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Abstract

Genome-wide association studies (GWAS) have identified many single nucleotide polymor-

phisms (SNPs) that play important roles in the genetic heritability of traits and diseases.

With most of these SNPs located on the non-coding part of the genome, it is currently

assumed that these SNPs influence the expression of nearby genes on the genome. How-

ever, identifying which genes are targeted by these disease-associated SNPs remains chal-

lenging. In the past, protein knowledge graphs have often been used to identify genes that

are associated with disease, also referred to as “disease genes”. Here, we explore whether

protein knowledge graphs can be used to identify genes that are targeted by disease-asso-

ciated non-coding SNPs by testing and comparing the performance of six existing methods

for a protein knowledge graph, four of which were developed for disease gene identification.

We compare our performance against two baselines: (1) an existing state-of-the-art method

that is based on guilt-by-association, and (2) the leading assumption that SNPs target the

nearest gene on the genome. We test these methods with four reference sets, three of

which were obtained by different means. Furthermore, we combine methods to investigate

whether their combination improves performance. We find that protein knowledge graphs

that include predicate information perform comparable to the current state of the art, achiev-

ing an area under the receiver operating characteristic curve (AUC) of 79.6% on average

across all four reference sets. Protein knowledge graphs that lack predicate information per-

form comparable to our other baseline (genetic distance) which achieved an AUC of 75.7%

across all four reference sets. Combining multiple methods improved performance to 84.9%

AUC. We conclude that methods for a protein knowledge graph can be used to identify

which genes are targeted by disease-associated non-coding SNPs.
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1 Introduction

A common way to identify which genetic variations are associated with a disease is by compar-

ing the genetic code of a healthy population to that of a patient population in genome-wide

association studies (GWAS). GWAS have identified many single nucleotide polymorphisms

(SNPs) that play important roles in the genetic heritability of traits and diseases such as prostate

cancer [1]. However, because the majority of these SNPs are located on the non-coding part of

the genetic code (more than 90% of the SNPs for prostate cancer [2]), it is not yet clear how

they increase the risk of disease. These SNPs do not directly affect the protein coding sequence

as non-synonymous SNPs in the protein coding sequence do, or intronic SNPs that may change

splicing, but it is currently assumed that a non-coding SNP influences the expression of the

nearest gene on the genome [3]. However, a non-coding SNP does not always correlate with the

differential expression of the nearest gene. This phenomenon is illustrated by the obesity-associ-

ated SNP rs9930506, which is found in an intron on the FTO gene, but targets the IRX3 gene,

which is nearly 487 kilobases (kb) away [4]. How these non-coding SNPs contribute to their

associated phenotype is investigated in post-GWAS analyses [5]. An important first step in such

an analysis is to identify which gene is targeted by the non-coding SNP. Existing tools such as

FUMA [6], VEGAS [7], MAGENTA [8], Pascal [9], DEPICT [10], and more recently OpenTar-

gets [11] leverage genomic position, aggregated GWAS data, existing eQTL data, 3D chromatin

interactions, or functional annotations to identify the genes targeted by SNPs.

In another field, referred to as disease gene identification, methods have been developed to

computationally identify genes that are associated with diseases [12]. What constitutes a “dis-

ease gene” is loosely defined, and can both encompass genes which have a protein-changing

mutation [13], as well as genes that are differentially expressed between healthy and diseased

subjects [5]. Unfortunately, differentially expressed disease genes often do not differentiate

between genes whose expression is changed by a SNP, downstream effects of other genes, or

other factors such as epigenetic modifications. Nonetheless disease gene identification is a task

that is closely related to identifying which genes are targeted by disease-associated SNPs, with

methods that may be applicable to both tasks.

Many disease gene identification methods are based on knowledge graphs that only consist

of proteins, commonly referred to as protein-protein interaction networks. Through the

involvement of proteins in metabolic, signaling, immune, and gene-regulatory networks, pro-

tein knowledge graphs can help to mechanistically explain disease and physiological processes

[14]. Because proteins are encoded by genes, genetic variations can affect the way proteins

interact with each other, thereby disrupting molecular pathways and ultimately leading to dis-

ease. Besides using protein knowledge graphs for disease gene identification, they have been

commonly used for many types of analyses [15], such as drug efficacy screening [16, 17] identi-

fying interrelationships between diseases [18, 19], and drug target identification [20]. Within

protein knowledge graphs, biomedical knowledge published in literature and databases is for-

malized as subject–predicate–object triples, where pairs of entities, such as proteins, are related

to each other by verbs or predicates [21, 22] An example of such a subject–predicate–object tri-

ple is MAPK–regulates–ALOX5.

Here, we explore whether protein knowledge graphs can be used to identify genes that are

targeted by disease-associated SNPs which are located on the non-coding part of the genome.

We test four previously published methods for disease gene identification. Predicate informa-

tion is not used by existing disease-gene identification methods, but has been shown to

improve performance in analyses performed on protein knowledge graphs [17]. We therefore

also test two existing methods that utilize the predicates in our knowledge graph. The perfor-

mance of the selected methods is compared against two baselines: one is based on the leading
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assumption that SNPs target the nearest gene on the genome, the other is DEPICT, a state-of-

the-art and commonly used method that is based on gene annotations and uses guilt-by-asso-

ciation [10].

We test our selected methods on two diseases. The first disease is prostate cancer, which is

estimated to be the second most common type of cancer in the world for men [23], and with

an estimated heritability of 57%, is one of the cancers that is most influenced by genetics [24].

The second disease is coronary artery disease, the leading cause of death worldwide [25],

where a strong genetic effect on death especially at younger age has been found [26].

2 Methods

2.1 Knowledge graph

We based our experiments on Resnet, the graph database underlying Elsevier’s Pathway Studio

product [27, 28]. Within this knowledge graph, the nodes represent biomedical entities such as

proteins, diseases, physiological processes, and drugs, while the edges between the nodes

describe their interrelationships, e.g. regulates, expresses, modifies. The types of interrelation-

ships that can exist between nodes have been defined by experts and form the predicates in tri-

ples. Predicates, together with the entities, were computationally extracted from PubMed and

43 publicly available full-text journals [27]. Information about the articles from which predi-

cates were extracted is linked to the edges as provenance. Resnet does not distinguish between

a gene and the protein for which that gene encodes, and maps both to the same node. For our

research, we only used protein information in Resnet, excluding all information about non-

protein-coding sequences and mitochondrial genes.

