BrdU ELISA. All values are expressed as mean ± s. e.m of at least n ¼ 3 experiments as fold change over Ctrl
condition, with representative pictures of cells in control conditions (Ctrl) or following treatment with either hAFS-CM or hNCTC-CM
and stained with Ki67 (pink), phalloidin (green) and DAPI (blue); scale bar 200mm in all pictures but for A) which is 100mm. A) Adult
hCPC (hAFS-CM: 1.47 ± 0.11; hNCTC-CM: 0.86 ± 0.09; ***p < 0.001, (p ¼ 0.0001 hAFS-CM versus Ctrl; p ¼ 0.0002 hNCTC versus hAFS-
CM). B) fSca-1þ hCPC (hAFS-CM: 1.47 ± 0.05; hNCTC-CM: 1.05 ± 0.07; ****p < 0.0001). C) Adult hEPDCc (hAFS-CM: 1.50 ± 0.07;
hNCTC-CM: 0.94 ± 0.06. ***p < 0.001, p ¼ 0.0003, hAFS-CM versus Ctrl and p ¼ 0.0002 as versus hNCTC-CM). D) Adult hEPDCs
(hAFS-CM: 1.70 ± 0.09; hNCTC-CM: 0.96 ± 0.03; ****p < 0.0001). E-F) Analysis of proliferation of rNVCM exposed to 80mg/ml of
either hAFS-CM or hNCTC-CM compared to untreated cells (Ctrl). All values are expressed as mean ± s. e.m of at least n ¼ 3 ex-
periments and evaluated as fold change over control condition (Ctrl) of EdU- and cardiac a-Actinin-positive cells with representative
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Fig. 4. Evaluation of Ki67 expression on human CPC stimulated in vitro by the hAFS secretome. Evaluation of proliferative
response from different CPC subpopulations after treatment with 80mg/ml of either hAFS-CM or hNCTC-CM, compared to untreated
cells (Ctrl) by Ki67 staining. All values are expressed as mean ± s. e.m of the percentage of Ki67-positive cells of at least n ¼ 3
experiments. hCPC (Ctrl: 27.82 ± 0.66%; hAFS-CM: 45.01 ± 0.82%; hNCTC-CM: 29.50 ± 0.71%. ****p < 0.0001). fSca-1þ hCPC (Ctrl:
17.73 ± 2.13%; hAFS-CM: 26.52 ± 1.46%; hNCTC-CM: 15.13 ± 2.44%. *p < 0.05 p ¼ 0.011; **p < 0.01, p ¼ 0.0011). hEPDCc (Ctrl:
3.87 ± 0.60%; hAFS-CM: 9.57 ± 1.23%; hNCTC-CM: 4.52 ± 0.95%; *p < 0.05, p ¼ 0.0131). hEPDCs (Ctrl: 8.83 ± 1.20%; hAFS-CM:
21.17 ± 2.08%; hNCTC-CM: 7.37 ± 1.01%; **p < 0.01, p ¼ 0.0083 and p ¼ 0.0018).
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to-mesenchymal transition (EMT) as not treated with such inhibitor, acquired a more elongated,
fibroblast-like, spindle morphology (hEPDCs).

Mouse and rat NVCM isolation was performed in compliance with specific authorization (protocol
384/2016-PR, 792/2015-PR and EEC Council Directive 86/609, OJL 358, 12 December 1987). Mouse
NVCM (mNVCM)were obtained as in [6] via enzymatic digestion from 2-days old mouse hearts (C57Bl/
6 mouse) using a 0.125 mg/ml collagenase type II (Worthington Biochemicals, Lakewood, New Jersey)
solution under constant stirring; cells were seeded on 1% gelatin coating solution (Sigma-Aldrich, St.
Louis, Missouri, US) in complete plating medium (69% Dulbecco's Modified Eagle Medium, DMEM,15%
M199, 10% horse serum, 5% FBS, 100U/ml of penicillin and 100mg/ml of streptomycin and 1% L-glu-
tammine, Gibco-Thermo Fisher Scientific, Waltham, Massachusetts and Sigma-Aldrich, St. Louis,
Missouri, US). Rat NVCM (rNVCM) were obtained according to [9]. Briefly, 1- and 5-days-old (Wistar
rat) hearts were digested by a 2mg/ml trypsin (Gibco-Thermo Fisher Scientific, Waltham) and 20 mg/ml
DNase II buffer solution (Sigma-Aldrich, St. Louis, Missouri), under slow stirring. A pre-plating step was
performed to remove stromal cells. rNVMC were plated on Primaria cell culture multiwell plates
(Corning, Tewksbury, Massachusetts) in complete medium (high glucose DMEM supplemented with
5% FBS, 20mg/ml vitamin B12 and with 100U/ml of penicillin and 100 mg/ml of streptomycin,
respectively, from Gibco-Thermo Fisher Scientific, Waltham, Massachusetts and Sigma-Aldrich, St.
Louis, Missouri, US). hECFC were isolated following written informed consent and ethical committee
authorization (protocol n.20110004143, IRCCS Policlinico San Matteo Foundation, Pavia) and plated on
collagen-coated culture dishes (BD Bioscience, Franklin Lake, New Jersey) in growth medium (EGM-2
Lonza, Basel, Switzerland) supplemented with endothelial basal medium (EBM-2), 5% FBS, recombi-
nant human (rh) epithelial growth factor (rhEGF), rh vascular endothelial growth factor (rhVEGF), rh
fibroblast growth factor-basic (rhFGF-B), rh insulin-like growth factor 1 (rfIGF-1), ascorbic acid and
heparin. HUVEC (Human Umbilical Vein Endothelial Cells) were cultured in endothelial EGM-2
cultured medium as previously reported (Lonza, Basel, Switzerland) [7].
2.2. Collection of cell-conditioned medium

