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Predicting metastasis in the early stages means that clinicians have more time to adjust a treatment reg-
imen to target the primary and metastasized cancer. In this regard, several computational approaches are
being developed to identify metastasis early. However, most of the approaches focus on changes on one
genomic level only, and they are not being developed from a pan-cancer perspective. Thus, we here pre-
sent a deep learning (DL)–based model, MetaCancer, that differentiates pan-cancer metastasis status
based on three heterogeneous data layers. In particular, we built the DL-based model using 400 patients’
data that includes RNA sequencing (RNA-Seq), microRNA sequencing (microRNA-Seq), and DNA methy-
lation data from The Cancer Genome Atlas (TCGA). We quantitatively assess the proposed convolutional
variational autoencoder (CVAE) and alternative feature extraction methods. We further show that inte-
grating mRNA, microRNA, and DNAmethylation data as features improves our model’s performance com-
pared to when we used mRNA data only. In addition, we show that the mRNA-related features make a
more significant contribution when attempting to distinguish the primary tumors from metastatic ones
computationally. Lastly, we show that our DL model significantly outperformed a machine learning (ML)
ensemble method based on various metrics.
� 2021 Published by Elsevier B.V. on behalf of Research Network of Computational and Structural Bio-
technology. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).
1. Introduction

In silico metastasis-related research has generally been directed
towards predicting if cancer has metastasized, classifying sites as
primary or secondary, and identifying potential therapeutic
approaches [1,2]. The reason being, it is believed that administer-
ing drugs that also target the metastases can curb cancer-related
deaths, but only if we find a way to identify metastasis with more
precision than currently used blood tests and imaging technology
[2–5]. In this regard, different omics data types have been used
to build models that predict metastasis mainly using two
approaches, i.e., network-based and ranked-based.

Network-based approaches include one developed by He and
colleagues [6]. They used microarray-based gene expression data
to classify metastatic and non-metastatic osteosarcoma (OS)
patient samples, using a support vector machine (SVM) based clas-
sifier. Using statistical methods, at first, they identified the differ-
entially expressed genes (DEGs), which they used to construct a
protein–protein interaction (PPI) network. They then ranked the
genes based on the network property, betweenness centrality
(BC), and used the SVM classifier’s top-ranking genes to predict
metastasis. But during the same timeframe, Metri and colleagues
[7] also built multigene models to differentiate metastatic mela-
noma from primary melanoma using adaptive boosting (Adaboost)
and random forest (RF) classifiers. Later, Wei and colleagues [8],
and Tuo and colleagues [9] built SVM models to classify cutaneous
melanoma and breast cancer samples, respectively, as metastatic
and non-metastatic. Both SVM models achieved significantly
improved accuracy compared to the Adaboost and RF models.
More recently, though, Chereda and colleagues [10] developed a
deep learning (DL) model that applies the graph convolutional neu-
ral networks (CNN) technique by exploiting the PPI graph as prior
knowledge for predicting breast cancer metastasis. They showed
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the graph CNN model’s strength by comparing it with different
machine learning (ML) models, and it showed superior accuracy.