2.2 Reference sets

Reference sets of SNP-gene pairs were obtained from (1) a study that performed a literature

review of SNP-gene pairs [3], (2) an expression quantitative trait loci (eQTL) study [29], and

(3) a meta-analysis of GWAS [30]. A fourth reference set was created by selecting a high-confi-

dence subset from the results of the literature review.

In all reference sets, deprecated SNP identifiers and gene symbols were manually updated

to match dbSNP (https://www.ncbi.nlm.nih.gov/snp) for SNPs, and the NCBI gene catalogue

(https://www.ncbi.nlm.nih.gov/gene) for gene symbols. Genomic locations of genes and of

SNPs were retrieved with the Python packages PyEnsembl (using ENSEMBL release 92) and

myvariant, respectively.

Because the disease gene identification methods that were tested have been developed for

protein-protein interaction networks, we excluded all non-protein-coding sequences from our

reference sets. Furthermore, because our objective is to identify genes targeted by non-coding

SNPs, all entries containing SNPs on the coding region/exon were excluded as well. Finally, in

line with previous work, we set a maximum distance of 2000 kb between SNPs and gene candi-

dates [10, 31]. For each reference set, the number of SNP-gene pairs that did not fulfil these cri-

teria are shown in S1 Table.

In addition to the maximum distance of 2000 kb between SNPs and genes, we also tested

smaller maximum distances, i.e. 25, 50, 100, 500, 1000 kb. Furthermore, beside these static dis-

tances, we also tested the maximum distance based on linkage disequilibrium as determined

by DEPICT [10].

To align with common terminology in the machine learning field we refer to SNP-gene

pairs found in the reference sets as positive cases, while negative cases are SNP-gene pairs con-

sisting of all genes that are (partially) within the selected range of a SNP in the reference set,

but are not mentioned as the target of the SNP. It is possible for SNPs to only have positive
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cases within the interval. It is also possible for genes to be located within the interval of multi-

ple SNPs, or for one SNP to target multiple genes. In both situations, each SNP-gene pair is

counted as a separate case. For each reference set, the number of cases for different maximum

genetic distances is shown in Table 1.

2.2.1 Farashi reference set. The first reference set is based on a comprehensive literature

review of prostate-cancer associated SNPs and their gene targets performed by Farashi et al.

[3]. We used the complete set as well as a high-confidence subset that only includes the entries

with a p-value less than 5 × 10−8. Entries for which no p-values were provided in Farashi’s

overview were excluded from the high-confidence set.

The review by Farashi provided 1139 distinct SNPs and 271 distinct genes, extracted from

26 distinct publications. Whereas most studies in Farashi’s review describe genes that are tar-

geted by one or two SNPs, one study identified 5 genes that were each targeted by more than a

hundred SNPs [32]. We considered this study to be an outlier and removed all its results from

our reference set.

The final set consists of 225 positive cases, including 213 distinct SNPs and 191 distinct

genes. Of these, 101 positive cases (95 distinct SNPs and 86 distinct genes) met the p-value

Table 1. Number of positive and negative cases in the reference sets for different genetic intervals. Maximum genetic distance indicates the maximum allowed dis-

tance between a SNP and a gene. A variable maximum distance is based on the linkage disequilibrium as determined by DEPICT. Number of SNPs is the number of SNPs

for which at least 1 positive case was found within the genetic interval.

Reference set Maximum genetic distance No. of SNPs Total no. of positive cases Total no. of negative cases Median no. of negative cases per SNP

Farashi 25 kb 32 33 28 1

50 kb 47 48 73 2

100 kb 58 59 174 2

500 kb 143 148 2266 11

1000 kb 188 196 5422 19

2000 kb 213 225 10,863 33

Variable 97 97 211 3

Farashi high-

confidence

25 kb 16 17 22 2

50 kb 21 22 36 2

100 kb 24 25 83 2

500 kb 62 66 1125 12

1000 kb 84 90 2914 20

2000 kb 95 101 5678 38

Variable 46 46 85 2

DeRycke 25 kb 16 20 19 1,5

50 kb 23 29 33 1,5

100 kb 30 37 84 2

500 kb 78 126 1160 10,5

1000 kb 97 168 2580 17

2000 kb 109 191 5392 36

Variable 45 49 113 2

Teslovich 25 kb 8 8 13 1,5

50 kb 15 15 36 2

100 kb 23 23 88 4

500 kb 65 68 878 9,5

1000 kb 81 84 1998 17

2000 kb 94 97 4288 32

Variable 70 71 147 2

https://doi.org/10.1371/journal.pone.0271395.t001
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criterion of the high-confidence set. Within a distance of 2000 kb from the SNPs, 10,863 nega-

tive cases were found for the complete set and 5678 for the high-confidence set. The Farashi

reference set is available in S2 Table.

2.2.2 DeRycke reference set. The reference set derived from the literature review by Fara-

shi et al. was based on studies that used different experimental methods, which may act as a

confounder. We therefore included another reference set for prostate cancer based on a recent,

single eQTL study by DeRycke et al. [29], who compared RNA sequencing data obtained from

471 normal and 249 at risk samples. This study has been published after Farashi’s literature

review, and its results are therefore not included in that set.

The set of DeRycke consists of 322 distinct SNPs and 215 distinct genes. After removing all

ineligible SNP-gene pairs, the final DeRycke reference set consists of 109 distinct SNPs that

target 122 distinct genes, forming 191 positive cases. Within a 2000 kb distance of the SNPs

there are 5392 negative cases. The DeRycke reference set is available in S3 Table.