Cell-conditioned media from hAFS and hNCTC (namely hAFS-CM and hNCTC-CM, respectively)
were obtained according to the hypoxic preconditioning protocol previously described by our group
pictures of cells in control conditions (Ctrl) or following treatment with either hAFS-CM or hNCTC-CM and stained with EdU (red),
cardiac a-Actinin (green) and DAPI (blue), scale bar 100mm. E) rNVCM isolated from 2-days-old rat hearts, n ¼ 3 experiments (Ctrl:
1.00 ± 0.09; hAFS-CM: 4.63 ± 0.34; hNCTC-CM: 2.60 ± 0.43; ****p < 0.0001, **p < 0.01, p ¼ 0.0028, *p < 0.05, p ¼ 0.0407). F) rNVCM
isolated from 5-days-old rat hearts, n ¼ 3 experiments (Ctrl: 1.00 ± 0.07; hAFS-CM: 1.43 ± 0.05; hNCTC-CM: 0.96 ± 0.05
****p < 0.0001). BrDU: 5-Bromo-20-DeoxyUridine; EdU: 5-Ethynyl-20-deoxyUridine; aActinin: sarcomeric alpha actinin; DAPI: 40 ,6-
DiAmidino-2-PhenylIndole.
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[6]. Cells were washed with PBS solution and incubated for 24h in serum-free medium (4.5g/l glucose
DMEM, 1% L-glutamine, and 1% penicillin/streptomycin) under hypoxic condition (1% O2, 5% CO2 at
37 �C in a hypoxic incubator, Eppendorf, Hamburg, Germany). hAFS-CM and hNCTC-CM were
concentrated using ultrafiltration membranes with a 3kDa selective cut-off (Amicon Ultra-15, Mil-
lipore, Burlington, Massachusetts). Protein amount of hAFS-CM and hNCTC-CMwas evaluated by BCA
(BicinChoninic Acid) Protein Assay Kit (Pierce, Thermo Fisher Scientific, Waltham, Massachusetts,
US), following manufacturer's instructions in order to define cell-conditioned medium concentration
that was used as 80mg/ml. hNCTC-CM was used as comparative negative control for in vitro
experiments.
2.3. Cytokine and chemokine profiling of cell secretome

Cytokine and chemokine profiles of cell secretome was performed by a cytokine array assay (Pro-
teome Profiler™ Human XL Cytokine Array kit; R&D System, Minnesota, US) following manufacturer's
instructions. Analysis was performed on 2.5 mg of total protein content from cell conditioned medium
and images of spotted array membranes acquired on X-ray film. Images were analyzed by ImageJ
(https://imagej.nih.gov/jj/) with the protein Array Analyzer Plug-in.
2.4. In vitro analysis of hAFS secretome cardio-active potential

2.4.1. Cardioprotective potential
mNVCM were primed in serum-free conditions (SF) with hAFS-CM versus hNCTC-CM for 3h, then

exposed for 4h to 150 mM H2O2 solution or under 1% O2 atmosphere and then cultured in complete
medium for the following 24h. Cell viability was assessed byMTT assay using a 150mg/ml MTT solution
(Sigma-Aldrich, Missouri).