On the other hand, the rank-based approaches use an iterative
gene selection approach that determines the subset of genes better
suited to serve as features. Wu and colleagues [11] used this
approach with DNA methylation data to build an RF classifier to
predict lymph node (LN) metastasis status in stomach cancer. They
performed three preprocessing steps. First, they carried out differ-
ential methylation analysis to extract significantly differentiating
probes between metastatic and non-metastatic samples. Next,
the feature selection technique, minimum redundancy maximum
relevance (mRMR), was applied to remove redundant features.
The final step implemented a genetic algorithm-based method to
extract the most relevant probes fed to the RF model. Several of
the probes were known to be associated with LN metastasis-
related genes such as HOXD1, NMT1, and SEMA3E. Ahsen and col-
leagues [12] employed microarray-based genome-wide microRNA
expression profiling to identify robust molecular signatures to pre-
dict LN metastasis risk in endometrial cancer. They proposed the
lone star algorithm specifically developed to identify a small num-
ber of discriminative features when the number of features is less
than the number of samples. They fed the top discriminative
microRNAs that target 23 cancer-associated genes to a weighted
SVM classifier. Similar to the above study, Zhao and colleagues
[13] used microarray-based microRNA expression data to identify
brain metastasis-related (BM) microRNAs in the lung adenocarci-
noma (LUAD) samples. They used RF to select the most correlated
microRNAs (with the BM classification according to the important
permutation score) and classify samples. Karabulut and colleagues
[14] proposed a discriminative deep belief network (DDBN) to
demonstrate the DL approach’s ability to produce a powerful deci-
sion support model using gene expression data. They used their
proposed DL model to distinguish between metastatic and non-
metastatic colorectal cancer. They implemented preprocessing
steps such as 1) selecting essential features using the information
gain technique and 2) oversampling the minority class using syn-
thetic minority over-sampling technique (SMOTE). The proposed
DDBN outperformed other ML models such as SVM, RF, and k-
nearest neighbor (KNN).

Most methods predict metastasis using only a single-omics data
type such as mRNA [7–10], microRNA [12,13], or DNA methylation
[11,15]. However, multiple omics layers contribute to an observed
biological phenotype; therefore, several studies are now integrat-
ing multi-omics data [16–22]. In this regard, Bhalla and colleagues
[23] used multi-omics data (mRNA expression, microRNA expres-
sion, and DNA methylation data) with ML to classify metastatic
and primary skin cutaneous melanoma tumors. They developed
an ensemble learning model that takes the prediction scores from
three models (one model for each omics data type) as input fea-
tures for an SVM to predict the metastasis status. This study
revealed the genes CASP7, S100A7, C7, KRT14, MMP3,
LOC642587, and microRNAs hsa-mir-203b and hsa-mir-205 as
potential key genomic features that contribute to the oncogenesis
of melanoma and further suggested CDK14, ESM1, NFATC3,
ZNF827, C7orf4, and ZSWIM7 as novel putative markers for SKCM
metastasis. Despite this work and others achieving good prediction
accuracy and precision, none of the models are generic. In addition,
to the best of our knowledge, researchers do not know if a DL
method’s performance with multi-omics data yields a better result
or which combination of multi-omics data will produce the best
result.

This work represents the first attempt to use DL with multi-
omics pan-cancer data to predict metastasis. We used 420 samples
from the TCGA multi-omics cohort, which have mRNA expression,
microRNA expression, DNA methylation, and clinical information.
We used a convolutional variational autoencoder (CVAE) to auto-
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matically extract relevant features that we fed to a deep neural
network (DNN) model to predict which tumors have metastasized
(M) and which ones are primary (P).

2. Materials and method

2.1. Data collection and preprocessing

We sifted through 33 TCGA projects in search of primary tumor
samples (with/without distant metastasis) that have mRNA, micro-
RNA, and DNA methylation data available. We found samples from
11 types of cancer with the three types of omics data available, and
at least ten of the samples are metastasized based on American
Joint Committee on Cancer (AJCC) categorization [24]. AJCC distant
metastasis (M) categories assign M0 to samples that show no evi-
dence of distant metastasis and M1 to others that show evidence of
distant metastasis. Specifically, for M1 samples, we had:

� 10 cervical squamous cell carcinoma and endocervical adeno-
carcinoma (CESC) samples.

� 10 thyroid carcinoma (THCA) samples.
� 10 kidney renal papillary cell carcinoma (KIRP) samples.
� 10 urothelial bladder urothelial carcinoma (UBC) samples.
� 10 esophageal carcinoma (ESCA).
� 11 rectum adenocarcinoma (READ) samples.
� 20 stomach adenocarcinoma (STAD) samples.
� 17 invasive breast carcinoma (BRCA) samples.
� 19 lung adenocarcinoma (LUAD) samples.
� 41 colon adenocarcinoma (COAD) samples.
� 52 kidney renal clear cell carcinoma samples.