2.2.3 Teslovich reference set. Teslovich et al. performed a meta-analysis of 46 GWAS,

comprising more than 100,000 individuals in total, to identify SNPs associated with risks fac-

tors for coronary artery disease (i.e. total cholesterol, low-density lipoprotein cholesterol, high-

density lipoprotein cholesterol, and triglycerides) [30]. Based on this meta-analysis they identi-

fied 102 SNPs targeting 98 genes with a p-value lower than 5 × 10−8, from which three were

experimentally validated with mouse models. After removing all ineligible SNP-gene pairs, the

final reference set consists of 94 distinct SNPs and 91 distinct genes, in 97 positive cases.

Within the 2000 kb range of the SNPs there are 4288 negative cases.

This set has previously been used in the Benchmarker study by Fine et al. [33], to evaluate

DEPICT [10], and to evaluate the predecessor of DIAMOnD [34]. The Teslovich reference set

is available in S4 Table.

2.3 Experimental setup

We selected six existing protein-knowledge graph based methods listed in Table 2 (node2vec,

RDF2vec, metapaths, network distance, graphlets, DIAMOnD) to generate features from the

protein knowledge graph. Parameters for the feature generation methods were set to default

except for node2vec (see Section 2.4.5).

Apart from DIAMOnD and the graphlets, the disease gene identification methods tested by

us were trained and evaluated using the supervised learning algorithms that were used in the

original studies. These are: logistic regression (LR) (used by Agrawal et al. [35] and by Ristoski

et al. [36]), support-vector machines (SVM) (used by Peng et al. [37]), decision trees (DT)

Table 2. Overview of the various methods and experimental settings.

Methods Variations Classifiers Maximum genetic distance (in kb)

Node2vec • No modification

• Autoencoding

• Graphlets

• Autoencoding + graphlets

• Logistic Regression

• Support-Vector Machine

• Decision Tree

• Random Forests

• 25

• 50

• 100

• 500

• 1000

• 2000

• Variable (DEPICT)

RDF2vec

Metapaths • Frequency

• Binary

Network distance Not applicable

Graphlets • Frequency

• Log of frequency

DIAMOnD Not applicable

Genetic distance Not applicable

DEPICT Not applicable

https://doi.org/10.1371/journal.pone.0271395.t002
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(used by Ristoski et al. [36]), and random forest (RF) (used by Vlietstra et al. [19]). We

excluded the K-nearest neighbour classifiers used by Xu et al. [38], Ristoski et al. [36], and

Milenković et al. [39] due to their limited ability to rank, often leading to tied ranks for genes.

To enable a fair comparison, every feature set was tested with each classifier. Classifier parame-

ter settings were taken from the original work, or if not specified left on default.

Because the same gene can be a candidate for multiple SNPs that are in close proximity to

each other on the genome, and their status as a positive or negative case can differ for these

SNPs, performing cross-validation with randomized folds could lead to the same gene occur-

ring in both in the training and the test set. Therefore, to determine whether the selected meth-

ods can be used to identify genes that are targeted by SNPs, we followed the leave-

chromosome-out cross-validation methodology recommended by Fine et al. [33]. For every

cross-validation experiment, all SNPs and their gene candidates that are located on a single

chromosome are used as a test set, while all other SNPs and their gene candidates on the other

chromosomes are used as the training set. Therefore, leave-chromosome-out cross-validation

can consist of a maximum of 23 cross-validation experiments (24 if counting X and Y chromo-

somes separately). Depending on the distribution of the SNPs across the genome, these folds

often have unequal sizes. Because folds are fixed in leave-chromosome-out cross validation,

only a single cross-validation experiment needs to be performed.

Candidate genes within a pre-defined range of a SNP were ranked based upon the scores

assigned to them by the classifier. For each SNP, performance was first measured individually

with the area under the receiver operating characteristic curve (AUC) and recall of the positive

cases in the top-1 and top-3 ranked genes. Subsequently, the average performance was mea-

sured across all SNPs in the reference set. An overview of the experimental setup is shown in

Fig 1. For each combination of method and classifier, we present the average and the mini-

mum and maximum values of the performance metrics across all reference sets. The perfor-

mance of each method is compared to two baseline methods: one ranking the gene candidates

based on their genetic distance from the SNP, the other DEPICT [10].

A complete overview of all methods, their variations, the tested genetic intervals, and

machine learning classifiers can be found in Table 2. Code and data can be found in the follow-

ing GitHub repository: https://github.com/wjvlietstra-els/Post-GWAS.

2.4 Tested methods

2.4.1 DEPICT. DEPICT is a commonly used post-GWAS analysis method that is based

on guilt-by-association (i.e. co-occurrence of genes within pre-defined gene sets) to identify

genes and pathways that are affected by SNPs [10]. Within a genomic range of 2000 kb,

DEPICT assigns the SNP with the lowest p-value as the lead SNP. The pairwise linkage dis-

equilibrium between this SNP and all other SNPs on the chromosome is calculated based on

HapMap data and the 1000 genomes data [40, 41]. The border of a locus is determined by the

location of the most distant SNP that has a linkage disequilibrium with a correlation (r2) higher

than 0.5. All genes located at least partly within this range are considered to be part of the

locus, and therefore candidates for all SNPs that are found within it. Loci with overlapping

genes are merged. When a locus does not contain any genes, DEPICT selects the nearest gene.

DEPICT prioritizes gene candidates based on their correlation with genes that are found in

other loci with which they share membership of pre-defined gene sets. DEPICT contains

14,461 of these gene sets that are defined by the shared annotations between genes in GO,

KEGG, REACTOME, neighbouring genes in the InWeb protein-protein interaction network

[42], and shared phenotypes as found in the Mouse Genetics Initiative [43]. Only sets consist-

ing of at least 10 and at most 500 genes are extracted from these databases. These sets are

PLOS ONE Identifying genes targeted by disease-associated non-coding SNPs with a protein knowledge graph

PLOS ONE | https://doi.org/10.1371/journal.pone.0271395 July 13, 2022 6 / 19

https://github.com/wjvlietstra-els/Post-GWAS
https://doi.org/10.1371/journal.pone.0271395


expanded by genes that are often co-regulated with the genes in these sets, as calculated with

almost 78,000 microarray datasets of human, mouse, and rat gene expression data from the

GEO database. Memberships of genes to a specific gene set are indicated by z-scores, repre-

senting how strongly each gene is predicted to be a member of each gene set. We used the

implementation of DEPICT that is provided with the original publication [10].