2.4.2. Angiogenic effect
For Ca2þ signaling, hECFC were cultured on a coverslip and loaded with 4mM Fura-2 acetoxymethyl

ester solution (Fura-2/AM; 1 mM stock in dimethyl sulfoxide) in physiological salt solution (PSS:
150mMNaCl, 6mMKCl,1.5mMCaCl2,1mMMgCl2,10mMGlucose,10mMHepeswith 7.4 pH) for 1 hour
at room temperature. Cells were observed by an epifluorescence Axiolab microscope (Carl Zeiss,
Oberkochen, Germany, with a Zeiss � 40 Achroplan objective). hECFC were excited alternately at 340
and 380nm, and the emitted light detected at 510nm. Custom software, working in the LINUX envi-
ronment, was used to drive camera (Extended-ISIS Camera, Photonic Science, Millham, UK) and filter
wheel, and to plot on-line the fluorescence from 10 up to 50 rectangular “regions of interest” (ROI).
Adjacent ROIs never superimposed. [Ca2þ]i was monitored by measuring the ratio of the mean fluo-
rescence emitted at 510 nmwhen exciting alternatively at 340 and 380 nm (shortly termed “ratio”) for
each ROI. Ratio measurements were performed and plotted on-line every 3s. Experiments were per-
formed at room temperature (22 �C).

Early passage (P2eP3) hECFC were cultured in basal medium EBM-2 supplemented with 2% FBS in
Cultrex (Trevigen, Gaithersburg, Maryland)-coated 96 well plates, in the presence of either hAFS-CM
or hNCTC-CM for 24 hours. Capillary network formation was assessed starting from 4 up to 24 hours
later. The angiogenic response was measured by evaluating both dimensional and topological pa-
rameters. Length of endothelial tube-like structures (TLS), number of polygon structures established
by TLS, referred to as meshes and indicative of endothelial cell migration, and number of master
junctions were measured from acquired bright field pictures by using the Angiogenesis Analyzer
plugin of ImageJ (Gilles Carpentier, Faculte’ des Sciences et Technologie, Universite’ Paris Est, Creteil
Val de Marne, France). Micrographs were captured by using an Olympus IX71 inverted microscope
(Olympus Europa GmbH, Hamburg, Germany) equipped with a CPlan F1 10 � /0.30 objective. Three
different sets of experiments, each performed in duplicate, were carried out. To evaluate the effect of
Ca2þ signaling, the same protocol was repeated by priming hECFC with hAFS-CM in the presence of
BAPTA (30mM solution for 2 hours), a membrane-permeable chelator used to prevent
Ca2þ�dependent processes [7,8].

https://imagej.nih.gov/jj/
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2.4.3. Proliferative potential on human CPC and rNVCM
hCPC, fSca-1þ hCPC, hEPDCc and hEPDCswere primedwith hAFS-CM versus hNCTC-CM over-night.

All CPC populations were incubated for the following 24h in complete medium with 10mM bromo-
deoxyuridine (BrdU). The hAFS-CM proliferative effect was also evaluated on human CPC populations
by BrdU colorimetric assay (Roche, Basel, Switzerland) according to the manufacturer's instructions.
CPC proliferation was also analysed by Ki67 (Millipore, Burlington, Massachusetts) and phalloidin
staining (LifeTechnology, Carlsbad, California). Cells were treated with hAFS-CM versus hNCTC-CM for
3h, fixed with 4% PFA and processed by immunostaining. Images were acquired on an Axiovert mi-
croscope equipped with Axiovision software (Carl Zeiss, Oberkochen, Germany).

DNA duplication in rNVCM was assessed by incubating cells with hAFS-CM versus hNCTC-CM and
after 12 hours, 10mM EdU was added (Life Technology, Carlsbad, California). After additional 20 hours
cells were fixed and stained for a -actinin and EdU. rNVCM were fixed with 4% PFA and stained by
mouse anti-sarcomeric a-Actinin (Abcam) and Click-IT EdU-594 Imaging kit to reveal EdU incorpo-
ration (Life Technology, Carlsbad, California) as previously described [9]. Images were acquired and
computed at the ICGEB High-Throughput Screening Facility, Trieste, Italy (http://www.icgeb.org/high-
throughput-screening.html).

2.5. Statistical analysis

Results are presented as mean ± s.e.m. (standard error of mean) of at least three (n ¼ 3) inde-
pendent replicated experiments. Comparisons were drawn by one-way ANOVA followed by post-hoc
Tukey's multiple test or by unpaired t-test when appropriate and analysed by Prism Version 6.0a
GraphPad Software with statistical significance set at *p < 0.05.
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