We collated the same number of samples from the respective
associated primary cancer samples (M0) to generate a balanced
dataset. We used a total of 420 samples (210 metastasized and
210 primary) in this study. We obtained the data using the TCGAbi-
olinks R package [25,26] that provides programmatic access to the
Genomic Data Commons (GDC) Data Portal, a platform that
includes TCGA, among other resources. We used the TCGAbiolinks
package to preprocess the harmonized TCGA dataset as well. In the
preprocessing phase, we used the Enhancer Linking by Methyla-
tion/Expression Relationship (ELMER) R package to map CpG
islands within 1500 bp ahead of the transcription start sites (TSS)
of genes and averaged their methylation values. Moreover, we per-
formed three preprocessing steps to deal with missing values as
described by Chaudhary and colleagues [27]. Briefly, we first
removed the biological features (e.g., mRNA/microRNAs) showing
zeros in more than 25% of the patients. Second, we removed sam-
ples with less than 75% features remaining after the first step.
Finally, we used the R impute function [28] which is a function
to impute missing expression data, using nearest neighbor averag-
ing to fill the remaining missing values. Preprocessing steps have
been done independently on each test set. After preprocessing,
there are 200 samples with all three data types, and the number
of features for mRNA is 16,588, DNA methylation is 20,662, and
microRNA is 388.

2.2. Deep learning framework

2.2.1. Convolutional variational autoencoder for feature extraction
We used an autoencoder (AE)-based architecture [29] to auto-

matically extract features and reduce the input data’s dimensional-
ity. AE is an unsupervised DL technique in which we leverage
neural networks for the task of representation learning. A typical
AE consists of 1) an encoder, which maps the high dimensional
input data into a latent variable embedding having lower dimen-
sionality than the input, and 2) a decoder, which attempts to



Fig. 1. An overview of the proposed convolutional variational autoencoder (CVAE)
model. This architecture includes two parts, an encoder and a decoder that are two
symmetrical and reversed structures. Each one is composed of two convolutional
layers and one dense layer. The latent 100-dimensional vector is the sampling layer
(Z) generated using the mean and the standard deviation layers (i.e., l and r). We
trained this architecture to take the input data, a stack of three integrated omics
data (mRNA, microRNA, and DNA methylation), and automatically learn the latent
vector’s distinguishing features.
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reconstruct the input data from the embedding. The training phase
aims to retain as much information as possible when encoding to
minimize the reconstruction error when decoding. In particular,
we used the so-called variational autoencoders (VAE) [30] for their
ability to better generalize to different input data.

The VAE’s goal is to learn the probability distribution parame-
ters modeling the data or calculating the posterior p zjxð Þ. It builds
a variational inference model qðzjxÞ that approximates the true
posterior p zjxð Þ[31]. Given a data-point x, it produces a distribution
over the latent values z from where it could have been drawn, and
this is called a probabilistic encoder (recognition model). As a
result, each latent variable is related to a corresponding observa-
tion in the data-point x through the likelihood p xjzð Þ, called a prob-
abilistic decoder. Given a latent values z, VAE decodes it into a
distribution over the observation � (generative model) [31].

Two loss functions are used to train the VAE model. First, the
reconstruction loss function is computed as the cross-entropy loss
to force the decoded samples to match the initial inputs. Second,
the regularizing constraint is computed as the Kullback-Leibler
(KL) divergence to force the latent embeddings z to conform to a
normal distribution with zero mean and one standard deviation
(Eq. (1)) [31].

L h;£; x; zð Þ ¼ Eq£ðzjxÞ logph xjzð Þ½ � � DKL q£ zjxð Þkp zð Þ� � ð1Þ
where / and h denote the parameters of the encoder (recognition
model) and decoder (generative model), respectively.