2.4.2 DIAMOnD. Previous research has described how genes associated with a disease

are closely interconnected with each other in a protein-protein interaction network, referring

to such groups of genes as “disease modules” [18]. Based upon this theory, the Disease Module

Detection (DIAMOnD) algorithm has been developed by Ghiassian et al. [44]. DIAMOnD tra-

verses a graph from a set of “seed” genes to identify additional genes of a module based upon

their connectivity significance to the seed genes. Connectivity significance is determined by

calculating the probability of the candidate being connected to seed genes and comparing that

against the probability calculated under the null hypothesis. The authors compared the perfor-

mance of their algorithm to random walks based upon 70 diseases and their associated disease

genes. They found that the DIAMOnD algorithm was more suitable than random walks for

identifying genes that are not in the immediate neighbourhood of the other genes in the mod-

ule. Here, we test whether disease modules can be applied for our task with the DIAMOnD

algorithm. For the leave-chromosome-out cross validation, we use DIAMOnD to predict

genes on the left-out chromosome by using positive cases on the chromosomes that are used

as training set as seed genes. Because DIAMOnD does not allow users to specify a set of genes

Fig 1. Overview of the experimental process. A feature vector is created for every gene based on the protein

interactions in the knowledge graph. The figure shows features generated with node2vec. Simultaneously, the gene

candidates for every SNP are identified based upon their proximity to the SNP on the genome. The size of the interval

can either be pre-defined, e.g. at 50 kb, or be determined by DEPICT based upon the linkage disequilibrium of the SNP

with other SNPs as found in the HapMap or 1000 genomes project data. Based upon the positive and negative cases in

each reference set, a classifier is trained and evaluated using the leave-chromosome-out methodology, where all SNP-

gene pairs on one chromosome are used as a test set while those on the other chromosomes are used as the training set.

All candidate genes for a SNP on the test chromosome are assigned scores by the classifier, based upon which the

candidates are ranked. Finally, the ranking of gene candidates for every SNP is evaluated using the reference sets.

https://doi.org/10.1371/journal.pone.0271395.g001
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to be ranked, we configured it to return the first 1000 genes for every chromosome that was

used as a test set. From these 1000 genes, only the candidates of SNPs on the test chromosome

were used, ranking them for each SNP based upon their position on the list as assigned by

DIAMOnD.

2.4.3 Network distance. Based on the theory that the disease genes associated with a dis-

ease are part of the same pathways or signal transduction mechanisms, Xu and Li defined five

metrics that quantify the network distance between disease genes and candidate genes. These

metrics were subsequently used as features to train and evaluate a supervised machine learning

classifier to identify additional disease genes [38]. The five metrics are (1) the total number of

neighbours of genes, (2) the fraction of neighbours which are disease genes in the training set,

(3) the fraction of two-step neighbours which are disease genes in the training set, (4) the aver-

age network distance of the candidate gene to the disease genes in the training set, and (5) the

average fraction of neighbours that a candidate has in common with the neighbours of the dis-

ease genes in the training set. The method achieved an average accuracy of 76% with cross vali-

dation using disease genes listed in OMIM as a reference [45]. Three newly predicted disease

genes were validated in a literature search.

We implemented the five network-distance metrics with the Python library NetworkX [46].

2.4.4 Graphlets. One theory about disease genes is that although they may not necessarily

be near to each other in the network, they can be identified because their network topology is

similar [39]. This network topology can be described by small-scale networks of which genes

are part, referred to as graphlets [47]. These graphlets can be e.g. triangles, squares, pentagons,

and can consist of up to five nodes. Identifying graphlets that consist of more than five nodes

is uncommon because of the computational resources that would be required. Within the 29

graphlets that can be created with up to five nodes, there are 73 distinct positions (also referred

to as orbits) a node can have. To count the number of orbits for each node, we use EVOKE, a

recent, fast implementation of graph pattern counting methods [48].

Milenković et al. tested this theory by counting the number of orbits of each gene in the net-

work, and used those frequencies to cluster the genes [39]. They predicted 31 new genes to be

associated with cancer because these were part of clusters that consisted for at least 40% of

known cancer genes. From these 31 predictions, they were able to validate 24 genes based

upon the biomedical literature.

Graphlets were also previously combined with features generated with node2vec [35], as

described in Section 2.4.5. We also report the results of the combination of these two methods.

When combined with node2vec, the log of the frequencies of the graphlets was used as feature,

which was not the case in the work of Milenković et al. Here we test both the original and the

log-transformed frequencies as features.

2.4.5 Node2vec. Node2vec is an unsupervised feature learning method which has gained

in popularity in recent years [49]. Starting from every node in the graph, node2vec creates

node embeddings by performing a user-specified number of biased random walks through the

knowledge graph, which generate features that represent both the community (i.e. closely

interconnected group of nodes) to which a node belongs, and its network role (e.g. whether

the node is a hub). By not relying on pre-defined or rigid definitions of neighbourhood,

node2vec is thought to describe nodes in a more flexible and comprehensive way as compared

to e.g. graph statistics. As a result, each node in the graph is represented by a numerical vector,

in which semantically similar entities are geometrically closer to each other.

Agrawal et al. tested features generated with node2vec stand-alone as well as combined

with the log of the frequencies of graphlets as described in Section 2.4.4 [35]. They tested their

methods on a set of 519 diseases and their associated disease genes as described in DisGeNet,

and found that the inclusion of graphlets improved recall-at-100 from 0.300 to 0.332.
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In other work, Peng et al. auto-encoded the features generated by node2vec prior to using

them in a classifier [37]. They quantified the benefit of autoencoding by applying their method

for the prediction of genes associated with Parkinson’s disease, showing an increase in perfor-

mance from 67.0% AUC to 70.6%.