Rather than using regular feedforward layers in our VAE, we
applied convolutional VAE (CVAE) because they utilize sliding fil-
ters to recognize better local patterns independent of their position
in the data. Fig. 1 illustrates the CVAE architecture. It includes the
two symmetrical and reversed encoder and decoder structures;
each comprise two convolutional layers and one dense layer. We
used the mean and the standard deviation layers (i.e., l and r)
to generate the latent 100-dimensional vector (refer to Table 1
Table1
The main layers in the proposed CVAE architectures.

Main layer

Input layer
Convolutional layer
Convolutional layer
Dense layer
Mean layer
Standard deviation layer
Sampling layer (latent vector)
Dense layer
Deconvolutional layer
Deconvolutional layer
Output layer (reconstructed input)
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for details). We implemented CVAE using Python Keras library
(https://github.com/fchollet/keras) [32]. The CVAE input was a
stack of three omics data (mRNA, microRNA, and DNA methyla-
tion) matrices, and we employed the Stochastic Gradient Descent
(SGD) algorithm with the default parameters as the optimizer.
The number of epochs = 100 and batch size = 8, and we used the
early stopping technique [33] to avoid overfitting.

2.2.2. Deep neural network for classification
The model we are building requires the highest capacity to dis-

criminate between metastasis and primary cases. As a conse-
quence, even a slight gain in accuracy is essential. For this
reason, we choose deep neural network (DNN), the common
approach used to solve similar problems, which is capable of pat-
tern recognition in complex data [34] to build the classifier.

Thus, after completing the CVAE training process, the encoder
part is fed to a DNN classifier, as illustrated in Fig. 2. We used
the latent vector as input to train the classifier to predict whether
the input data is from a metastasized (M) tumor or a primary
tumor (P). The encoder parameters obtained by the previous step
are frozen during the classifier training step (Fig. 2). We imple-
mented a DNN using the Python Keras library (https://github.-
com/fchollet/keras). We employed the SGD algorithm with the
default parameters as the optimizer and used cross-entropy to
compute the loss between actual and predicted labels. The number
of epochs was set to 100, and the batch size to 8. We used the early
stopping technique [33] and the dropout technique [35] with a
drop rate of 0.3 to avoid overfitting. Table 2 provides the details
of the DNN model parameters.

2.2.3. Data partitioning and robustness assessment
To assess the model’s robustness, we used a cross-validation

(CV)–like procedure to partition the TCGA dataset. We split the
TCGA data 80%, 20% for training and test sets, respectively, to have
sufficient test samples to generate evaluation metrics. That is, we
randomly split the 420 TCGA samples into five folds in the strati-
fied mode where each fold should have the same percentage of
positive and negative samples, then used one-fold as the test set
and the remaining four folds as the training set. For each split,
we constructed a model that extracts features (latent vector) from
80% of samples (training set) using CVAE, and then we used DNN to
learn the predictions. Then, we tested the model to predict the
labels of the 20% of samples held out (test set). Note we used each
of the 5-folds as test sets in 5 different models and extracted the
latent vector during the building of each model, and the final met-
rics were averaged over the folds.

2.2.4. Alternative feature extraction processes
We compared the DL framework’s performance with two com-

monly used alternatives, i.e., protein–protein interaction (PPI) net-
Parameters

Stack of integrated omics data
filters = 32, kernel_size = 3, strides = 1, padding = ‘same’, activation = ‘tanh’.
filters = 64, kernel_size = 3, strides = 1, padding = ‘same’, activation = ‘tanh’.
units = 256, activation = ‘tanh’, kernel_regularizer = ‘l2’, bias_regularizer = ‘l2’.
units = 100
units = 100
units = 100
units = 256, activation = ‘tanh’, kernel_regularizer = ‘l2’, bias_regularizer = ‘l2’.
filters = 32, kernel_size = 3, strides = 1, padding = ‘same’, activation = ‘tanh’.
filters = 32, kernel_size = 3, strides = 1, padding = ‘same’, activation = ‘tanh’.
Stack of reconstructed integrated omics data
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Fig. 2. The latent vector used as input to train the DNN to classify metastasized (M) or primary tumor (P) samples correctly.

Table 2
Main layers in the proposed DNN architectures.

Main layer Parameters

Input layer 100 D-vector (latent vector)
Dense layer units = 60, activation = ‘tanh’, kernel_regularizer = ‘l2’, bias_regularizer = ‘l2’.
Dense layer units = 30, activation = ‘tanh’, kernel_regularizer = ‘l2’, bias_regularizer = ‘l2’.
Output layer units = 1, activation = ‘sigmoid’.
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work construction (network-based) and recursive feature elimina-
tion (rank-based), in metastasis-related work.

For the network-based approach, we downloaded the PPI infor-
mation from Database of Protein, Chemical, and Genetic Interac-
tions (BioGRID) [36], Human Protein Reference Database (HPRD)
[37], and Database of Interacting Proteins (DIP) [38]. We merged
this information to construct a huge network using Cytoscape
[39] and then mapped the DEGs onto the network to obtain a smal-
ler, focused DEGs’ PPI network [40]. We calculated betweenness
centrality (BC) for each node to reflect the node’s hubness in the
PPI network. BC score ranges between 0 and 1, with the larger indi-
cating a higher degree of hubness. Thus, essential proteins involved
in the densely interconnected biological processes are more likely
to be represented by hub nodes. The top 100 BCE nodes (genes) are
selected to be fed to the classifier.

In the rank-based approach, the goal is to select the top genes
that are more relevant in predicting the metastatic status (P or
M) by recursively considering smaller and smaller sets of genes.
Recursive feature elimination (RFE) is an efficient approach for
eliminating genes and for feature selection. The process starts by
training an estimator on all genes’ in the initial set and then ranks
the genes from the most important to the least. Then, the least
important genes are discarded, and the model is re-trained on
the remaining set of genes. This process is recursive until a speci-
Table 3
Comparing performance using alternative feature extraction processes (using mRNA data

Approach (mRNA only) Accuracy Precision

Rank-based 74.16 (±2.23) 67.33 (±3.61)
Network-based 78.46 (±2.48) 77.50 (±1.71)
CVAE-based 83.83 (±0.44) 85.98 (±0.54)
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fied number of top genes remains. The top 100 genes are then
fed to a classifier to predict whether the input data indicate a
metastasized (M) or primary tumor (P). The estimator used in this
work is SVM and applied using Scikit-learn [41].

3. Results and discussion

3.1. Comparing feature extraction methods

Several factors affect a model’s prediction performance, such as
the effectiveness of the feature extraction method implemented.
Thus, we quantitatively assessed the proposed DL approach’s per-
formance when using CVAE preprocessing and alternative feature
extraction preprocessing methods. We computed the statistical
measures such as accuracy, sensitivity (a.k.a. recall), specificity,
precision, and F1-score. These metrics were calculated based on
the prediction of positive (Metastasized) or negative (Primary)
samples. All reported results are the average performance obtained
from 5 models on the hold-out test sets.

As the two described alternative feature extraction approaches
were proposed based on using only mRNA data, we similarly
trained and tested our DL approach using mRNA only to make a fair
comparison. In Table 3, we provide the averaged results with the
standard deviation used in the comparison. The results show supe-
only).

Sensitivity (Recall) F1 score Specificity

80.15 (±2.13) 75.92 (±2.18) 67.66 (±2.09)
76.66 (±2.24) 79.65 (±1.99) 80.90 (±2.89)
81.33 (±0.16) 83.59 (±0.60) 86.33 (±0.35)
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rior performance for CVAE preprocessing across all the metrics. The
model’s performance using the rank-based feature extraction
method is lower than that achieved by the network-based feature
extraction method in all metrics except sensitivity. However, the
rank-based method identifies the metastasized samples better
than the network-based method, while the latter better identifies
primary samples.