By default, node2vec is configured for undirected, unweighted networks. We modified

these parameters to use the additional information available in our knowledge graph based

upon the assumption that including more information improves performance. We therefore

used the directional information of edges as well as the number of publications underlying an

edge as edge weight. The Python implementation of node2vec was used to generate features.

We test the following variations of the features generated with node2vec (1) no modifica-

tion, (2) adding the log of the frequencies of graphlets as described by Agrawal et al., (3) auto-

encoding the node2vec features as described by Peng et al., and (4) combining the

autoencoding and the graphlets.

2.4.6 RDF2vec. A limitation of node2vec is its inability to include predicate information

in the feature generation process. To leverage the predicate information available in Resnet, we

also tested RDF2vec, which extends upon node2vec by taking edge labels (predicates) into

account when creating node embeddings. RDF2vec has not been used previously for disease

gene identification.

Similar to node2vec, RDF2vec is an unsupervised feature learning method for knowledge

graphs that maps the neighbourhood of a node by using the node as a starting point for ran-

dom walks [36]. Features are generated based on the sequences of triples that result from these

random walks. Contrary to node2vec, RDF2vec does not support weighted edges. To generate

RDF2vec features we used pyRDF2vec as provided by VandeWiele et al. [50]. Similarly to

node2vec, we tested whether autoencoding, enriching the features with the log of the frequen-

cies of graphlets, or both, improved performance.

2.4.7 Metapaths. Predicates between genes have not yet been used for disease gene identi-

fication, but previous research has leveraged predicates and their directional information from

protein knowledge graphs to improve performance for drug efficacy screening and identifica-

tion of disease trajectories [17, 19].

Here, we construct metapaths consisting of a maximum sequence of two predicates for

every protein, taking into account directional information. Separate features are created for

metapaths directed towards the protein (incoming metapath) and metapaths directed away

from the protein (outgoing metapath). An example of a feature consisting of two predicates is

“Incoming_metapath:Regulates-Expresses”. We test both binary features (i.e. absence or pres-

ence of metapaths) and numeric features (i.e. metapath frequencies).

3 Results

3.1 Extracted paths

We extracted 429,823 human protein–predicate–protein triples from Resnet. The triples con-

tained 14,423 different proteins connected by 13 distinct predicates. The number of triples per

predicate is shown in S5 Table.

3.2 Prediction results

The performance of the methods, in combination with their variations and classifiers that

achieved the best result as determined by the highest AUC on average across all four reference

sets, are shown in Fig 2 and Table 3. We only show the performance based on the candidates

as found within the variable genomic intervals identified with DEPICT. Static intervals

achieved considerably worse coverage or ranking performances. For example, coverage at a
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short interval of 25 kb was only 12%, while at the highest interval of 2000 kb none of the AUCs

exceeded 60%. Performances of all individual reference sets, methods, variations, classifiers,

and genetic intervals can be found in S6 Table.

Not all genes in the reference sets could be mapped to the protein–predicate–protein triples

extracted from our knowledge graph (See S1 Table). Methods based on our protein knowledge

graph covered on average 92.1% (min–max, 89.1–95.8%) of the positive cases found within the

genetic intervals identified by DEPICT. DIAMOnD, which does not take the candidates within

a genetic interval as input but has its own method to identify candidates, had a very low cover-

age of on average 6.6% (min–max, 4.1–12.8%) of the positive cases within the first 1000 candi-

dates it identified. DEPICT only retrieved 46.9% of the positive cases as compared to taking a

2000 kb search window around the SNP (min–max, 25.7–73.2%). DEPICT managed to limit

Fig 2. Average performance for different metrics, achieved by the best individual methods for identifying genes

targeted by disease-associated non-coding SNPs. The x-axes list the different methods from left to right (the colours

from left to right corresponding with those at the left listed from top to bottom), while the y-axes represent each of the

four performance metrics as percentages ranging from 0% to 100%. Error bars indicate the range of the performances

of the respective methods across the four reference sets.

https://doi.org/10.1371/journal.pone.0271395.g002

Table 3. Performances achieved with different combinations of methods, variations, and classifiers. All values are percentages and indicate the average (minimum

value–maximum value) across the four reference sets.

Method Variation Classifier Coverage AUC Recall in top– 1 Recall in top– 3

Genetic distance 100 75.7 (72.1–79.3) 62.5 (58.7–66.2) 92.9 (89.7–95.1)

DEPICT 100 79.6 (75.9–86.2) 67.5 (63.3–77.5) 90.7 (89.1–93.0)

DIAMOnD 6.6 (4.1–12.7) 70.0 (50.0–100.0) 70.0 (50.0–100.0) 100.0 (100.0–100.0)

Network Distance LR 92.1 (89.1–95.8) 77.3 (72.9–81.1) 68.0 (62.1–73.5) 92.9 (89.7–95.1)

Graphlets log LR 92.1 (89.1–95.8) 75.6 (73.0–79.3) 66.4 (58.7–70.6) 89.2 (87.4–93.5)

Node2vec no modification SVM 92.1 (89.1–95.8) 75.1 (71.9–79.5) 64.6 (61.0–71.3) 94.2 (91.3–97.6)

Node2vec graphlets LR 92.1 (89.1–95.8) 74.4 (71.8–75.8) 64.0 (60.9–66.2) 92.1 (88.2–95.7)

Node2vec autoencoded SVM 92.1 (89.1–95.8) 75.2 (72.4–78.1) 65.8 (60.9–70.1) 92.6 (89.7–95.1)

Node2vec autoencoded, graphlets SVM 92.1 (89.1–95.8) 77.0 (72.0–79.2) 65.5 (58.7–69.0) 93.5 (89.7–97.6)

RDF2vec no modification RF 92.1 (89.1–95.8) 79.6 (77.1–83.3) 70.6 (65.2–75.0) 93.7 (91.3–97.6)

Metapaths binary RF 92.1 (89.1–95.8) 78.9 (67.7–90.3) 70.5 (58.7–82.4) 94.1 (91.3–97.6)

https://doi.org/10.1371/journal.pone.0271395.t003
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the average ratio of negative cases to positive cases to 2.1 to 1 (min–max, 1.8–2.3 to 1), com-

pared to an average ratio of 44.2 to 1 at 2000 kb (min–max, 28.2–56.2 to 1).