Since the features produced by the CVAE-based method better
distinguish the primary tumors from the metastatic ones, com-
pared to the commonly used feature extraction methods, it would
be interesting to know which features the CVAE-based method is
extracting or omitting that benefit this classification process. How-
ever, the CVAE-based method’s power comes with a price such as
the lack of interpretable and exploitable features in the latent vec-
tor [42], which prevents us from seeing these results. Therefore,
efforts are ongoing to make DL models more interpretable, more
accessible, and more useful to biologists [42].
Fig. 3. MetaCancer’s performance when using the integrated omics (m

Fig. 4. MetaCancer’s performance. A) Using single-omics vs inte
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3.2. Evaluating the contribution of different omics data types

After assessing alternative feature selection methods’ perfor-
mance, we sought to investigate how using multiple omics data
layers improves performance. The results of this analysis are
shown in Fig. 3, which reports the performance scores obtained
using MetaCancer with the mRNA data layer only or using the full
(mRNA, microRNA, and DNA methylation) dataset. The results
show that MetaCancer achieves superior performance when inte-
grating multiple omics data layers compared to using mRNA data.

We then sought to analyze the contribution of each data layer to
the observed performance. Fig. 4 illustrates the area under the
curve (AUC) evaluation metric when using each or a combination
of omics types. When using a single-omics type, mRNA performed
the best with AUC = 88.28, and microRNA had the lowest perfor-
mance with AUC = 76.93. The DNA methylation ranked second
with AUC = 86.17. However, using integrated multi-omics data
RNA, microRNA, DNA methylation) dataset or mRNA data alone.

grated omics. B) Excluding one omics vs integrated omics.
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improved the performance and achieved AUC = 91.19 (see Fig. 4A).
We also assessed MetaCancer’s performance when using different
combinations of omics data. In these cases, when excluding mRNA,
we observed the largest decrease in AUC from 91.19 to 78.23, while
excluding microRNA produced the smallest decline in the AUC.
These results suggest that mRNA data, followed by DNA methyla-
tion data, serve better as features to discriminate metastatic status,
while microRNA makes the smallest contribution. Nonetheless,
integrating all 3-omics types improves the models’ ability to dis-
tinguish primary tumors and metastatic ones (see Fig. 4B).

The finding that the mRNA data layer provides the most signif-
icant contribution is consistent with results from a recent cross-
cancer (11 cancer types) study performed by Lee and colleagues
[43]. They used mRNA and microRNA expression data indepen-
dently to differentiate primary tumor samples from the metastatic
ones. They used the student’s t-test to identify the top 64, 128, and
256 features, which they used to train various models (LASSO, RF,
and SVM) evaluated across 100 Monte Carlo cross-validation
(MCCV). The RF model with 256 features achieved the highest
AUC when predicting metastatic using only mRNA or only micro-
RNA expression data. However, using the mRNA data achieved an
AUC of 0.74, while the microRNA achieved a significantly lower
AUC of 0.64. They did not report how the ensemble model (using
both the mRNA and microRNA expression data as features) would
affect the AUC. Nonetheless, as mentioned before, the work
reported by Bhalla and colleagues [23] during the same timeframe
does report AUC for an ensemble model and the AUC for models
based on single omics types. They also showed that using mRNA
data only achieved a higher AUC than when using the microRNA
and methylation data individually. The surprise was that the
ensemble method achieved an AUC slightly lower than when using
mRNA data only.

Overall, the approaches that evaluated performance using dif-
ferent omics types are few. Still, they consistently showed that
mRNA data-related features make a more significant contribution
when distinguishing primary tumors from metastatic ones
computationally.
3.3. Comparing our MetaCancer model with an alternative ensemble
model

After comparing our model to other models based on mRNA
only, we compared our model’s performance to a model designed
to exploit multiple data layers. In particular, we compared our pro-
posed MetaCancer model’s performance to the ensemble model
proposed by Bhalla and colleagues [23]. First, we constructed a
model with the same architecture introduced by Bhalla and col-
leagues [23]. Then we trained and evaluated the model (using
the same cross-validation technique used to evaluate our model)
with our data.