When excluding DIAMOnD due to its low coverage (see upper left panel in Fig 2), methods

that did not make use of the predicate information in the knowledge graph (i.e. node2vec,

graphlets, and network distance) performed roughly equal to ranking genes based on their

genetic distance from the SNP, which achieved an average AUC of 75.7% (see upper right

panel Fig 2). Amongst these methods, only node2vec whose features were autoencoded and

extended with graphlets, and network distance, achieved slightly higher average AUCs, of

77.0% and 77.3% respectively. Methods that included predicate information, i.e. RDF2vec and

metapaths, performed best and achieved roughly similar ranking performance as DEPICT,

which achieved an average AUC of 79.6%. The difference between methods with and without

predicate information was 3.4 percentage points on average. To test whether the individual

methods achieved significantly different ranking performances from each other we followed

the procedure described by Demšar to compare multiple methods used on multiple datasets

[51]. We applied the Friedman test to the AUCs that were achieved on the different reference

sets and subsequently calculated the p-value according to Iman-Davenport. This showed that

there were no statistically significant differences between the individual methods (p = 0.42).

Recall in the top-1 ranged from 62.5% (genetic distance) to 70.6% (RDF2vec) on average,

while recall in the top-3 ranged from 89.2% (graphlets) to 94.2% (node2vec) on average (see

bottom panels Fig 2). While variations of node2vec achieved an approximately 5 percentage

points lower recall in the top-1 than RDF2vec and metapaths, the recall in the top-3 was almost

the same. However, the comparisons of ranking performances do not take into account the dif-

ference in coverage between the methods based upon protein knowledge graphs and DEPICT/

genetic distances.

Autoencoding node2vec features, or extending them with graphlet counts, did not improve

performance, nor did these variations improve performance when applied to RDF2vec. Only

the combination of autoencoding and graphlets resulted in a 1.9 percentage point improve-

ment for node2vec. Graphlets alone did benefit from using the log of the graphlet counts, and

the metapaths benefitted from using binary features as compared to using their frequencies as

features (see S4 Table for details).

The difference between the best and the worst classifier for the methods and variations was

on average 5.3 percentage points AUC (min–max, 2.7–9.5). Three out of four variations of

node2vec worked best with SVM, while the variation with graphlets worked best with logistic

regression. Stand-alone graphlets and network distance performed best with logistic regres-

sion, while methods that incorporate predicate information (RDF2vec and metapaths) per-

formed best with random forests. For half of the methods decision trees were the worst

performing classifier, and for none of the methods the best. Amongst the four reference sets,

performance achieved with the Teslovich reference set was best in 7 out of 10 experiments

(DIAMOnD excluded), while performance achieved with the high-confidence Farashi set was

lowest in half of the experiments.

3.3 Combining different methods

To investigate whether a combination of methods can improve performance, we trained new

classifiers using the results (prediction scores and rankings of the gene candidates) of the

methods listed in Table 3 as features. Due to its low coverage, the DIAMOnD algorithm was

excluded from this experiment. We used logistic regression to train and evaluate new classifi-

ers, applying the same leave-one-chromosome-out cross-validation procedure described in

Section 2.3. The results are shown in Table 4 and Fig 3. The highest AUC (84.9%) was obtained
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for a combination of rankings from DEPICT, network distance, graphlets, node2vec,

RDF2vec, and metapaths, improving performance with 5.3 percentage points as compared to

RDF2vec and DEPICT, the best single methods. Testing the difference in performance of all

ten individual methods along with the three combined methods with the Friedman test, again

calculating the p-value with the Iman-Davenport formula, showed that their difference was

significant (p = 0.0002).

When testing the difference in performance between the individual methods that were used

together in the combined method for ranks (DEPICT, Network distance, Node2vec, RDF2vec,

metapaths), and their combined method itself with the Friedman test, the difference was sig-

nificant (p = 0.04). We again followed Demšar for our post-hoc analysis by performing the

Dunn-test and using Holm’s step-down procedure to correct for multiple testing [51]. This

showed that the combined method based on ranks differed significantly with the graphlets

(p = 0.006) and node2vec (p = 0.01) methods. Using both prediction scores and rankings

improved the AUC as well, but somewhat less (84.5%). Here, the Friedman test did not result

in a significant p-value when testing the difference in performance between the combined

method that used both scores and ranks, and the individual methods that were part of it

(DEPICT, graphlets, node2vec, metapaths, rdf2vec) (p = 0.076). Combining only prediction

scores improved the AUC least, achieving an average AUC of 83.4%. However, the difference

between the individual methods that were used in the combined method for scores (DEPICT,

graphlets, node2vec, node2vec + graphlets, metapaths) and the combined method for scores

itself was significant (p = 0.03). The Dunn post-hoc analysis, corrected with Holm’s step-down

procedure, showed that the difference was significant between the combination of methods for

scores and node2vec + graphlets (p = 0.006).

4 Discussion

Identification of the genes being targeted by SNPs that are located on non-coding parts of the

genome remains challenging. Here, we explored whether a protein knowledge graph can be

used to identify these genes by comparing the performances of six existing methods, four of

which have previously been developed for disease gene identification, with two baselines.

Table 4. Best performances of combinations of methods across the four reference sets. All values are percentages and indicate the average (minimum value–maximum

value).

Data type Methods included AUC Recall in top 1 Recall in top 3

Ranks DEPICT, Network distance, Graphlets, Node2vec, Metapaths, RDF2vec 84.9 (80.3–88.7) 76.1 (69.6–80.9) 93.5 (91.3–97.6)

Scores DEPICT, Graphlets, Node2vec, Node2vec + graphlets, Metapaths 83.4 (80.7–88.2) 73.7 (65.2–83.8) 94.0 (91.9–95.6)

Scores & Ranks DEPICT, Graphlets, Node2vec, RDF2vec, Metapaths 84.5 (79.4–88.8) 74.9 (69.6–80.9) 92.9 (87.0–97.6)

https://doi.org/10.1371/journal.pone.0271395.t004

Fig 3. Average performance for different metrics, achieved by the best performing combinations of methods for

identifying genes targeted by disease-associated non-coding SNPs. The x-axes list the different methods

(represented by different colours), left to right corresponding with the datatype and best combination of methods in

Table 4 from top to bottom. The y-axes represent each of the three performance metrics as percentages ranging from

0% to 100%. Error bars indicate the range of the performances of the respective methods across the four reference sets.

https://doi.org/10.1371/journal.pone.0271395.g003

PLOS ONE Identifying genes targeted by disease-associated non-coding SNPs with a protein knowledge graph

PLOS ONE | https://doi.org/10.1371/journal.pone.0271395 July 13, 2022 12 / 19

https://doi.org/10.1371/journal.pone.0271395.t004
https://doi.org/10.1371/journal.pone.0271395.g003
https://doi.org/10.1371/journal.pone.0271395


Performances of all tested methods averaged over four reference sets varied between 70% and

80% AUC, suggesting that the roles that genes play within a protein knowledge graph can be

used to identify genes that are targeted by non-coding SNPs. Amongst the methods that we

tested we find that RDF2vec and DEPICT achieved the highest average AUC, followed by

metapaths. Methods based on the protein knowledge graph that used predicate information,

i.e. RDF2vec and metapaths, both performed better than methods that did not, i.e. node2vec,

graphlets, and network distance, demonstrating the added value of using predicate informa-

tion for our task. Prioritization based on genetic distance, one of our baselines and the leading

assumption amongst geneticists, performed roughly equal to methods lacking predicate infor-

mation. Yet while the above trend was clear based on the AUCs, our four reference sets did

not provide sufficient power for the differences to be significant when tested with a Friedman

test. Furthermore, because some proteins from our reference sets were disconnected from

other proteins in our knowledge graph, these were excluded from further analysis. Genetic dis-

tance and DEPICT did not share this dependence on our protein knowledge graph, leading to

differences in coverage between methods, which complicated the direct comparison of their

performances.

Combining methods improved performance up to 5.3 percentage points AUC. When test-

ing the difference between the combined methods for ranks and scores to the individual meth-

ods which were included in them, statistically significant differences were found. This was not

the case when using both ranks and scores simultaneously. Our best performing combinations

of methods all included DEPICT as well as at least one of the two methods that used predicate

information. Therefore, although none of the methods based on a protein knowledge graph

outperformed DEPICT, the results of our combination experiments show that combining

DEPICT with (predicate) features from a protein knowledge graph improves performance.

Genetic distance, the leading assumption amongst geneticists and our other baseline method,

was not included in the best performing combinations of methods.

While previous authors have reviewed network-based methods for prioritizing candidate

genes for SNPs [52, 53], to our knowledge we are the first to systematically compare their per-

formance by applying them to the same reference sets, and comparing them to baselines. Fur-

thermore, we compared different ways to determine the search intervals around SNPs for gene

candidates. In addition to the commonly used AUC we also evaluated our performance by cal-

culating the recall in the top-1 and top-3 results, which users may find more straightforward to

interpret and practically relevant. Given the large number of published methods to extract fea-

tures from knowledge graphs, it is infeasible to test them all. In this study we limited ourselves

to testing existing disease gene identification methods that use protein-knowledge graphs.

Future research may include different methods to extract features from knowledge graphs,

beyond those that have specifically been used for disease gene identification. Also, we only

tested our methods on a single knowledge graph, which is based on triples extracted from the

biomedical literature, while Franke et al. have demonstrated that combining different types of

sources improves performance [54]. Contrary to previous studies, our knowledge graph con-

tained predicates between proteins, enabling us to test and demonstrate their added value.

Directly comparing our results to those achieved by the original disease gene identification

studies is complicated because of the difference in objectives. While we identified gene candi-

dates for individual SNPs, previous methods identified gene candidates across the whole

genome or for a locus. A comparison to DEPICT is complicated because its developers tested

their method on only the LDL subset of the Teslovich reference set, for which they achieved a

perfect prediction performance.

Contrary to previous research in which autoencoding features generated by node2vec

improved performance for disease gene identification [37], autoencoding node2vec features
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failed to improve performance for our task. Similarly, extending node2vec with frequencies of

graphlets also did not improve performance [35]. Only the combination of autoencoding and

graphlets improved performance by 1.9 percentage points AUC. The combination of node2vec

and the graphlets did improve performance when combined with other methods. For the

RDF2vec features, applying the same modifications failed to improve performance in general.

We compared different static intervals around a SNP to identify candidate genes, in addi-

tion to the intervals around SNPs based on linkage disequilibrium. We found that static inter-

vals result in either poor coverage or poor ranking performance. While short intervals such as

25 kb achieved a coverage of 12% on average, at higher intervals of 2000 kb none of the AUCs

exceeded 60%. In contrast, DEPICT’s linkage-disequilibrium-based method results in both a

relatively high coverage and one of the best ranking performances. Yet this method also has

drawbacks. DEPICT determines the interval around a SNP based on the HapMap data and

data from the 1000-genomes project, which may be biased towards certain populations or dis-

eases. Furthermore, DEPICT is unable to identify intervals around SNPs on the X-chromo-

some (which means that none of the presented results apply to the X-chromosome). The

output of DEPICT does not offer an explanation why for some SNPs no candidates are found.

On average, DEPICT retrieved less than half of the positive cases from our reference sets.

Future research could investigate whether lowering the current r2 cutoff of 0.5, which DEPICT

uses to determine the genetic intervals around SNPs, would improve coverage, while maintain-

ing ranking performance. Alternatively, using tools other than DEPICT to identify the gene

candidates for SNPs could be explored. For example, FUMA [6] is a commonly used tool for

post-GWAS analyses which also accepts GWAS summary statistics as input, while gene candi-

dates for SNPs identified by the OpenTargets algorithm [11] have been made available in a

publicly accessible database.