They trained three independent models in the ensemble model,
one for each omics data (mRNA, microRNA, and DNA methylation).
They achieved the best performance using SVM with L1 regulariza-
tion (SVC-L1) [44] as the feature selection method and SVM as the
classification method for both mRNA and microRNA. However, for
the DNA methylation data, they achieved the best performance
using WEKA-FCBF [45] as a feature selection method and logistic
regression (LR) as a classification model. After training a model
Table 4
Comparing the performance of approaches when integrating omics data (mRNA, microRN

Approach (Integrated Omics) Accuracy Precision

SVM Ensemble 82.50 (±1.39) 80.95 (±01.19)
CVAE-based (MetaCancer) 88.85 (±0.74) 91.65 (±0.86)
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for each omics data type, i.e., mRNA, microRNA, and DNA methyla-
tion, the prediction scores were provided as input features to the
SVM to give the final prediction. Table 4 presents the results
achieved when applying this approach to our data and the results
obtained by our model. When comparing the results in Tables 3
and 4, the results suggest that the models using the multiple omics
data types outperformed the models that use mRNA only. More-
over, MetaCancer model significantly outperformed the ensemble
method based on all five metrics. Here, it is interesting to note that
the original model introduced by Bhalla and colleagues [23]
reported achieving 87.64% accuracy applied to only one type of
cancer. In contrast, our model applied to 11 cancer types achieves
a higher accuracy of 88.85%.

These results show that CVAE possesses distinct advantages
over alternative feature extraction methods when exploring the
complex nature of the genomic and epigenomic data. CVAE is an
entirely data-driven unsupervised approach and does not rely on
existing genomic annotations to learn representations; thus, it
can identify patterns in the data and extract meaningful knowl-
edge while overcoming data complexities. For most methods, the
reliance on existing annotations limits our ability to uncover novel
biology as it directs towards the well-known biology with the most
molecular data [46]. However, as a data-driven model, CVAE
repeatedly adjusts a weighted combination of input features until
the model identifies the best possible reconstruction of the input
data. This can be thought of as a high dimensional interaction
space in which the latent dimensions capture multi-omics features
that are similarly associated with the metastatic status. Also,
because the CVAE is data-driven and unsupervised, the training
process condenses all information about each metastatic sample
into a lower-dimensional space from which the inference of novel
information is possible.
3.4. Limitations and concluding remarks

Although many studies focused on metastatic status prediction,
most of these studies did not consider changes at various genomic
layers contributing to the metastasis etiology. In this work, how-
ever, we consider the contribution made by mRNA, microRNA,
and DNA methylation to the metastasis etiology using the associ-
ated omics data to develop a DL model that predicts if a sample
has already entered the metastasis phase or not. If developed into
a tool, this model’s purpose is to help physicians identify metasta-
sis earlier so that treatment regimens can be amended to treat the
metastasized cancer as well [47,48].

While CVAEs can generate useful representations for vast
amounts of complex heterogeneous data, in terms of interpretabil-
ity, the learned representations’ biological relevance has to be ver-
ified if they are used in clinical decision support systems.
Interpretation of these latent vectors representing the features
has, however, received little attention. In the near future, we aim
to develop a pan-cancer metastasis model using interpretable
techniques to unveil the pan-cancer metastasis-related omics sig-
natures. Interpreting these features would reveal more of the core
metastasis-related features, providing a better understanding of
the biology underpinning metastasis etiology.

Also, the 400 samples used to train and evaluate the model is
reasonable, but may not be sufficient to extract all the features that
A, and DNA methylation).

Sensitivity (Recall) F1 score Specificity

85.01 (±2.44) 82.92 (±1.02) 81.10 (±1.69)
87.69 (±0.22) 90.44 (±1.23) 89.61 (±1.17)
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distinguish between samples and enhance the performance. More-
over, we could better show the proposed model’s robustness if we
find external test data with all three omics data, which is not cur-
rently publicly available to the best of our knowledge.

In the future, we plan to predict the site (or organ) where the
cancer would most likely metastasize and collaborate with clini-
cians to develop case studies that will test and improve the model
over time.
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