Because the disease gene identification methods that we tested use protein-protein interac-

tion networks, we limited our task to protein-coding genes. SNPs targeting other coding

sequences, such as long non-coding RNAs or pseudogenes were excluded. Each reference set

contained different numbers of non-coding sequences. None were found in the Teslovich set,

16 in the full Farashi set, and 69 for the DeRycke reference set (24 of these were subunits of the

HLA and RP11 genes). Some of these non-coding sequences are entities within Resnet. Future

research may examine if features derived from a protein knowledge graph for such non-coding

sequences could be used in a similar way as those of protein-coding sequences to determine

whether they are targeted by SNPs.

Although our graph-based methods use supervised learning in contrast to DEPICT’s unsu-

pervised gene-set based approach, it might be worthwhile to investigate whether unsupervised

learning methods achieve similar performance. For example, Milenković et al. clustered genes

together based upon their orbit frequencies within graphlets, after which they evaluated

whether disease genes were clustered together [39]. A similar methodology could be tested for

our task. If genes targeted by non-coding SNPs can indeed be clustered together with high

accuracy based on features derived from a protein knowledge graph, that would suggest that

these genes have common network properties which are independent from a specific disease

or training set. A precedent for such common network properties of genes associated with dis-

ease is the lethality-centrality theory, which poses that network connectivity of disease genes is

relatively high, but not high enough to be fatal [55].

Our work demonstrates that methods for protein knowledge graphs can be used to identify

genes that are targeted by SNPs located on the non-coding part of the genome. By achieving

two out of the top-three performances across all four reference sets, we show the added value

of predicate information within these knowledge graphs. Combining methods improved per-

formance even further, up to 84.9% AUC on average. However, in practice users may also
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weigh aspects other than performance, such as comprehensibility and ease of implementation

in selecting a method. Our results show that the current leading assumption amongst geneti-

cists, that a SNP targets the nearest gene, remains a valid choice for users who are willing to

accept slightly lower performance in favour of comprehensibility and ease of implementation.

This method only requires the locations of the SNP and genes on the genome, which is infor-

mation which is easily available, but achieves a 3.9 percentage point lower AUC than the best

individual methods, DEPICT or RDF2vec, and already finds 92.9% of the positive cases in the

top-3 results. Network distance offers a slightly better performance (1.6 percentage points

AUC on average) as compared to genetic distance, whilst its five features are comprehensible

and relatively easy to implement. Users who prefer the highest performance would best use a

combination of methods, thereby gaining 9.2 percentage points AUC over genetic distance.

Alternatively, users may consider using methods in sequence, starting with genetic distance,

trying network distance for the SNPs for which genetic distance fails to yield plausible results,

and continuing to use increasingly complex methods for those SNPs for which only implausi-

ble candidates are highly ranked. Although such a sequence of methods may entail more work

than using a single method, it may offer an attractive compromise between ease of use, com-

prehensibility, and overall performance.
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pair distance absolute), the base pair distance between the SNP and the start/end of the gene

(whichever value is lower), where negative values indicate the gene is located upstream from

the SNP (base pair distance), and the gene rank as determined by the absolute base pair dis-
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value as taken from the meta-analysis by Teslovich (p-value), the ENSEMBL identifier of the
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positive integer between the SNP and the start/end of the gene (whichever value is lower) (base
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(whichever value is lower), where negative values indicate the gene is located upstream from

the SNP (base pair distance), and the gene rank as determined by the absolute base pair dis-

tance (Gene rank).
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pair distances, for all reference sets. Columns indicate the reference set to which the method,

variation, and classifier were applied, and the performance that was achieved by them. AUC

indicates the average AUC across all SNPs in the reference sets. Hits@1/3/5/10 indicate the

absolute number of results that were returned in the top 1/3/5/10. The recall can be calculated
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51. Demšar J. Statistical comparisons of classifiers over multiple data sets. J Mach Learn Res. 2006; 7: 1–

30.

52. Wang K, Li M, Hakonarson H. Analysing biological pathways in genome-wide association studies. Nat

Rev Genet. 2010; 11: 843–54. https://doi.org/10.1038/nrg2884 PMID: 21085203

53. Leiserson MDM, Eldridge JV, Ramachandran S, Raphael BJ. Network analysis of GWAS data. Curr

Opin Genet Dev. 2013; 23: 602–10. https://doi.org/10.1016/j.gde.2013.09.003 PMID: 24287332

54. Franke L, van Bakel H, Fokkens L, de Jong ED, Egmont-Petersen M, Wijmenga C. Reconstruction of a

functional human gene network, with an application for prioritizing positional candidate genes. Am J

Hum Genet. 2006; 78: 1011–25. https://doi.org/10.1086/504300 PMID: 16685651

55. Feldman I, Rzhetsky A, Vitkup D. Network properties of genes harboring inherited disease mutations.

Proc Natl Acad Sci USA. 2008; 105: 4323–4328. https://doi.org/10.1073/pnas.0701722105 PMID:

18326631

PLOS ONE Identifying genes targeted by disease-associated non-coding SNPs with a protein knowledge graph

PLOS ONE | https://doi.org/10.1371/journal.pone.0271395 July 13, 2022 19 / 19

https://doi.org/10.1093/nar/gki033
http://www.ncbi.nlm.nih.gov/pubmed/15608251
http://conference.scipy.org/proceedings/SciPy2008/paper_2
http://conference.scipy.org/proceedings/SciPy2008/paper_2
https://doi.org/10.18637/jss.v071.i10
https://doi.org/10.1145/3336191.3371773
https://doi.org/10.1145/3336191.3371773
https://doi.org/10.1145/2939672.2939754
https://doi.org/10.48550/ARXIV.2205.02283
https://doi.org/10.1038/nrg2884
http://www.ncbi.nlm.nih.gov/pubmed/21085203
https://doi.org/10.1016/j.gde.2013.09.003
http://www.ncbi.nlm.nih.gov/pubmed/24287332
https://doi.org/10.1086/504300
http://www.ncbi.nlm.nih.gov/pubmed/16685651
https://doi.org/10.1073/pnas.0701722105
http://www.ncbi.nlm.nih.gov/pubmed/18326631
https://doi.org/10.1371/journal.pone.0271395

